
— 54 Streaming Algorithms

54 Streaming Algorithms
For this chapter, we will consider the streaming model. In this setting, the input is
presented as a ‘‘stream’’ which we can read in order . In particular, at each step, we can
do some processing, and then move forward one unit in the stream to read the next piece
of data. We can choose to read the input again after completing a ‘‘pass’’ over it.

There are two measures for the performance of algorithms in this setting. The first is the
number of passes we make over the input, and the second is the amount of memory that
we consume. Some interesting special cases are:

• 1 pass, and O(1) memory: This is equivalent to computing with a DFA, and hence
we can recognise only regular languages.
• 1 pass, and unbounded memory: We can store the entire stream, and hence this is

just the traditional computing model.

54.1 Frequent Elements
For this problem, the input is a stream α[1 . . .m] where each α[i] ∈ [n]. We define for
each j ∈ [n] the frequency fj which counts the occurences of j in α[1 . . .m]. Then the
majority problem is to find (if it exists) a j such that fj > m/2.

We consider the more general frequent elements problem, where we want to find Fk =
{j | fj > m/k}. Suppose that we knew some small set C which contains Fk. Then, with
a pass over the input, we can count the occurrences of each element of C, and hence find
Fk in O(|C| logm) space.

The Misra/Gries Algorithm
We will now see a deterministic one-pass algorithm that estimates the frequency of each
element in a stream of integers. We shall see that it also provides us with a small set C
containing Fk, and hence lets us solve the frequent elements problem efficiently.

Algorithm FrequencyEstimate (Misra/Gries Algorithm)
Input: the data stream α, the target for the estimator k.

1. Init: A← ∅. / an empty map
2. Process(x):
3. If x ∈ keys(A), A[x]← A[x] + 1.
4. Else If |keys(A)| < k − 1, A[x]← 1.
5. Else ∀a ∈ keys(A): A[a]← A[a]− 1, delete a from A if A[a] = 0.

Output: f̂a = A[a] If a ∈ keys(A), and f̂a = 0 otherwise.

2021-09-21 Martin Mareš: Lecture notes on data structures 1

— 54.1 Streaming Algorithms – Frequent Elements

Let us show that f̂a is a good estimate for the frequency fa.

Lemma: fa −m/k ≤ f̂a ≤ fa

Proof: We see immediately that f̂a ≤ fa, since it is only incremented when we see a in
the stream.

To see the other inequality, suppose that we have a counter for each a ∈ [n] (instead
of just k − 1 keys at a time). Whenever we have at least k non-zero counters, we will
decrease all of them by 1; this gives exactly the same estimate as the algorithm above.

Now consider the potential function Φ =
∑

a∈[n] A[a]. Note that Φ increases by exactly
m (since α contains m elements), and is decreased by k every time any A[x] decreases.
Since Φ = 0 initially and Φ ≥ 0, we get that A[x] decreases at most m/k times. �

Theorem: There exists a deterministic 2-pass algorithm that finds Fk in O(k(log n +
logm)) space.

Proof: In the first pass, we obtain the frequency estimate f̂ by the Misra/Gries algorithm.
We set C = {a | f̂a > 0}. For a ∈ Fk, we have fa > m/k, and hence f̂a > 0 by the
previous Lemma. In the second pass, we count fc exactly for each c ∈ C, and hence know
Fk at the end.

To see the bound on space used, note that |C| = |keys(A)| ≤ k − 1, and a key-value pair
can be stored in O(log n+ logm) bits. �

The Count-Min Sketch
We will now look at a randomized streaming algorithm that solves the frequency estima-
tion problem. While this algorithm can fail with some probability, it has the advantage
that the output on two different streams can be easily combined.

Algorithm FrequencyEstimate (Count-Min Sketch)
Input: the data stream α, the accuracy ε, the error parameter δ.

1. Init: C[1 . . . t][1 . . . k]← 0, where k ← d2/εe and t← dlog(1/δ)e.
2. Choose t independent hash functions h1, . . . , ht : [n]→ [k], each from

a 2-independent family.
3. Process(x):
4. For i ∈ [t]: C[i][hi(x)]← C[i][hi(x)] + 1.

Output: Report f̂a = mini∈t C[i][hi(a)].

2 Martin Mareš: Lecture notes on data structures 2021-09-21

— 54.1 Streaming Algorithms – Frequent Elements

Note that the algorithm needs O(tk logm) bits to store the table C, and O(t log n) bits to
store the hash functions h1, . . . , ht, and hence uses O(1/ε·log(1/δ)·logm+log(1/δ)·log n)
bits. It remains to show that it computes a good estimate.

Lemma: fa ≤ f̂a ≤ fa + εm with probability δ.

Proof: Clearly f̂a ≥ fa for all a ∈ [n]; we will show that f̂a ≤ fa + εm with probability at
least δ. For a fixed element a, define the random variable

Xi := C[i][hi(a)]− fa

For j ∈ [n] \ {a}, define the indicator variable Yi,j := [hi(j) = hi(a)]. Then we can see
that

Xi =
∑
j 6=a

fj · Yi,j

Note that E[Yi,j] = 1/k since each hi is from a 2-independent family, and hence by
linearity of expectation:

E[Xi] =
||f ||1 − fa

k
=
||f−a||1

k

And by applying Markov’s inequality we obtain a bound on the error of a single counter:

Pr[Xi > ε ·m] ≥ Pr[Xi > ε · ||f−a||1] ≤
1

kε
≤ 1/2

Finally, since we have t independent counters, the probability that they are all wrong is:

Pr

[⋂
i

Xi > ε ·m

]
≤ 1/2t ≤ δ

�

The main advantage of this algorithm is that its output on two different streams (com-
puted with the same set of hash functions hi) is just the sum of the respective tables C. It
can also be extended to support events which remove an occurence of an element x (with
the caveat that upon termination the ‘‘frequency’’ fx for each x must be non-negative).
(TODO: perhaps make the second part an exercise?).

2021-09-21 Martin Mareš: Lecture notes on data structures 3

— 54.2 Streaming Algorithms – Counting Distinct Elements

54.2 Counting Distinct Elements
We continue working with a stream α[1 . . .m] of integers from [n], and define fa (the
frequency of a) as before. Let d = |{j : fj > 0}|. Then the distinct elements problem is
to estimate d.

The AMS Algorithm
Suppose we map our universe [n] to itself via a random permutation π. Then if the
number of distinct elements in a stream is d, we expect d/2i of them to be divisible by 2i

after applying π. This is the core idea of the following algorithm.

Define tz(x) := max{i | 2i divides x} (i.e. the number of trailing zeroes in the base-2
representation of x).

Algorithm DistinctElements (AMS)
Input: the data stream α.

1. Init: Choose a random hash function h : [n] → [n] from a 2-independent
family.

2. z ← 0.
3. Process(x):
4. If tz(h(x)) > z: z ← tz(h(x)).

Output: d̂← 2z+1/2

Lemma: The AMS algorithm is a (3, δ)-estimator for some constant δ.

Proof: For j ∈ [n], r ≥ 0, let Xr,j := [tz(h(j)) ≥ r], the indicator that is true if h(j) has
at least r trailing 0s. Now define

Yr =
∑

j:fj>0

Xr,j

How is our estimate related to Yr? If the algorithm outputs d̂ ≥ 2a+1/2, then we know
that Ya > 0. Similarly, if the output is smaller than 2a+1/2, then we know that Ya = 0.
We will now bound the probabilities of these events.

For any j ∈ [n], h(j) is uniformly distributed over [n] (since h is 2-independent). Hence
E[Xr,j] = 1/2r. By linearity of expectation, E[Yr] = d/2r.

We will also use the variance of these variables – note that

Var[Xr,j] ≤ E[X2
r,j] = E[Xr,j] = 1/2r

4 Martin Mareš: Lecture notes on data structures 2021-09-21

— 54.2 Streaming Algorithms – Counting Distinct Elements

And because h is 2-independent, the variables Xr,j and Xr,j′ are independent for j 6= j′,
and hence:

Var[Yr] =
∑

j:fj>0

Var[Xr,j] ≤ d/2r

Now, let a be the smallest integer such that 2a+1/2 ≥ 3d. Then we have:

Pr[d̂ ≥ 3d] = Pr[Ya > 0] = Pr[Ya ≥ 1]

Using Markov’s inequality we get:

Pr[d̂ ≥ 3d] ≤ E[Ya] =
d

2a
≤
√
2

3

For the other side, let b be the smallest integer so that 2b+1/2 ≤ d/3. Then we have:

Pr[d̂ ≤ d/3] = Pr[Yb+1 = 0] ≤ Pr[|Yb+1 −E[Yb+1]| ≥ d/2b+1]

Using Chebyshev’s inequality, we get:

Pr[d̂ < d/3] ≤ Var[Yb]

(d/2b+1)2
≤ 2b+1

d
≤
√
2

3

�

The previous algorithm is not particularly satisfying – by our analysis it can make an
error around 94% of the time (taking the union of the two bad events). However we can
improve the success probability easily; we run t independent estimators simultaneously,
and print the median of their outputs. By a standard use of Chernoff Bounds one can
show that the probability that the median is more than 3d is at most 2−Θ(t) (and similarly
also the probability that it is less than d/3).

Hence it is enough to run O(log(1/δ)) copies of the AMS estimator to get a (3, δ) estimator
for any δ > 0. Finally, we note that the space used by a single estimator is O(log n) since
we can store h in O(log n) bits, and z in O(log log n) bits, and hence a (3, δ) estimator
uses O(log(1/δ) · log n) bits.

2021-09-21 Martin Mareš: Lecture notes on data structures 5

— 54.2 Streaming Algorithms – Counting Distinct Elements

The BJKST Algorithm
We will now look at another algorithm for the distinct elements problem. Note that unlike
the AMS algorithm, it accepts an accuracy parameter ε.

Algorithm DistinctElements (BJKST)
Input: the data stream α, the accuracy ε.

1. Init: Choose a random hash function h : [n] → [n] from a 2-independent
family.

2. z ← 0, B ← ∅.
3. Process(x):
4. If tz(h(x)) ≥ z:
5. B ← B ∪ {(x, tz(h(x))}
6. While |B| ≥ c/ε2:
7. z ← z + 1.
8. Remove all (a, b) from B such that b = tz(h(a)) < z.

Output: d̂← |B| · 2z.

Lemma: For any ε > 0, the BJKST algorithm is an (ε, δ)-estimator for some constant δ.

Proof: We setup the random variables Xr,j and Yr as before. Let t denote the value of z
when the algorithm terminates, then Yt = |B|, and our estimate d̂ = |B| · 2t = Yt · 2t.

Note that if t = 0, the algorithm computes d exactly (since we never remove any elements
from B, and d̂ = |B|). For t ≥ 1, we say that the algorithm fails iff |Yt · 2t − d| > εd.
Rearranging, we have that the algorithm fails iff:

∣∣∣∣Yt −
d

2t

∣∣∣∣ ≥ εd

2t

To bound the probability of this event, we will sum over all possible values r ∈ [log n]
that t can take. Note that for small values of r, a failure is unlikely when t = r, since the
required deviation d/2t is large. For large values of r, simply achieving t = r is difficult.
More formally, let s be the unique integer such that:

12

ε2
≤ d

2s
≤ 24

ε2

6 Martin Mareš: Lecture notes on data structures 2021-09-21

— 54.2 Streaming Algorithms – Counting Distinct Elements

Then we have:

Pr[fail] =

logn∑
r=1

Pr

[∣∣∣∣Yr −
d

2r

∣∣∣∣ ≥ εd

2r
∧ t = r

]

After splitting the sum around s, we bound small and large values by different methods
as described above to get:

Pr[fail] ≤
s−1∑
r=1

Pr

[∣∣∣∣Yr −
d

2r

∣∣∣∣ ≥ εd

2r

]
+

logn∑
r=s

Pr [t = r]

Recall that E[Yr] = d/2r, so the terms in the first sum can be bounded using Chebyshev’s
inequality. The second sum is equal to the probability of the event [t ≥ s], that is, the
event Ys−1 ≥ c/ε2 (since z is only increased when B becomes larger than this threshold).
We will use Markov’s inequality to bound the probability of this event.

Putting it all together, we have:

Pr[fail] ≤
s−1∑
r=1

Var[Yr]

(εd/2r)2
+
E[Ys−1]

c/ε2
≤

s−1∑
r=1

d/2r

(εd/2r)2
+

d/2s−1

c/ε2

=

s−1∑
r=1

2r

ε2d
+

ε2d

c2s−1
≤ 2s

ε2d
+

ε2d

c2s−1

Recalling the definition of s, we have 2s/d ≤ ε2/12, and d/2s−1 ≤ 48/ε2, and hence:

Pr[fail] ≤ 1

12
+

48

c

which is smaller than (say) 1/6 for c > 576. Hence the algorithm is an (ε, 1/6)-estimator.

�

As before, we can run O(log δ) independent copies of the algorithm, and take the median
of their estimates to reduce the probability of failure to δ. The only thing remaining is
to look at the space usage of the algorithm.

The counter z requires only O(log log n) bits, and B has O(1/ε2) entries, each of which
needs O(log n) bits. Finally, the hash function h needs O(log n) bits, so the total space
used is dominated by B, and the algorithm uses O(log n/ε2) space. As before, if we use
the median trick, the space used increases to O(log δ · log n/ε2).

2021-09-21 Martin Mareš: Lecture notes on data structures 7

— 54.2 Streaming Algorithms – Counting Distinct Elements

(TODO: include the version of this algorithm where we save space by storing (g(a), tz(h(a)))
instead of (a, tz(h(a))) in B for some hash function g as an exercise?)

8 Martin Mareš: Lecture notes on data structures 2021-09-21

