
Estimates: factorial and binomial coefficients

Proposition. For each natural number n ≥ 1:

2n−1 ≤ n! ≤ nn.

Theorem. For each n ∈ N:

nn/2 ≤ n! ≤
(
n+ 1

2

)n

.

Lemma (AM-GM inequality). For every pair of non-negative reals a, b:

√
ab ≤ a+ b

2
.

Theorem. For every n ∈ N:

e
(n

e

)n
≤ n! ≤ en

(n
e

)n
.

Claim. For every real number x:

1 + x ≤ ex.

Claim (Stirling formula). n! ∼
√

2πn · (n
e )n, where f ∼ g means lim

n→∞
f(n)
g(n) = 1.

Theorem. For every 1 ≤ k ≤ n:(n
k

)k
≤
(
n

k

)
≤
(en

k

)k
.

Theorem. For every m ∈ N:

22m

2n+ 1
≤
(

2m

m

)
≤ 22m.

Using Stirling formula, we can get a more precise approximation:(
2m

m

)
∼ 22m

√
πm

.
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Generating functions

Theorem. Let a0, a1, a2, . . . be an infinite sequence of real numbers such that |ai| ≤
ki for some k ∈ R and all i ≥ 1. Then for each x ∈ (−k, k) the power series

∑∞
i=0 aix

i

is convergent and it determines a real function a(x) =
∑∞

i=0 aix
i.

Moreover, the function a(x) is uniquely determined by the sequence on the interval
(−k, k) and ai = a(i)(0)/i!. We call a(x) the generating function of the sequence
a0, a1, a2, . . . .

Example:
sequence 1, 1, 1, . . . ↔ power series 1 + x+ x2 + . . . ↔ generating function 1

1−x .

Operations with sequences and generating functions:

1. sum: a0 + b0, a1 + b1, a2 + b2, . . .↔ a(x) + b(x)

2. multiplication by α ∈ R: αa0, αa1, αa2, . . .↔ αa(x)

3. substitution of αx for x: a0, αa1, α
2a2, . . .↔ a(αx)

4. substitution of xn for x: a0, 0, . . . , 0, a1, 0, . . . , 0, a2, . . .↔ a(xn)

5. move right: 0, a0, a1, a2, . . .↔ xa(x)

6. move left: a1, a2, a3, . . .↔ a(x)−a0

x

7. differentiation: a1, 2a2, 3a3, . . .↔ a′(x)

8. integration: 0, a0,
1
2a1,

1
3a2, . . .↔

∫ x

0
a(t) dt

9. product of functions: c0, c1, c2, . . .↔ a(x)b(x), where ck =
∑k

i=0 aibk−i

10. prefix sums: a0, a0 + a1, a0 + a1 + a2, . . .↔ a(x)/(1− x)

Fibonacci numbers: Let F0 = 0, F1 = 1 and Fn+2 = Fn+1 + Fn. Then

Fn =
1√
5
·

[(
1 +
√

5

2

)n

−

(
1−
√

5

2

)n ]
.

Theorem (Generalized Binomial theorem). For r ∈ R, k ∈ N, we define the gener-
alized binomial coefficients(

r

k

)
=
r(r − 1)(r − 2) . . . (r − k + 1)

k!
,

(
r

0

)
= 1.

Then (1 + x)r is the generating function of the sequence
(
r
0

)
,
(
r
1

)
,
(
r
2

)
, . . . (the sum∑∞

i=0

(
r
i

)
xi is convergent for x ∈ (−1, 1)).
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Lemma. For non-negative integers a, b, we have:(
−a
b

)
= (−1)b ·

(
a+ b− 1

b

)
.

Catalan numbers: Let b0 = 1 and bn+1 =
∑n

i=0 bibn−i. Then

bn =
1

n+ 1
·
(

2n

n

)
.

Example: There are exactly bn binary trees on n vertices.

Theorem (A cookbook for linear recurrent relations). Let

An+k = c0An + c1An+1 + . . .+ ck−1An+k−1

be a homogeneous linear recurrence relation with constant coefficients and initial
conditions A0, . . . , Ak−1. Let further

R(x) = xk − ck−1x
k−1 − . . .− c1x1 − c0x0

be its characteristic polynomial and λ1, . . . , λz ∈ C pairwise different roots of this
polynomial with multiplicities k1, . . . , kz. Then there are constants Cij ∈ C such
that for each n:

An =

z∑
i=1

ki−1∑
j=0

(
Cij ·

(
n+ j

j

)
· λni

)
.

If R has no multiple roots, the formula for An can be written in a simple form:

An =

z∑
i=1

Ciλ
n
i .

Proof. Only for simple roots.
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Finite projective planes

Definition. Let X be a finite set and L ⊆ 2X a set of subsets of X. Then (X,L)
is called a finite projective plane if it satisfies:

(P0) There exists F ⊆ X with |F | = 4 and |F ∩ L| ≤ 2 for each L ∈ L.

(P1) For all distinct L1, L2 ∈ L: |L1 ∩ L2| = 1.

(P2) For all distinct x1, x2 ∈ X, there is a unique L ∈ L such that x1 ∈ L and
x2 ∈ L.

We will call the elements of X points of the projective plane and the elements of L
its lines.

Lemma. For every line L ∈ L, there exists a point x ∈ X \ L.

Proposition. Let L1, L2 ∈ L be two lines of the finite projective plane (X,L), then
|L1| = |L2|.
Definition. The order of a finite projective plane (X,L) is |L| − 1, where L ∈ L.

Theorem. Let (X,L) be a finite projective plane of order n. Then:

(i) For all x ∈ X we have |{L ∈ L | x ∈ L}| = n+ 1,

(ii) |X| = n2 + n+ 1,

(iii) |L| = n2 + n+ 1.

Definition. A (finite) set system is a pair (X,L), where X is a finite set and L is
a multi-set of subsets of X. (Formally, you can avoid multi-sets by considering
a sequence of subsets instead. This way, the set system would be a triple (X, I,L),
where I is an index set and L is a mapping from I to 2X .)
The incidence graph of a set system is a bipartite graph with parts X and L and
edges {x, L} for all x ∈ L ∈ L.

Observation. A set system is uniquely determined by its incidence graph.

Definition. A dual of a set system (X,L) is defined by its incidence graph, which
is obtained by taking the incidence graph of (X,L) and exchaning the roles of its
parts.

Theorem. A dual set system of a finite projective plane is a finite projective plane.
(Roles of points and lines are exchanged by the duality.)

Theorem. If n is a prime power, then there exists a finite projective plane of order n.
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Latin squares

Definition. A Latin square of order n is a matrix A of order n × n with entries
from {1, 2, . . . , n} such that aij 6= aij′ for j 6= j′ and aij 6= ai′j for i 6= i′.
Two Latin squares A,B of order n are called orthogonal if (aij , bij) = (ars, brs)
implies (i, j) = (r, s).

Proposition. LetA1, A2, . . . , At be a collection of mutually orthogonal Latin squares
of order n. Then t ≤ n− 1.

Theorem. For n ≥ 2, a finite projective plane of order n exists if and only if there
exists a collection of n− 1 mutually orthogonal Latin squares of order n.

Hall’s theorem and bipartite matching

Definition. Let (X,L) be a set system. A function f : L → X is called its system
of distinct representatives if it is injective and f(S) ∈ S for all S ∈ L.

Theorem (Hall’s theorem, set version). A set system (X,L) has a system of distinct
representatives if and only if |

⋃
K | ≥ |K| holds for all sub-systems K ⊆ L. (This is

called the Hall’s condition.)

Definition. A matching in a graph G = (V,E) is a set of edges F ⊆ E such that
no two edges in F share a common vertex. A matching is called perfect if its edges
contain all vertices of G. In a bipartite graph with parts L and R, we can define
L-perfect and R-perfetct matchings similarly.

Observation. Systems of distinct representatives of a set system (X,L) are in one-
to-one correspondence with L-perfect matchings in the incidence graph.

Theorem (Hall’s theorem, graph version). Let G = (V,E) be a bipartite graph
with parts L and R. Then G has a L-perfect matching iff |Γ(K)| ≥ |K| for each
K ⊆ L, where Γ(K) = {v ∈ V | ∃w ∈ K : {v, w} ∈ E} is the neighborhood of K.

Corollary. Every regular bipartite graph has a perfect matching.

Definition. A matrix B ∈ Rm×n is bistochastic if all its entries are non-negative and
every row/column sums to 1. In particular, a permutation matrix contains exactly
one 1 in each row/column and zeroes everywhere else.

Observation. Every bistochastic matrix is square.

Theorem (Birkhoff). Every bistochastic matrix is a convex linear combination
of some permutation matrices. That is, for every bistochastic matrix B ∈ Rn×n

there exist permutation matrices P1, . . . , Pk ∈ {0, 1}n×n and positive real numbers
α1, . . . , αk such that B =

∑
i αiPi and

∑
i αi = 1.
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Flows in networks

Definition. A network is a directed graph (V,E) with two designated vertices s (the
source) and t (the target) and capacities on edges given by a function c : E → R+

0 .
Without loss of generality, we can assume that uv ∈ E implies vu ∈ E (missing
edges can be added with zero capacity).

Definition. For a function f : E → R on a network, we define functions f+ (inflow),
f− (outflow), and f∆ (excess) from V to R by:

f+(v) =
∑
uv∈E

f(uv), f−(v) =
∑

vw∈E
f(vw), f∆(v) = f+(v)− f−(v).

Definition. A function f : E → R is a flow in a given network if it satisfies the
following conditions:

1. Capacity constraints: 0 ≤ f(e) ≤ c(e) for all e ∈ E,

2. Flow conservation: f∆(v) = 0 for all v ∈ V \ {s, t}
(this is also known as the Kirchhoff’s law).

The value of the flow is defined by |f | = f∆(t).

Observation. Equivalently, |f | = −f∆(s).

Observation. In every network, there is at least one flow: the everywhere-zero
flow. A more interesting problem is finding a maximum flow, that is a flow with the
maximum possible value. (Does it always exist?)

Definition. For a given network and a flow f , we define residual capacities r : E →
R as r(uv) = c(uv) − f(uv) + f(vu). (Intuitively, it tells how much extra flow we
can send from u to v either by adding to the flow on uv, or by subtracting from flow
on vu.)

Definition. An augmenting path is a directed path from s to t whose all edges have
non-zero residual capacities.

If there is an augmenting path, the flow can be improved along this path. Repeating
this process yields the following algorithm.

Algorithm (Ford-Fulkerson maximum flow).

1. Let f(e)← 0 for every edge e.

2. While there exists an augmenting path P :

3. ε← mine∈P r(e)

4. For all edges uv ∈ P :

5. δ ← min(ε, c(uv)− f(uv))

6. f(uv)← f(uv) + δ

7. f(vu)← f(vu)− (ε− δ)
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Definition. For any two disjoint sets A,B ⊂ V , we define E(A,B) = {ab ∈ E | a ∈
A, b ∈ B}. This set of edges is called an (elementary) cut if s ∈ A and t ∈ B.
When E(A,B) is a cut and g is a real-valued function on edges, we define g(A,B) =∑

e∈E(A,B) f(e). In particular, c(A,B) is called the capacity of the cut.

Observation. When f is a flow and E(A,B) is a cut, then |f | = f(A,B)−f(B,A).
Since f(A,B) ≤ c(A,B), this implies |f | ≤ c(A,B). Hence if |f | = c(A,B), then
f is maximum and E(A,B) minimum (it has the lowest possible capacity over all
cuts).

Theorem. The Ford-Fulkerson algorithm has the following properties:

• During the whole computation, f is a flow.

• When the algorithm stops, f is a maximum flow.

• If the capacities are integers, the algorithm stops. Furthermore, it produces
an integral maximum flow.

• If the capacities are rationals, the algorithm stops.

• For some real capacities, the computation can run forever.

Theorem (Edmonds-Karp algorithm). When the Ford-Fulkerson algorithm always
selects the shortest possible augmenting path, it stops within O(|V | · |E|) iterations.

Corollary. Every network has a maximum flow.

Corollary. If all capacities are integers, there exists at least one maximum flow
using only integers.

Corollary (Ford-Fulkerson min-max theorem). For every network, the value of the
maximum flow equals the capacity of the minimum cut.

Bipartite matchings

For any bipartite graph (L∪R,E), we can define an auxiliary network with vertices
L ∪ R ∪ {s, t}, edges {su | u ∈ L} ∪ {uv | u ∈ L, v ∈ R, {u, v} ∈ E} ∪ {vt | v ∈ R}
and all capacities set to 1.

Observation. Integral flows in this network correspond to matchings, cuts corre-
spond to vertex covers (sets of vertices which intersect every edge). This implies the
Hall’s theorem. By the min-max theorem, we also get:

Corollary (König’s theorem). In every bipartite graph, the size of a maximum
matching equals the size of a minimum vertex cover.
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Higher connectivity

Definition. Let G = (V,E) be an undirected graph. A subset F ⊆ E is an edge
cut of G if G − F is disconnected. For an integer k, the graph G is called k-edge-
connected, if it has no edge cut of size smaller than k.
Similarly, a vertex cut of G is a subset U ⊆ V such that G−U is disconnected. The
graph G is k-vertex-connected, if |V | ≥ k+ 1 and G has no vertex cut of size smaller
than k.

Definition. The edge connectivity function ke(G) is defined as the minimum size
of an edge cut of a graph G (alternatively, the maximum k such that G is k-edge-
connected).
Similarly, the vertex connectivity function kv(G) gives the size of the smallest ver-
tex cut of a non-complete graph G (i.e., the maximum k such that G is k-vertex-
connected). For complete graphs, we define kv(Kn) = n− 1.

Lemma. Let G = (V,E) be a graph and e an arbitrary edge of G. Then

ke(G)− 1 ≤ ke(G− e) ≤ ke(G)

and
kv(G)− 1 ≤ kv(G− e) ≤ kv(G).

Theorem (Menger, edge version). Let G be a graph and k a positive integer. Then
G is k-edge-connected if and only if for every pair u, v ∈ V of distinct vertices of G,
there exists a system of k edge-disjoint paths between u and v.

Theorem (Menger, vertex version). Let G be a graph and k a positive integer. Then
G is k-vertex-connected if and only if for every pair u, v ∈ V of distinct vertices of G
there exists a system of k paths between u and v such that every two paths are
vertex-disjoint except for u and v.

Corollary. For every graph G, we have kv(G) ≤ ke(G) ≤ δ(G).

Definition. An ear-decomposition of a graphG = (V,E) is a sequenceG0, G1, . . . , Gk

of subgraphs of G satisfying

• G0 is a cycle,

• for i = 1, . . . , k, the graph Gi is obtained from Gi−1 by adding a path Pi

sharing exactly its endpoints with the graph Gi−1 (and no edges).

Theorem. The following properties of a graph G are equivalent:

(i) G is 2-vertex-connected.

(ii) G has an ear-decomposition.

(iii) G can be obtained from K3 by a sequence of edge additions and edge subdivi-
sions.
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Counting spanning trees

Definition. Let κ(G) denote the number of distinct spanning trees of a graph G.

Proposition (Basic properties of κ).

• κ(Cn) = n.

• κ(G) = 0 iff G is disconnected.

• κ(G) = 1 iff G is a tree.

• κ(G ∪H) = κ(G) · κ(H) if G and H are (multi)graphs with exactly one edge
or exactly one vertex in common.

Theorem (Cayley’s formula). κ(Kn) = nn−2 for every n ≥ 2.

Theorem (Deletion-contraction formula). Let G be a multigraph and e its edge.
Then κ(G) = κ(G − e) + κ(G/e), where G/e is multigraph contraction producing
parallel edges, but no loops.

Definition. The Laplace matrix of a graph G = (V,E), V = {v1, . . . , vn} is an n×n
matrix with entries:

qii = deg(vi)

qij =

{
−1 if {vi, vj} ∈ E

0 otherwise

Theorem. For every graph G, κ(G) = detQ11, where Qij denotes the matrix
obtained from Q by deleting the i-th row and j-th column.

Extremal combinatorics

Theorem. Maximum number of edges of a graph on n vertices, containing no K3

as a subgraph, is dn2/4e. Furthermore, all graphs achieving the maximum number
of edges are isomorphic to Kbn/2c,dn/2e.

Theorem. Let G be a graph on n vertices with m edges, containing no C4 as
a subgraph. Then m ≤ 1

2 (n3/2 + n).
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Ramsey theory

Definition. The clique number ω(G) of a graph G is the maximum number of
vertices in a complete subgraph. Similarly, the independence number α(G) is the
maximum number of vertices in an independent set (that is, a set inducing a sub-
graph with no edges).

Theorem (Ramsey theorem on graphs). Let k, ` ∈ N and let G = (V,E) be a graph
with |V | ≥

(
k+`−2
k−1

)
. Then G contains a clique of order k or an independent set of

order `. (That is, ω(G) ≥ k or α(G) ≥ `.)
Definition. For a given k, ` ∈ N, we define the Ramsey number r(k, `) to be the
minimal n such that every graph with at least n vertices contains a clique of order k
or an independent set of order `.

Theorem (Lower bound on Ramsey numbers). r(k, k) ≥ 2k/2 for all k ≥ 3.

Definition. [n] will denote the set {1, . . . , n}.
Theorem (The Pigeonhole principle). Let k and t be positive integers and n >
(k − 1) · t. Then for every function c : [n] → [t], there exists a k-element subset
A ⊆ [n] on which the function c is constant. (Intuitively: for every coloring of [n]
by t colors, there is a k-element monochromatic subset.)

Theorem (Ramsey for colored graphs). For all integers k > 0 (required clique size)
and t > 0 (the number of colors), there exists n (minimum graph size) such that for

every function c :
(

[n]
2

)
→ [t] (a coloring of edges of Kn) there is A ∈

(
[n]
k

)
such that

c is constant on
(
A
2

)
(a monochromatic copy of Kk).

Theorem (Infinite Pigeonhole principle). For every c : N→ [t] (a coloring of natural
numbers by t colors), there exists an infinite set A ⊆ N on which c is constant.

Theorem (Infinite Ramsey theorem). For every c :
(N

2

)
→ [t] (a coloring of an

infinite complete graph by t colors), there exists an infinite set A ⊆ N such that c is
constant on

(
A
2

)
(an infinite monochromatic complete subgraph).

Theorem (Infinite Ramsey theorem for p-tuples). For every c :
(N
p

)
→ [t] (a coloring

of p-tuples of natural numbers by t colors), there exists an infinite set A ⊆ N such
that c is constant on

(
A
p

)
.

Claim (Finite Ramsey theorem for p-tuples). For all integers k > 0 (required subset
size), t > 0 (the number of colors) and p > 0 (tuple size), there exists n (minimum

set size) such that for every function c :
(

[n]
p

)
→ [t] (a coloring of p-tuples of [n] by

t colors), there exists A ∈
(

[n]
k

)
such that c is constant on

(
A
p

)
(a monochromatic

subsystem).

Theorem (Schur). ∀t ∈ N ∃n ∈ N ∀c : [n] → [t] ∃x, y, z ∈ [n] such that c(x) =
c(y) = c(z) and x+ y = z.

Theorem (Erdős-Szekeres). For each k ∈ N there exists n ∈ N such that any n-
element set of points in the plane in general position (no three on a line) contains
k points forming a convex k-gon.
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Error-correcting codes

Definition. Let Σ be a q-element set called the alphabet. Elements of Σn are called
words of length n over Σ. A code of length n over Σ is a subset C ⊆ Σn. A binary
code is a code over the alphabet {0, 1}. For a code C we define its size as k = logq |C|,
and its rate as α(C) = k/n.

Definition. The Hamming distance of words x = (x1, . . . , xn) and y = (yi, . . . , yn)
in Σn is defined by d(x, y) = |{i ∈ {1, . . . , n} | xi 6= yi}|. The minimal distance of
a code C is d(C) = min d(x, y) over all distinct words x, y ∈ C. A code of length n
and size k with minimal distance d is called a (n, k, d)q-code. If q is clear from the
context, it is usually omitted.

Example:

• The total code Σn contains all possible words. It is a (n, n, 1)-code.

• The repetition code {(x1, . . . , xn) | x1 = . . . = xn ∈ Σ} is a (n, 1, n)-code.

• The parity code {(x1, . . . , xn−1, x1+. . .+xn−1)} over the alphabet Zt is a (n, n−
1, 2)-code.

Theorem. A code detects up to e errors iff d ≥ e+1. A code corrects up to e errors
iff d ≥ 2e+ 1.

Definition. A code C is linear if its alphabet is some finite field Fq and C is
a subspace of the vector space Fn

q . That is, codewords are closed under addition and
multiplication by an element of Fq. Parameters of linear codes are usually written
in brackets: [n, k, d]q.

Observation. The dimension of the subspace is equal to the size of the code. A lin-
ear code is completely described by the basis of the subspace, or by the corresponding
generator matrix G, which is a k×n matrix whose rows are the vectors of the basis.
The dual code C⊥ is the orthogonal complement of C. Therefore, it has dimension
n − k. Its generator matrix has size (n − k) × n and it is called the parity check
matrix P of the code C.

Lemma. x ∈ C ⇔ PxT = 0.

Observation. Hamming distance in linear codes is invariant with respect to trans-
lation:

d(x, y) = d(x+ z, y + z).

Therefore d(C) = minx∈C w(x), where w(x) = d(0, x) is the Hamming weight of x.

Corollary. For a linear code, d is equal to the minimum non-zero number of columns
of the parity-check matrix, which are linearly dependent.

Definition. The family of binary Hamming codes contains for every ` a linear code
with a parity check matrix of shape ` × (2` − 1), whose columns contain binary
expansions of all numbers 1, . . . , 2` − 1.
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Observation. For a given `, the corresponding Hamming code is a [2`− 1, 2`− `−
1, 3]-code.

Theorem (Singleton’s bound). If there exists a (n, k, d)-code, then k ≤ n− d+ 1.

Definition. Let x ∈ {0, 1}n and 0 ≤ r ≤ n. A combinatorial ball with center x and
radius r is the set

B(x, r) = {z ∈ {0, 1}n | d(x, z) ≤ r}.

Lemma. The volume of the combinatorial ball B(x, r) (in the space of dimension n)
is

V (n, r) =

r∑
i=0

(
n

i

)
.

Theorem (Hamming’s bound). Let C be a binary code with minimal distance
d(C) ≥ 2r + 1, then

|C| ≤ 2n

V (n, r)
.

Definition. A binary code C of length n and minimal distance d(C) = 2r + 1 is
called perfect if |C| = 2n/V (n, r).

Corollary. All Hamming codes are perfect.
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