
— 5 Caching

5 Caching
Processors of modern computers are faster than their memory by several orders of magni-
tude. To avoid waiting for data most of the time, they use caching. They employ a small,
but very fast memory called the cache, which stores a copy of frequently used data. Some
machines have multiple levels of caches, each slightly larger and slightly slower than the
previous one. We can also work with data stored on a slow medium like a hard disk and
cache it in our main memory. Even further: data stored on other machines in the network
can be cached on a local disk.

In short, caching is ubiquitious and algorithms whose access to data can be cached well
are much faster than their cache-unfriendly counterparts. In this chapter, we are going
to develop several techniques for designing cache-efficient algorithms and data structures.
However, we must start with re-definining our model of computation.

5.1 Models of computation
External memory model
The first model we will consider is the external memory model, also known as the I/O
model. It was originally designed for study of algorithms working with data on disks,
which do not fit in the machine’s main memory.

The model possesses two types of memory:

• External memory of potentially infinite size, organized in blocks of size B — since
we are going to study asymptotics, units do not matter, so we will measure all sizes
in arbitrary items.

• Internal memory for M items, also organized in B-item blocks.

All computations are performed in the internal memory, similarly to the Random Access
Machine. External memory can be accessed only indirectly: a block of data has to be
loaded to the internal memory first and if it is modified, it has to be written back to the
external memory later. We can assume that the machine has special instructions for that.

In addition to time and space complexity, we are going to study the I/O complexity of
algorithms: the maximum number of input/output operations (reads and writes of blocks)
performed by the algorithm for a given size of input.

We will often reduce calculation of I/O complexity to just counting the number of block
reads. In most cases, it is easy to verify that the number of writes is bounded by the

2023-09-22 Martin Mareš: Lecture notes on data structures 1



— 5.2 Caching – Basic algorithms

number of reads, at least asymptotically. When intermediate results are written, they are
read later. Unless the final output is asymptotically larger than the input, the number of
writes needed to create the output is bounded by the number of reads needed to obtain
the input.

Cache models
Machines, which accelerate access to main memory by using a cache, can be modelled
in a similar way. The role of external memory is played by the machine’s main memory.
The internal memory is the cache. (Or perhaps we are caching data on a disk: then the
external memory is the disk and internal memory is the main memory.)

There is one crucial difference, though. Unlike in the I/O model, block transfers between
main memory and the cache are not controlled by the program itself, but by the machine.
The program accesses data in the main memory and a part of the machine (which will be
called the cache controller) handles transfers of the particular blocks between the main
memory and the cache automatically.

We will assume that the cache controller works optimally — that is, it decides which
blocks should be kept in the cache and which should be evicted in a way minimizing the
total number of I/O operations. This assumption is obviously unrealistic: an optimal
cache controller needs to know the future accesses. However, we will prove in section
5.4 that there exists a deterministic strategy which approximates this controller within
a constant factor.

There are two varieties of this cache model: the cache-aware model, in which the algorithm
knows the parameters of the cache (the block size B and the cache size M), and the cache-
oblivious model, where it doesn’t.

It will be easier to design algorithms for the cache-aware model, but cache-oblivious
algorithms are more useful. One such algorithm can work efficiently on many machines
with different cache architectures. And not only that: if the machine uses a hierarchy of
several caches, the algorithm can be shown to be optimal (within a constant factor) with
respect to all caches simultaneously.

5.2 Basic algorithms
Scanning an array
Let us consider a simple example first. We have an array of N items, which we read
sequentially from the start to the end. This is called an array scan.

2 Martin Mareš: Lecture notes on data structures 2023-09-22



— 5.2 Caching – Basic algorithms

In the I/O model, we can make the array start at a block boundary. So we need to read
dN/Be ≤ N/B + 1 consecutive blocks to scan all items. All blocks can be stored at the
same place in the internal memory. This strategy is obviously optimal.

A cache-aware algorithm can use the same sequence of reads. Generally, we do not know
the sequence of reads used by the optimal caching strategy, but any specific sequence can
serve as an upper bound. For example, the sequence we used in the I/O model.

A cache-oblivious algorithm cannot guarantee that the array will be aligned on a block
boundary (it does not know B). In the worst case, this can cost us an extra read —
imagine an array of size 2 spanning two blocks.

Asymptotically speaking, the I/O complexity of an array scan is O(N/B+1) in all three
models. Please note that the additive 1 cannot be „hidden inside O“, because for every
ε > 0, we have N/B ≤ ε for infinitely many pairs (N,B). Also, in caching models we
cannot replace the O by Θ since some of the blocks could be already present in the cache.

Mergesort
The traditional choice of algorithm for sorting in external memory is Mergesort. Let us
analyze it in our models. Merging two sorted arrays involves three sequential scans: one
for each source array, one for the destination array. The scans are interleaved, but so we
can interleave their I/O operations. We need 1 block of internal memory for each scan,
but let us generally assume that M/B ≥ c for any fixed constant c. Therefore the merge
runs in linear time and it transfers O(T/B + 1) blocks, where T is the total number of
items merged.

Our Mergesort will proceed bottom-up. Items will be stored in a single array as a sequence
of same-size runs (sorted ranges), except for the last run which can be shorter. We start
with 1-item runs. In each pass, we double the size of runs by merging pairs of consecutive
runs. After the i-th pass, we have 2i-item runs, so we stop after dlogNe passes.

Each pass runs in Θ(N) time, so the whole algorithm has time complexity Θ(N logN).
This is optimal for comparison-based sorting.

Let us analyze I/O complexity. All merges in a single pass actually form three scans
of the whole array, so they perform O(N/B + 1) block transfers. All passes together
transfer O(N/B · logN + logN) blocks. The extra logN is actually exaggerated: the +1
in complexity of a single pass is asymptotically significant only if N < B, that is if the
whole input is smaller than a block. In that case, all passes happily compute on the same
cached block. We can therefore improve the bound to O(N/B · logN + 1) in all three
models.

2023-09-22 Martin Mareš: Lecture notes on data structures 3



— 5.3 Caching – Matrix transposition

Multi-way Mergesort
Could we take advantage of a cache larger than 3 blocks? Yes, with a multi-way Mergesort.
A K-way Mergesort combines K runs at once, so the number of passes decreases to
dlogK Ne = dlogN/ logKe. A K-way merge needs to locate a minimum of K items in
every step, which can be done using a heap. Every step therefore takes time Θ(logK), so
merging T items takes Θ(T logK) and the whole Mergesort Θ(N logK · logN/ logK) =
Θ(N logN) for any K. (For K = N , we actually get Heapsort.)

If we have large enough cache during the merge, every input array has its own scan and
the heap fits in cache. Then the total I/O complexity is O(T/B + K). The extra K
is significant in the situation when all runs are small and each is located in a different
block. This actually does not happen in Mergesort: all the runs are always consecutive in
memory. Therefore O(T/B + 1) transfers are enough. As in ordinary 2-way Mergesort,
all merges during a pass perform O(N/B + 1) transfers. Similarly, multiplying this by
the number of passes yields O(N/B · logN/ logK + 1).

How large K does our cache allow? Each scan requires its own cached block, which is K+1
blocks total. Another K − 1 blocks are more than enough for the heap, so M ≥ 2BK is
sufficient. If we know M and B, we can set K = bM/2Bc. Then the I/O complexity will
reach O(N/B ·logN/ log(M/B)+1). This is actually known to be optimal — surprisingly,
there is a matching lower bound (FIXME: reference) not only for sorting, but for only
permuting items.

In the cache-oblivious model, we have no chance to pick the right number of ways. Still,
there exists a rather complicated algorithm called Funnelsort (FIXME: ref) which achieves
the same I/O complexity, at least asymptotically. We refer readers to the original article.

5.3 Matrix transposition
Another typical class of algorithms working with large data deals with matrices. We will
focus on a simple task: transposition of a square matrix.

Matrices are traditionally stored in row-major order.〈1〉 That is, the whole N ×N matrix
is stored as a single array of N2 items read row by row. Accessing the matrix row by
row therefore involves a sequential scan of the underlying array, so it takes O(N2/B+1)
block transfers.

What about column-by-column access? Reading a single column is much more expensive:
if the rows are large, each item in the column is located in a different block. When we

〈1〉 A particular exception is Fortran and MATLAB, which use column-major order for some mysterious
reason.

4 Martin Mareš: Lecture notes on data structures 2023-09-22



— 5.3 Caching – Matrix transposition

switch to the next column, we usually need the same N blocks. But unless the cache is
big (meaning M ∈ Ω(NB)), most blocks are already evicted from the cache. The total
I/O complexity can therefore reach Θ(N2).

A simple algorithm for transposing a matrix walks through the lower triangle and swaps
each item with the corresponding item in the upper triangle. However, this means that
if we are accessing one of the triangles row-by-row, the other will be accessed column-by-
column. So the whole transposition will transfer Θ(N2) blocks.

Using tiles
We will show a simple cache-aware algorithm with better I/O complexity. We split the
matrix to tiles — sub-matrices of size d × d, with smaller, possibly rectangular tiles at
the border if N is not a multiple of d. The number of tiles is dN/de2 ≤ (N/d + 1)2 ∈
O(N2/d2 + 1).

Each tile can be transposed on its own, then we have to swap each off-diagonal tile with
its counterpart in the other triangle. Obviously, the time complexity is still Θ(N2). With
a bit of luck, a single tile will fit in the cache completely, so its transposition will be
I/O-efficient.

First, we shall analyse the case in which the size of the matrix N is a multiple of the
block size B. If it is so, we can align the start of the matrix to the beginning of a block,
so the start of each row will be also aligned. If we set d = B, every tile will be also
aligned and each row of the tile will be a complete block. If we have enough cache, we can
process a tile in O(B) I/O operations. As we have N2/B2 tiles, the total I/O complexity
is O(N2/B).

For this algorithm to work, the cache must be able to hold two tiles at once. Since each
tile contains B2 items, this means M ≥ 2B2. An inequality of this kind is usually called
tall-cache property and it is satisfied by most hardware caches (but not when caching
a disk with large blocks in main memory). Intuitively, it means that if we view the cache
as a rectangle whose rows are the blocks, the rectangle will be higher than it is wide. More
generally, a tall cache has M ∈ Ω(B2). For every possible constant in Ω, we can make
tiles constant-times smaller to fit in the cache and the I/O complexity of our algorithm
will not change asymptotically.

Now, what if N is not divisible by B? We lose all alignment, but we will prove that the
algorithm still works. Consider a B ×B tile. In the worst case, each row spans 2 blocks.
So we need 2B I/O operations to read it into cache, which is still O(B). The cache must
contain at least 4B2 items, but this is still within limits of our tall-cache assumption.

2023-09-22 Martin Mareš: Lecture notes on data structures 5



— 5.3 Caching – Matrix transposition

To process all O(N2/B2 +1) tiles, we need O(N2/B +B) operations. As usual, this can
be improved to O(N2/B + 1) if we realize that the additional term is required only in
cases where the whole matrix is smaller than a single block.

We can conclude that in the cache-aware model, we can transpose a N × N matrix in
time Θ(N2) with O(N2/B + 1) block transfers. This is obviously optimal.

Divide and conquer
Optimal I/O complexity can be achieved even in the cache-oblivious model, but we have
to be a little bit more subtle. Since we cannot guess the right tile size, we will try to
approximate it by recursive subdivisions. This leads to the following divide-and-conquer
algorithm.

For a moment, we will assume that N is a power of 2. We can split the given matrix A
to 2 × 2 quadrants of size N/2 × N/2. Let us call them A11, A12, A21, and A22. The
diagonal quadrants A11 and A22 will be transposed recursively. The other quadrants A12

and A21 will have to be transposed, but also swapped. (This is the same idea as in the
previous algorithm, but with tiles of size N/2.)

However, transposing first and then swapping would spoil time complexity (try to prove
this). We will rather apply divide and conquer on a more general problem: given two
matrices, transpose them and swap them. This problem admits a similar recursive de-
composition (see figure 5.1). If we split two matrices A and B to quadrants, we have to
transpose-and-swap A11 with B11, A22 with B22, A12 with B21, and A21 with B12.

A11 A12

A21 A22

A11 A12

A21 A22

B11 B12

B21 B22

Figure 5.1: Divide-and-conquer matrix transposition

A single transpose-and-swap (TS) therefore recurses on 4-subproblems, which are again
TS. A transpose (T) problem recurses on 3 sub-problems, two of which are T and one
is TS. All these sub-problems have size N/2.

To establish time and I/O complexity, we consider the tree of recursion. Every node
corresponds to a T or TS problem. It has 3 or 4 children for its sub-problems. At level i

6 Martin Mareš: Lecture notes on data structures 2023-09-22



— 5.3 Caching – Matrix transposition

(counted from the root, which is at level 0), we have at most 4i nodes with sub-problems
of size N/2i. Therefore, the height of the tree is at most logN and it has at most
4logN = N2 leaves. Since all internal nodes have least 2 children (in fact, 3 or 4), there
are less internal nodes than leaves.

In every TS leaf, we swap a pair of items. In every T leaf, nothing happens. Internal
nodes only redistribute work and they do not touch items. So every node takes O(1) time
and the whole algorithm finishes in O(N2) steps.

To analyze I/O complexity, we focus on the highest level, at which the sub-problems
correspond to tiles from the previous algorithm. Specifically, we will find the smallest i
such that the sub-problem size d = N/2i is at most B. Unless the whole input is small
and i = 0, this implies 2d = N/2i−1 > B. Therefore B/2 < d ≤ B.

To establish an upper bound on the optimal number of block transfers, we show a specific
caching strategy. Above level i, we cache nothing — this is correct, since we touch no
items. (Well, we need a little cache for auxiliary variables like the recursion stack, but
this is asymptotically insignificant.) When we enter a node at level i, we load the whole
sub-problem to the cache and compute the whole subtree in the cache. Doing this in all
nodes of level i is equivalent to running the cache-aware algorithm for d ∈ Θ(B), which
requires O(N2/B) block transfers in total, provided that the cache is tall enough.

Finally, what if N is not a power of 2? When we sub-divide a matrix of odd size, we
need to round one half of N down and the other up. This makes off-diagonal quadrants
rectangular. Fortunately, it is easy to prove that all matrices we generate are either
square, or almost-square, meaning that the lengths of sides differ by at most 1. We are
leaving the proof as an exercise to the reader. For almost-square matrices, our reasoning
about the required number of block transfers still applies.

We have reached optimal I/O complexity O(N2/B+1) even in the cache-oblivious model.
The algorithm still runs in time Θ(N2). In a real implementation, we can reduce its
overhead by stopping recursion at sub-problems of some fixed size greater than 1. This
comes at the expense of I/O complexity in very small caches, but these do not occur in
practice.

The technique we have used is quite typical for design of cache-oblivious algorithms.
We start with a cache-aware algorithm based on decomposing the problem to tiles of
some kind. We show that for a particular tile size (typically related to parameters of
the cache), the tiles fit in the cache. Then we design a cache-oblivious algorithm, which
replaces knowledge of the right tile size by successively refined decomposition. At some
level of the refinement — which is not known to the algorithm, but known to us during
the analysis — the size of tiles is right up to a constant, so the I/O complexity matches
the cache-aware algorithm up to a constant.

2023-09-22 Martin Mareš: Lecture notes on data structures 7



— 5.4 Caching – Model versus reality

5.4 Model versus reality
Our theoretical models of caching assume that the cache is controlled in an optimal way.
This is obviously impossible to achieve since it requires knowledge of all future memory
accesses. Surprisingly, we will show that there exists a deterministic strategy which
aproximates the optimal strategy well enough.

We will compare caching strategies by the following experiment: The main memory is
divided to blocks, each identified by its address. We are given a sequence a1, a2, . . . , an
of requests for particular blocks. The strategy controls a cache of M block-sized slots.
(Beware, unlike in the rest of this chapter, the cache size is measured in blocks, not items.)
Initially, each slot is either empty or it contains a copy of an arbitrary memory block.
Every time the strategy receives a new request, it points to a slot containing the requested
block, if there is any. Otherwise the cache misses and it has to replace contents of one
slot by that block. The obvious measure of cache efficiency is the number C of cache
misses. We will call it the cost of the strategy for the given access sequence.

The optimal strategy (OPT) knows the whole sequence of requests in advance. It is easy
to see that the optimal strategy always uses the cache slot, whose block is needed farthest
in the future (at best never). Let us denote the cost of the optimal algorithm by COPT.

We are looking for online strategies, which know only the current state of the cache, the
current request, and possibly the history of past requests. A typical on-line strategy,
which is often used in real caches, is least-recently used (LRU). It keeps the cache slots
sorted by the time of their last use. When the cache misses, it replaces the slot which is
longest unused. The cost of LRU shall be called CLRU.

We would like to prove that LRU is k-competitive, that is CLRU ≤ k · COPT for some
constant k independent of M . Unfortunately, this is impossible to achieve:

Theorem: For every cache size M and every ε > 0, there exists a sequence of requests for
which CLRU ≥ (1− ε) ·M · COPT.

Proof: The sequence will consist of K copies of 1, . . . ,M + 1. The exact value of K will
be chosen later.

The number of cache misses on the first M blocks depends on the initial state of the
cache. When they are processed, LRU’s cache will contain exactly blocks 1, . . . ,M . The
next request for M + 1 will therefore miss and the least-recently used block 1 will be
replaced by M+1. The next access will request block 1, which will be again a cache miss,
so 2 will be replaced by 1. And so on: all subsequent requests will miss.

We will show a better strategy, which will serve as an upper bound on the optimum
strategy. We divide the sequence to epochs of size M . Two consecutive epochs overlap in

8 Martin Mareš: Lecture notes on data structures 2023-09-22



— 5.4 Caching – Model versus reality

M − 1 blocks. Except for the initial epoch, every other epoch can re-use M − 1 cached
blocks from the previous epoch. When it needs to access the remaining block, it replaces
the one block, which is not going to be accessed in the current epoch. Thus it has only
one cache miss per M requests.

Except for the first epoch, the ratio between CLRU and COPT is exactly M . The first
epoch can decrease this ratio, but its effect can be diminished by increasing K. �

Still, all hope is not lost. If we give LRU an advantage of larger cache, the competitive
ratio can be bounded nicely. Let us denote LRU’s cache size MLRU and similarly MOPT

for the optimal strategy.

Theorem: For every MLRU > MOPT ≥ 1 and every request sequence, we have:

CLRU ≤ MLRU

MLRU −MOPT
· COPT +MOPT.

Proof: We split the request sequence to epochs E0, . . . , Et such that the cost of LRU in
each epoch is exactly MLRU, except for E0, where it is at most MLRU.

Now we consider an epoch Ei for i > 0. We distinguish two cases:

a) All blocks on which LRU missed are distinct. This means that the access sequence
for this epoch contains at least MLRU distinct blocks. OPT could have had at most
MOPT of them in its cache when the epoch began, so it still must miss at least
MLRU −MOPT times.

b) Otherwise, LRU misses twice on the same block b. After the first miss, b was at the
head of the LRU list. Before the next miss, it must have been replaced, so it must
have moved off the end of the LRU list. This implies that there must have been at
least MLRU other blocks accessed in the meantime. Again, OPT must miss at least
MLRU −MOPT times.

So in every epoch but E0 the ratio CLRU/COPT is at most MLRU/(MLRU − MOPT).
Averaging over all epochs gives the desired bound.

Epoch E0 is different. First assume that both LRU and OPT start with an empty cache.
Then all blocks on which LRU misses are distinct, so OPT must miss on them too and
the ratio CLRU/COPT is at most 1. If LRU starts with a non-empty cache, the ratio can
only decrease — when the block is already cached at the beginning, we save a cache miss,
but the contents of the LRU list stay the same. When OPT starts with non-empty cache,
it can save up to MOPT misses, which is compensated by the extra MOPT term in the
statement of the theorem. �

2023-09-22 Martin Mareš: Lecture notes on data structures 9



— 5.4 Caching – Model versus reality

Corollary: If we set MLRU = 2 · MOPT, then CLRU ≤ 2COPT + MOPT. So on a long
enough access sequence, LRU is (2 + ε)-competitive.

This comparison may seem unfair: we gave LRU a larger cache, so we are comparing LRU
on a cache of size M with OPT on a cache of size M/2. However, for all our algorithms
the dependency of I/O complexity on the cache size M is such that when we change M by
a constant factor, I/O complexity also changes by at most a constant factor. So emulating
the optimal cache controller by LRU does not change the asymptotics.

10 Martin Mareš: Lecture notes on data structures 2023-09-22


