Estimates: factorial and binomial coefficients

Proposition. For each natural number $n \geq 1$:

$$
2^{n-1} \leq n!\leq n^{n}
$$

Theorem. For each $n \in \mathbb{N}$:

$$
n^{n / 2} \leq n!\leq\left(\frac{n+1}{2}\right)^{n}
$$

Lemma (AM-GM inequality). For every pair of non-negative reals a, b :

$$
\sqrt{a b} \leq \frac{a+b}{2}
$$

Theorem. For every $n \in \mathbb{N}$:

$$
\mathrm{e}\left(\frac{n}{\mathrm{e}}\right)^{n} \leq n!\leq \mathrm{e} n\left(\frac{n}{\mathrm{e}}\right)^{n} .
$$

Claim. For every real number x :

$$
1+x \leq \mathrm{e}^{x} .
$$

Claim (Stirling formula). $n!\sim \sqrt{2 \pi n} \cdot\left(\frac{n}{\mathrm{e}}\right)^{n}$, where $f \sim g$ means $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=1$.
Theorem. For every $1 \leq k \leq n$:

$$
\left(\frac{n}{k}\right)^{k} \leq\binom{ n}{k} \leq\left(\frac{\mathrm{e} n}{k}\right)^{k}
$$

Theorem. For every $m \in \mathbb{N}$:

$$
\frac{2^{2 m}}{2 n+1} \leq\binom{ 2 m}{m} \leq 2^{2 m}
$$

Using Stirling formula, we can get a more precise approximation:

$$
\binom{2 m}{m} \sim \frac{2^{2 m}}{\sqrt{\pi m}}
$$

Generating functions

Theorem. Let $a_{0}, a_{1}, a_{2}, \ldots$ be an infinite sequence of real numbers such that $\left|a_{i}\right| \leq$ k^{i} for some $k \in \mathbb{R}$ and all $i \geq 1$. Then for each $x \in(-k, k)$ the power series $\sum_{i=0}^{\infty} a_{i} x^{i}$ is convergent and it determines a real function $a(x)=\sum_{i=0}^{\infty} a_{i} x^{i}$.
Moreover, the function $a(x)$ is uniquely determined by the sequence on the interval $(-k, k)$ and $a_{i}=a^{(i)}(0) / i$!. We call $a(x)$ the generating function of the sequence $a_{0}, a_{1}, a_{2}, \ldots$.

Example:

sequence $1,1,1, \ldots \leftrightarrow$ power series $1+x+x^{2}+\ldots \leftrightarrow$ generating function $\frac{1}{1-x}$.

Operations with sequences and generating functions:

1. sum: $a_{0}+b_{0}, a_{1}+b_{1}, a_{2}+b_{2}, \ldots \leftrightarrow a(x)+b(x)$
2. multiplication by $\alpha \in \mathbb{R}: \alpha a_{0}, \alpha a_{1}, \alpha a_{2}, \ldots \leftrightarrow \alpha a(x)$
3. substitution of αx for $x: a_{0}, \alpha a_{1}, \alpha^{2} a_{2}, \ldots \leftrightarrow a(\alpha x)$
4. substitution of x^{n} for $x: a_{0}, 0, \ldots, 0, a_{1}, 0, \ldots, 0, a_{2}, \ldots \leftrightarrow a\left(x^{n}\right)$
5. move right: $0, a_{0}, a_{1}, a_{2}, \ldots \leftrightarrow x a(x)$
6. move left: $a_{1}, a_{2}, a_{3}, \ldots \leftrightarrow \frac{a(x)-a_{0}}{x}$
7. differentiation: $a_{1}, 2 a_{2}, 3 a_{3}, \ldots \leftrightarrow a^{\prime}(x)$
8. integration: $0, a_{0}, \frac{1}{2} a_{1}, \frac{1}{3} a_{2}, \ldots \leftrightarrow \int_{0}^{x} a(t) \mathrm{d} t$
9. product of functions: $c_{0}, c_{1}, c_{2}, \ldots \leftrightarrow a(x) b(x)$, where $c_{k}=\sum_{i=0}^{k} a_{i} b_{k-i}$
10. prefix sums: $a_{0}, a_{0}+a_{1}, a_{0}+a_{1}+a_{2}, \ldots \leftrightarrow a(x) /(1-x)$

Fibonacci numbers: Let $F_{0}=0, F_{1}=1$ and $F_{n+2}=F_{n+1}+F_{n}$. Then

$$
F_{n}=\frac{1}{\sqrt{5}} \cdot\left[\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right]
$$

Theorem (Generalized Binomial theorem). For $r \in \mathbb{R}, k \in \mathbb{N}$, we define the generalized binomial coefficients

$$
\binom{r}{k}=\frac{r(r-1)(r-2) \ldots(r-k+1)}{k!}, \quad\binom{r}{0}=1 .
$$

Then $(1+x)^{r}$ is the generating function of the sequence $\binom{r}{0},\binom{r}{1},\binom{r}{2}, \ldots$ (the sum $\sum_{i=0}^{\infty}\binom{r}{i} x^{i}$ is convergent for $\left.x \in(-1,1)\right)$.

Lemma. For non-negative integers a, b, we have:

$$
\binom{-a}{b}=(-1)^{b} \cdot\binom{a+b-1}{b} .
$$

Catalan numbers: Let $b_{0}=1$ and $b_{n+1}=\sum_{i=0}^{n} b_{i} b_{n-i}$. Then

$$
b_{n}=\frac{1}{n+1} \cdot\binom{2 n}{n} .
$$

Example: There are exactly b_{n} binary trees on n vertices.
Theorem (A cookbook for linear recurrent relations). Let

$$
A_{n+k}=c_{0} A_{n}+c_{1} A_{n+1}+\ldots+c_{k-1} A_{n+k-1}
$$

be a homogeneous linear recurrence relation with constant coefficients and initial conditions A_{0}, \ldots, A_{k-1}. Let further

$$
R(x)=x^{k}-c_{k-1} x^{k-1}-\ldots-c_{1} x^{1}-c_{0} x^{0}
$$

be its characteristic polynomial and $\lambda_{1}, \ldots, \lambda_{z} \in \mathbb{C}$ pairwise different roots of this polynomial with multiplicities k_{1}, \ldots, k_{z}. Then there are constants $C_{i j} \in \mathbb{C}$ such that for each n :

$$
A_{n}=\sum_{i=1}^{z} \sum_{j=0}^{k_{i}-1}\left(C_{i j} \cdot\binom{n+j}{j} \cdot \lambda_{i}^{n}\right) .
$$

If R has no multiple roots, the formula for A_{n} can be written in a simple form:

$$
A_{n}=\sum_{i=1}^{z} C_{i} \lambda_{i}^{n} .
$$

Proof. Only for simple roots.

Finite projective planes

Definition. Let X be a finite set and $\mathcal{L} \subseteq 2^{X}$ a set of subsets of X. Then (X, \mathcal{L}) is called a finite projective plane if it satisfies:
(P0) There exists $F \subseteq X$ with $|F|=4$ and $|F \cap L| \leq 2$ for each $L \in \mathcal{L}$.
(P1) For all distinct $L_{1}, L_{2} \in \mathcal{L}:\left|L_{1} \cap L_{2}\right|=1$.
(P2) For all distinct $x_{1}, x_{2} \in X$, there is a unique $L \in \mathcal{L}$ such that $x_{1} \in L$ and $x_{2} \in L$.

We will call the elements of X points of the projective plane and the elements of \mathcal{L} its lines.

Lemma. For every line $L \in \mathcal{L}$, there exists a point $x \in X \backslash L$.
Proposition. Let $L_{1}, L_{2} \in \mathcal{L}$ be two lines of the finite projective plane (X, \mathcal{L}), then $\left|L_{1}\right|=\left|L_{2}\right|$.
Definition. The order of a finite projective plane (X, \mathcal{L}) is $|L|-1$, where $L \in \mathcal{L}$.
Theorem. Let (X, \mathcal{L}) be a finite projective plane of order n. Then:
(i) For all $x \in X$ we have $|\{L \in \mathcal{L} \mid x \in L\}|=n+1$,
(ii) $|X|=n^{2}+n+1$,
(iii) $|\mathcal{L}|=n^{2}+n+1$.

Definition. A (finite) set system is a pair (X, \mathcal{L}), where X is a finite set and \mathcal{L} is a multi-set of subsets of X. (Formally, you can avoid multi-sets by considering a sequence of subsets instead. This way, the set system would be a triple (X, I, \mathcal{L}), where I is an index set and \mathcal{L} is a mapping from I to 2^{X}.)
The incidence graph of a set system is a bipartite graph with parts X and \mathcal{L} and edges $\{x, L\}$ for all $x \in L \in \mathcal{L}$.
Observation. A set system is uniquely determined by its incidence graph.
Definition. A dual of a set system (X, \mathcal{L}) is defined by its incidence graph, which is obtained by taking the incidence graph of (X, \mathcal{L}) and exchaning the roles of its parts.

Theorem. A dual set system of a finite projective plane is a finite projective plane. (Roles of points and lines are exchanged by the duality.)

Theorem. If n is a prime power, then there exists a finite projective plane of order n.

Latin squares

Definition. A Latin square of order n is a matrix A of order $n \times n$ with entries from $\{1,2, \ldots, n\}$ such that $a_{i j} \neq a_{i j^{\prime}}$ for $j \neq j^{\prime}$ and $a_{i j} \neq a_{i^{\prime} j}$ for $i \neq i^{\prime}$.
Two Latin squares A, B of order n are called orthogonal if $\left(a_{i j}, b_{i j}\right)=\left(a_{r s}, b_{r s}\right)$ implies $(i, j)=(r, s)$.
Proposition. Let $A_{1}, A_{2}, \ldots, A_{t}$ be a collection of mutually orthogonal Latin squares of order n. Then $t \leq n-1$.
Theorem. For $n \geq 2$, a finite projective plane of order n exists if and only if there exists a collection of $n-1$ mutually orthogonal Latin squares of order n.

Hall's theorem and bipartite matching

Definition. Let (X, \mathcal{L}) be a set system. A function $f: \mathcal{L} \rightarrow X$ is called its system of distinct representatives if it is injective and $f(S) \in S$ for all $S \in \mathcal{L}$.
Theorem (Hall's theorem, set version). A set system (X, \mathcal{L}) has a system of distinct representatives if and only if $\left|\bigcup_{\mathcal{K}}\right| \geq|\mathcal{K}|$ holds for all sub-systems $\mathcal{K} \subseteq \mathcal{L}$. (This is called the Hall's condition.)
Definition. A matching in a graph $G=(V, E)$ is a set of edges $F \subseteq E$ such that no two edges in F share a common vertex. A matching is called perfect if its edges contain all vertices of G. In a bipartite graph with parts L and R, we can define L-perfect and R-perfetct matchings similarly.
Observation. Systems of distinct representatives of a set system (X, \mathcal{L}) are in one-to-one correspondence with \mathcal{L}-perfect matchings in the incidence graph.
Theorem (Hall's theorem, graph version). Let $G=(V, E)$ be a bipartite graph with parts L and R. Then G has a L-perfect matching iff $|\Gamma(K)| \geq|K|$ for each $K \subseteq L$, where $\Gamma(K)=\{v \in V \mid \exists w \in K:\{v, w\} \in E\}$ is the neighborhood of K.
Corollary. Every regular bipartite graph has a perfect matching.
Definition. A matrix $B \in \mathbb{R}^{m \times n}$ is bistochastic if all its entries are non-negative and every row/column sums to 1 . In particular, a permutation matrix contains exactly one 1 in each row/column and zeroes everywhere else.
Observation. Every bistochastic matrix is square.
Theorem (Birkhoff). Every bistochastic matrix is a convex linear combination of some permutation matrices. That is, for every bistochastic matrix $B \in \mathbb{R}^{n \times n}$ there exist permutation matrices $P_{1}, \ldots, P_{k} \in\{0,1\}^{n \times n}$ and positive real numbers $\alpha_{1}, \ldots, \alpha_{k}$ such that $B=\sum_{i} \alpha_{i} P_{i}$ and $\sum_{i} \alpha_{i}=1$.

Flows in networks

Definition. A network is a directed graph (V, E) with two designated vertices s (the source) and t (the target) and capacities on edges given by a function $c: E \rightarrow \mathbb{R}_{0}^{+}$. Without loss of generality, we can assume that $u v \in E$ implies $v u \in E$ (missing edges can be added with zero capacity).
Definition. For a function $f: E \rightarrow \mathbb{R}$ on a network, we define functions f^{+}(inflow), f^{-}(outflow), and f^{Δ} (excess) from V to \mathbb{R} by:

$$
f^{+}(v)=\sum_{u v \in E} f(u v), \quad f^{-}(v)=\sum_{v w \in E} f(v w), \quad f^{\Delta}(v)=f^{+}(v)-f^{-}(v) .
$$

Definition. A function $f: E \rightarrow \mathbb{R}$ is a flow in a given network if it satisfies the following conditions:

1. Capacity constraints: $0 \leq f(e) \leq c(e)$ for all $e \in E$,
2. Flow conservation: $f^{\Delta}(v)=0$ for all $v \in V \backslash\{s, t\}$ (this is also known as the Kirchhoff's law).

The value of the flow is defined by $|f|=f^{\Delta}(t)$.
Observation. Equivalently, $|f|=-f^{\Delta}(s)$.
Observation. In every network, there is at least one flow: the everywhere-zero flow. A more interesting problem is finding a maximum flow, that is a flow with the maximum possible value. (Does it always exist?)
Definition. For a given network and a flow f, we define residual capacities $r: E \rightarrow$ \mathbb{R} as $r(u v)=c(u v)-f(u v)+f(v u)$. (Intuitively, it tells how much extra flow we can send from u to v either by adding to the flow on $u v$, or by subtracting from flow on $v u$.)
Definition. An augmenting path is a directed path from s to t whose all edges have non-zero residual capacities.
If there is an augmenting path, the flow can be improved along this path. Repeating this process yields the following algorithm.

Algorithm (Ford-Fulkerson maximum flow).

1. Let $f(e) \leftarrow 0$ for every edge e.
2. While there exists an augmenting path P :
3. $\varepsilon \leftarrow \min _{e \in P} r(e)$
4. For all edges $u v \in P$:
5. $\delta \leftarrow \min (\varepsilon, c(u v)-f(u v))$
6. $\quad f(u v) \leftarrow f(u v)+\delta$
7. $f(v u) \leftarrow f(v u)-(\varepsilon-\delta)$

Definition. For any two disjoint sets $A, B \subset V$, we define $E(A, B)=\{a b \in E \mid a \in$ $A, b \in B\}$. This set of edges is called an (elementary) cut if $s \in A$ and $t \in B$.
When $E(A, B)$ is a cut and g is a real-valued function on edges, we define $g(A, B)=$ $\sum_{e \in E(A, B)} f(e)$. In particular, $c(A, B)$ is called the capacity of the cut.
Observation. When f is a flow and $E(A, B)$ is a cut, then $|f|=f(A, B)-f(B, A)$. Since $f(A, B) \leq c(A, B)$, this implies $|f| \leq c(A, B)$. Hence if $|f|=c(A, B)$, then f is maximum and $E(A, B)$ minimum (it has the lowest possible capacity over all cuts).

Theorem. The Ford-Fulkerson algorithm has the following properties:

- During the whole computation, f is a flow.
- When the algorithm stops, f is a maximum flow.
- If the capacities are integers, the algorithm stops. Furthermore, it produces an integral maximum flow.
- If the capacities are rationals, the algorithm stops.
- For some real capacities, the computation can run forever.

Theorem (Edmonds-Karp algorithm). When the Ford-Fulkerson algorithm always selects the shortest possible augmenting path, it stops within $\mathcal{O}(|V| \cdot|E|)$ iterations.
Corollary. Every network has a maximum flow.
Corollary. If all capacities are integers, there exists at least one maximum flow using only integers.
Corollary (Ford-Fulkerson min-max theorem). For every network, the value of the maximum flow equals the capacity of the minimum cut.

Bipartite matchings

For any bipartite graph $(L \cup R, E)$, we can define an auxiliary network with vertices $L \cup R \cup\{s, t\}$, edges $\{s u \mid u \in L\} \cup\{u v \mid u \in L, v \in R,\{u, v\} \in E\} \cup\{v t \mid v \in R\}$ and all capacities set to 1 .
Observation. Integral flows in this network correspond to matchings, cuts correspond to vertex covers (sets of vertices which intersect every edge). This implies the Hall's theorem. By the min-max theorem, we also get:
Corollary (König's theorem). In every bipartite graph, the size of a maximum matching equals the size of a minimum vertex cover.

Higher connectivity

Definition. Let $G=(V, E)$ be an undirected graph. A subset $F \subseteq E$ is an edge cut of G if $G-F$ is disconnected. For an integer k, the graph G is called k-edgeconnected, if it has no edge cut of size smaller than k.
Similarly, a vertex cut of G is a subset $U \subseteq V$ such that $G-U$ is disconnected. The graph G is k-vertex-connected, if $|V| \geq k+1$ and G has no vertex cut of size smaller than k.
Definition. The edge connectivity function $k_{e}(G)$ is defined as the minimum size of an edge cut of a graph G (alternatively, the maximum k such that G is k-edgeconnected).
Similarly, the vertex connectivity function $k_{v}(G)$ gives the size of the smallest vertex cut of a non-complete graph G (i.e., the maximum k such that G is k-vertexconnected). For complete graphs, we define $k_{v}\left(K_{n}\right)=n-1$.
Lemma. Let $G=(V, E)$ be a graph and e an arbitrary edge of G. Then

$$
k_{e}(G)-1 \leq k_{e}(G-e) \leq k_{e}(G)
$$

and

$$
k_{v}(G)-1 \leq k_{v}(G-e) \leq k_{v}(G) .
$$

Theorem (Menger, edge version). Let G be a graph and k a positive integer. Then G is k-edge-connected if and only if for every pair $u, v \in V$ of distinct vertices of G, there exists a system of k edge-disjoint paths between u and v.
Theorem (Menger, vertex version). Let G be a graph and k a positive integer. Then G is k-vertex-connected if and only if for every pair $u, v \in V$ of distinct vertices of G there exists a system of k paths between u and v such that every two paths are vertex-disjoint except for u and v.
Corollary. For every graph G, we have $k_{v}(G) \leq k_{e}(G) \leq \delta(G)$.
Definition. An ear-decomposition of a graph $G=(V, E)$ is a sequence $G_{0}, G_{1}, \ldots, G_{k}$ of subgraphs of G satisfying

- G_{0} is a cycle,
- for $i=1, \ldots, k$, the graph G_{i} is obtained from G_{i-1} by adding a path P_{i} sharing exactly its endpoints with the graph G_{i-1} (and no edges).

Theorem. The following properties of a graph G are equivalent:
(i) G is 2 -vertex-connected.
(ii) G has an ear-decomposition.
(iii) G can be obtained from K_{3} by a sequence of edge additions and edge subdivisions.

Counting spanning trees

Definition. Let $\kappa(G)$ denote the number of distinct spanning trees of a graph G. Proposition (Basic properties of κ).

- $\kappa\left(C_{n}\right)=n$.
- $\kappa(G)=0$ iff G is disconnected.
- $\kappa(G)=1$ iff G is a tree.
- $\kappa(G \cup H)=\kappa(G) \cdot \kappa(H)$ if G and H are (multi)graphs with exactly one edge or exactly one vertex in common.

Theorem (Cayley's formula). $\kappa\left(K_{n}\right)=n^{n-2}$ for every $n \geq 2$.
Theorem (Deletion-contraction formula). Let G be a multigraph and e its edge. Then $\kappa(G)=\kappa(G-e)+\kappa(G / e)$, where G / e is multigraph contraction producing parallel edges, but no loops.
Definition. The Laplace matrix of a graph $G=(V, E), V=\left\{v_{1}, \ldots, v_{n}\right\}$ is an $n \times n$ matrix with entries:

$$
\begin{aligned}
q_{i i} & =\operatorname{deg}\left(v_{i}\right) \\
q_{i j} & =\left\{\begin{aligned}
-1 & \text { if }\left\{v_{i}, v_{j}\right\} \in E \\
0 & \text { otherwise }
\end{aligned}\right.
\end{aligned}
$$

Theorem. For every graph $G, \kappa(G)=\operatorname{det} Q_{11}$, where $Q_{i j}$ denotes the matrix obtained from Q by deleting the i-th row and j-th column.

Extremal combinatorics

Theorem. Maximum number of edges of a graph on n vertices, containing no K_{3} as a subgraph, is $\left\lceil n^{2} / 4\right\rceil$. Furthermore, all graphs achieving the maximum number of edges are isomorphic to $K_{\lfloor n / 2\rfloor,\lceil n / 2\rceil}$.
Theorem. Let G be a graph on n vertices with m edges, containing no C_{4} as a subgraph. Then $m \leq \frac{1}{2}\left(n^{3 / 2}+n\right)$.

Ramsey theory

Definition. The clique number $\omega(G)$ of a graph G is the maximum number of vertices in a complete subgraph. Similarly, the independence number $\alpha(G)$ is the maximum number of vertices in an independent set (that is, a set inducing a subgraph with no edges).
Theorem (Ramsey theorem on graphs). Let $k, \ell \in \mathbb{N}$ and let $G=(V, E)$ be a graph with $|V| \geq\binom{ k+\ell-2}{k-1}$. Then G contains a clique of order k or an independent set of order ℓ. (That is, $\omega(G) \geq k$ or $\alpha(G) \geq \ell$.)
Definition. For a given $k, \ell \in \mathbb{N}$, we define the Ramsey number $r(k, \ell)$ to be the minimal n such that every graph with at least n vertices contains a clique of order k or an independent set of order ℓ.
Theorem (Lower bound on Ramsey numbers). $r(k, k) \geq 2^{k / 2}$ for all $k \geq 3$.
Definition. $[n]$ will denote the set $\{1, \ldots, n\}$.
Theorem (The Pigeonhole principle). Let k and t be positive integers and $n>$ $(k-1) \cdot t$. Then for every function $c:[n] \rightarrow[t]$, there exists a k-element subset $A \subseteq[n]$ on which the function c is constant. (Intuitively: for every coloring of [n] by t colors, there is a k-element monochromatic subset.)
Theorem (Ramsey for colored graphs). For all integers $k>0$ (required clique size) and $t>0$ (the number of colors), there exists n (minimum graph size) such that for every function $c:\binom{[n]}{2} \rightarrow[t]$ (a coloring of edges of K_{n}) there is $A \in\binom{[n]}{k}$ such that c is constant on $\binom{A}{2}$ (a monochromatic copy of K_{k}).
Theorem (Infinite Pigeonhole principle). For every $c: \mathbb{N} \rightarrow[t]$ (a coloring of natural numbers by t colors), there exists an infinite set $A \subseteq \mathbb{N}$ on which c is constant.
Theorem (Infinite Ramsey theorem). For every $c:\binom{\mathbb{N}}{2} \rightarrow[t]$ (a coloring of an infinite complete graph by t colors), there exists an infinite set $A \subseteq \mathbb{N}$ such that c is constant on $\binom{A}{2}$ (an infinite monochromatic complete subgraph).
Theorem (Infinite Ramsey theorem for p-tuples). For every $c:\binom{\mathbb{N}}{p} \rightarrow[t]$ (a coloring of p-tuples of natural numbers by t colors), there exists an infinite set $A \subseteq \mathbb{N}$ such that c is constant on $\binom{A}{p}$.
Claim (Finite Ramsey theorem for p-tuples). For all integers $k>0$ (required subset size), $t>0$ (the number of colors) and $p>0$ (tuple size), there exists n (minimum set size) such that for every function $c:\binom{[n]}{p} \rightarrow[t]$ (a coloring of p-tuples of $[n]$ by t colors), there exists $A \in\binom{[n]}{k}$ such that c is constant on $\binom{A}{p}$ (a monochromatic subsystem).
Theorem (Schur). $\forall t \in \mathbb{N} \exists n \in \mathbb{N} \forall c:[n] \rightarrow[t] \exists x, y, z \in[n]$ such that $c(x)=$ $c(y)=c(z)$ and $x+y=z$.
Theorem (Erdős-Szekeres). For each $k \in \mathbb{N}$ there exists $n \in \mathbb{N}$ such that any n element set of points in the plane in general position (no three on a line) contains k points forming a convex k-gon.

Error-correcting codes

Definition. Let Σ be a q-element set called the alphabet. Elements of Σ^{n} are called words of length n over Σ. A code of length n over Σ is a subset $C \subseteq \Sigma^{n}$. A binary code is a code over the alphabet $\{0,1\}$. For a code C we define its size as $k=\log _{q}|C|$, and its rate as $\alpha(C)=k / n$.
Definition. The Hamming distance of words $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{i}, \ldots, y_{n}\right)$ in Σ^{n} is defined by $d(x, y)=\left|\left\{i \in\{1, \ldots, n\} \mid x_{i} \neq y_{i}\right\}\right|$. The minimal distance of a code C is $d(C)=\min d(x, y)$ over all distinct words $x, y \in C$. A code of length n and size k with minimal distance d is called a $(n, k, d)_{q^{-}}$code. If q is clear from the context, it is usually omitted.

Example:

- The total code Σ^{n} contains all possible words. It is a ($n, n, 1$)-code.
- The repetition code $\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{1}=\ldots=x_{n} \in \Sigma\right\}$ is a ($n, 1, n$)-code.
- The parity code $\left\{\left(x_{1}, \ldots, x_{n-1}, x_{1}+\ldots+x_{n-1}\right)\right\}$ over the alphabet \mathbb{Z}_{t} is a $(n, n-$ 1,2)-code.

Theorem. A code detects up to e errors iff $d \geq e+1$. A code corrects up to e errors iff $d \geq 2 e+1$.
Definition. A code C is linear if its alphabet is some finite field \mathbb{F}_{q} and C is a subspace of the vector space \mathbb{F}_{q}^{n}. That is, codewords are closed under addition and multiplication by an element of \mathbb{F}_{q}. Parameters of linear codes are usually written in brackets: $[n, k, d]_{q}$.
Observation. The dimension of the subspace is equal to the size of the code. A linear code is completely described by the basis of the subspace, or by the corresponding generator matrix G, which is a $k \times n$ matrix whose rows are the vectors of the basis. The dual code C^{\perp} is the orthogonal complement of C. Therefore, it has dimension $n-k$. Its generator matrix has size $(n-k) \times n$ and it is called the parity check matrix P of the code C.
Lemma. $x \in C \Leftrightarrow P x^{\mathrm{T}}=\mathbf{0}$.
Observation. Hamming distance in linear codes is invariant with respect to translation:

$$
d(x, y)=d(x+z, y+z) .
$$

Therefore $d(C)=\min _{x \in C} w(x)$, where $w(x)=d(\mathbf{0}, x)$ is the Hamming weight of x.
Corollary. For a linear code, d is equal to the minimum non-zero number of columns of the parity-check matrix, which are linearly dependent.
Definition. The family of binary Hamming codes contains for every ℓ a linear code with a parity check matrix of shape $\ell \times\left(2^{\ell}-1\right)$, whose columns contain binary expansions of all numbers $1, \ldots, 2^{\ell}-1$.

Observation. For a given ℓ, the corresponding Hamming code is a $\left[2^{\ell}-1,2^{\ell}-\ell-\right.$ 1,3]-code.
Theorem (Singleton's bound). If there exists a (n, k, d)-code, then $k \leq n-d+1$.
Definition. Let $x \in\{0,1\}^{n}$ and $0 \leq r \leq n$. A combinatorial ball with center x and radius r is the set

$$
B(x, r)=\left\{z \in\{0,1\}^{n} \mid d(x, z) \leq r\right\} .
$$

Lemma. The volume of the combinatorial ball $B(x, r)$ (in the space of dimension n) is

$$
V(n, r)=\sum_{i=0}^{r}\binom{n}{i} .
$$

Theorem (Hamming's bound). Let C be a binary code with minimal distance $d(C) \geq 2 r+1$, then

$$
|C| \leq \frac{2^{n}}{V(n, r)}
$$

Definition. A binary code C of length n and minimal distance $d(C)=2 r+1$ is called perfect if $|C|=2^{n} / V(n, r)$.
Corollary. All Hamming codes are perfect.

