
— 51 Dynamization

51 Dynamization
A data structure can be, depending on what operations are supported:

• static if all operations after building the structure do not alter the data,
• semidynamic if data insertion is possible as an operation,
• fully dynamic if deletion of inserted data is allowed along with insertion.

Static data structures are useful if we know the structure beforehand. In many cases,
static data structures are simpler and faster than their dynamic alternatives.

A sorted array is a typical example of a static data structure to store an ordered set of
n elements. Its supported operations are Index(i) which simply returns i-th smallest
element in constant time, and Find(x) which finds x and its index i in the array using
binary search in time O(log n).

However, if we wish to insert a new element to already existing sorted array, this operation
will take Ω(n) – we must shift the elements to keep the sorted order. In order to have a
fast insertion, we may decide to use a different dynamic data structure, such as a binary
search tree. But then the operation Index slows down to logarithmic time.

In this chapter we will look at techniques of dynamization – transformation of a static
data structure into a (semi)dynamic data structure. As we have seen with a sorted array,
the simple and straight-forward attempts often lead to slow operations. Therefore, we
want to dynamize data structures in such way that the operations stay reasonably fast.

51.1 Structure rebuilding
Consider a data structure with n elements such that modifying it may cause severe prob-
lems that are too hard to fix easily. In such case, we give up on fixing it and rebuild it
completely anew.

If building such structure takes time O(f(n)) and we perform the rebuild after Θ(n)
modifying operations, we can amortize the cost of rebuild into the operations. This adds
an amortized factor O(f(n)/n) to their time complexity, given that n does not change
asymptotically between the rebuilds.

Examples:

2021-09-21 Martin Mareš: Lecture notes on data structures 1

— 51.1 Dynamization – Structure rebuilding

• An array is a structure with limited capacity c. While it is dynamic (we can insert
or remove elements at the end), we cannot insert new elements indefinitely. Once we
run out of space, we build a new structure with capacity 2c and elements from the
old structure. Since we insert at least Θ(n) elements to reach the limit from a freshly
rebuilt structure, this amortizes to O(1) amortized time per an insertion, as we can
rebuild an array in time O(n).

• Another example of such structure is an y-fast trie. It is parametrized by block size
required to be Θ(log n) for good time complexity. If we let n change enough such
that log n changes asymptotically, the proven time complexity no longer holds. We
can save this by rebuilding the trie once n changes by a constant factor (then log n
changes by a constant additively). This happens no sooner than after Θ(n) insertions
or deletions.

• Consider a data structure where instead of proper deletion of elements we just replace
them with ‘‘tombstones’’. When we run a query, we ignore them. After enough
deletions, most of the structure becomes filled with tombstones, leaving too little
space for proper elements and slowing down the queries. Once again, the fix is
simple – once at least n/2 of elements are tombstones, we rebuild the structure. To
reach n/2 tombstones we need to delete Θ(n) elements.

Local rebuilding
In many cases, it is enough to rebuild just a part of the structure to fix local problems.
Once again, if a structure part has size k, we want to have done at least Θ(k) operations
since its last rebuild. This then allows the rebuild to amortize into other operations.

One of such structures is a binary search tree. We start with a perfectly balanced tree.
As we insert or remove nodes, the tree structure degrades over time. With a particular
choice of operations, we can force the tree to degenerate into a long vine, having linear
depth.

To fix this problem, we define a parameter 1/2 < α < 1 as a balance limit. We use it to
determine if a tree is balanced enough.

Definition: A node v is balanced, if for each its child c we have s(c) ≤ αs(v). A tree T is
balanced, if all its nodes are balanced.

Lemma: If a tree with n nodes is balanced, then its height is O(log1/α n).

Proof: Choose an arbitrary path from the root to a leaf and track the node sizes. The
root has size n. Each subsequent node has its size at most αn. Once we reach a leaf, its
size is 1. Thus the path can contain at most log1/α n edges. �

2 Martin Mareš: Lecture notes on data structures 2021-09-21

— 51.1 Dynamization – Structure rebuilding

Therefore, we want to keep the nodes balanced between any operations. If any node
becomes unbalanced, we take the highest such node v and rebuild its subtree T (v) into a
perfectly balanced tree.

For α close to 1/2 any balanced tree closely resembles a perfectly balanced tree, while
with α close to 1 the tree can degenerate much more. This parameter therefore controls
how often we cause local rebuilds and the tree height. The trees defined by this parameter
are called BB[α] trees.

Rebuilding a subtree T (v) takes O(s(v)) time, but we can show that this happens in-
frequently enough. Both insertion and deletion change the amount of nodes by one. To
unbalance a root of a perfectly balanced trees, and thus cause a rebuild, we need to add
or remove at least Θ(n) vertices. We will show this more in detail for insertion.

Theorem: Amortized time complexity of the Insert operation is O(log n), with constant
factor dependent on α.

Proof: We define a potential as a sum of ‘‘badness’’ of all tree nodes. Each node will
contribute by the difference of sizes of its left and right child. To make sure that perfectly
balanced subtrees do not contribute, we clamp difference of 1 to 0.

Φ :=
∑
v

ϕ(v), where

ϕ(v) :=
{ |s(`(v))− s(r(v))| if at least 2,
0 otherwise.

When we add a new leaf, the size of all nodes on the path to the root increases by 1. The
contribution to the potential is therefore at most 2.

We spend O(log n) time on the operation. If all nodes stay balanced and thus no rebuild
takes place, potential increases by O(log n), resulting in amortized time O(log n).

Otherwise, consider the highest unbalanced node v. Without loss of generality, the in-
variant was broken for its left child l(v), thus s(l(v)) > α · s(v). Therefore, the size
of the other child is small: s(r(v)) < (1 − α) · s(v). The contribution of v is therefore
ϕ(v) > (2α− 1) · s(v).

After rebuilding T (v), the subtree becomes perfectly balanced. Therefore for all nodes
u ∈ T (v) the contribution ϕ(u) becomes zero. All other contributions stay the same.
Thus, the potential decreases by at least (2α − 1) · s(v) ∈ Θ(s(v)). By multiplying the
potential by a suitable constant, the real cost Θ(s(v)) of rebuild will be fully compensated
by the potential decrease, yielding zero amortized cost. �

2021-09-21 Martin Mareš: Lecture notes on data structures 3

— 51.2 Dynamization – General semidynamization

51.2 General semidynamization
Let us have a static data structure S. We do not need to know how the data structure is
implemented internally. We would like to use S as a ‘‘black box’’ to build a (semi)dynamic
data structure D which supports queries of S but also allows element insertion.

This is not always possible, the data structure needs to support a specific type of queries
answering decomposable search problems.

Definition: A search problem is a mapping f : UQ × 2UX → UR where UQ is an universe
of queries, UX is an universe of elements and UR is set of possible answers.

Definition: A search problem is decomposable, if there exists an operator t : UR × UR

computable in time O(1)〈1〉 such that ∀A,B ⊆ UX , A ∩B = ∅ and ∀q ∈ UQ:

f(q, A ∪B) = f(q, A) t f(q,B).

Examples:

• Let X ⊆ U . Is q ∈ X? This is a classic search problem where universes UQ, UX

are both set U and possible replies are UR = {true, false}. This search problem is
decomposable, the operator t is a simple binary or.

• Let X be set of points on a plane. For a point q, what is the distance of q and the
point x ∈ X closest to q? This is a search problem where UQ = UX = R

2 and
UR = R+

0 . It is also decomposable – t returns the minimum.

• Let X be set of points of a plane. Is q in convex hull of X? This search problem is
not decomposable – it is enough to choose X = {a, b} and q /∈ X. If A = {a} and
B = {b}, both subqueries answer negatively. However, the query answer is equivalent
to whether q is a convex combination of a and b.

For a decomposable search problem f we can thus split (decompose) any query into two
queries on disjoint element subsets, compute results on them separately and then combine
them in constant time to the final result. We can further chain the decomposition on each
subset, allowing to decompose the query into an arbitrary amount of subsets.

We can therefore use multiple data structures S as blocks, and to answer a query we
simply query all blocks, and then combine their answers using t. We will show this
construction in detail.

〈1〉 The constant time constraint is only needed for a good time complexity of D. If it is not met, the
construction will still work correctly. Most practical composable problems meet this condition.

4 Martin Mareš: Lecture notes on data structures 2021-09-21

— 51.2 Dynamization – General semidynamization

Construction
First, let us denote a few parameters for the static and dynamic data structure.

Notation: For a data structure S containing n elements and answering a decomposable
search problem f and the resulting dynamic data structure D:

• BS(n) is time complexity of building S,
• QS(n) is time complexity of query on S,
• SS(n) is the space complexity of S,

• QD(n) is time complexity of query on D,
• SD(n) is the space complexity of D,
• ĪD(n) is amortized time complexity of insertion to D.

We assume that QS(n), BS(n)/n, SS(n)/n are all non-decreasing functions.

We decompose the set X into blocks Bi such that |Bi| ∈ {0, 2i},
⋃

i Bi = X and Bi∩Bj =
∅ for all i 6= j. Let |X| = n. Since n =

∑
i ni2

i for ni ∈ {0, 1}, its binary representation
uniquely determines the block structure. Thus, the total number of blocks is at most
log n.

For each nonempty block Bi we build a static structure S of size 2i. Since f is decom-
posable, a query on the structure will run queries on each block, and then combine them
using t:

f(q, x) = f(q,B0) t f(q,B1) t . . . t f(q,Bi).

Lemma: QD(n) ∈ O(Qs(n) · log n).

Proof: Let |X| = n. Then the block structure is determined and t takes constant time,
QD(n) =

∑
i:Bi 6=∅

(
QS(2

i) +O(1)
)
. Since QS(x) ≤ QS(n) for all x ≤ n, the inequality

holds. �

Lemma: SD(n) ∈ O(SS(n)).

Proof: For |X| = n let I = {i | Bi 6= ∅}. Then for each i ∈ I we store a static data
structure S with 2i elements contained in this block. Therefore, QD(n) =

∑
i∈I QS(2

i).
Since SS(n) is assumed to be non-decreasing,

∑
i∈I

QS(2
i) ≤

∑
i∈I

QS(2
i)

2i
· 2i ≤ SS(n)

n
·
logn∑
i=0

2i ≤ SS(n)

n
· n.

�

2021-09-21 Martin Mareš: Lecture notes on data structures 5

— 51.2 Dynamization – General semidynamization

It might be advantageous to store the elements in each block separately so that we do
not have to inspect the static structure and extract the elements from it, which may take
additional time.

An insertion of x will act like an addition of 1 to a binary number. Let i be the smallest
index such that Bi = ∅. We create a new block Bi with elements B0∪B1∪. . .∪Bi−1∪{x}.
This new block has 1+

∑i−1
j=0 2

j = 2i elements, which is the required size for Bi. At last,
we remove all blocks B0, . . . , Bi−1 and add Bi.

x B0 B1 B2 B4

B3 B4

Figure 51.1: Insertion of x in the structure for n = 23, blocks
{x}, B0 to B2 merge to a new block B3, block B4 is unchanged.

Lemma: ĪD(n) ∈ O(BS(n)/n · log n).

Proof: Since the last creation of Bi there had to be least 2i insertions. Amortized
over one element this cost is BS(2

i)/2i. As this function is non-decreasing, we can lower
bound it by BS(n)/n. However, one element can participate in log n rebuilds during the
structure life. Therefore, each element needs to store up cost log n · BS(n)/n to pay off
all rebuilds. �

Theorem: Let S be a static data structure answering a decomposable search problem f .
Then there exists a semidynamic data structure D answering f with parameters

• QD(n) ∈ O(QS(n) · logn),
• SD(n) ∈ O(SS(n)),
• ĪD(n) ∈ O(BS(n)/n · log n) amortized.

In general, the bound for insertion is not tight. If BS(n) = O(nε) for ε > 1, the logarith-
mic factor is dominated and ĪD(n) ∈ O(nε).

Example:

If we use a sorted array using binary search to search elements in a static set, we can use
this technique to create a dynamic data structure for general sets. It will require Θ(n)
space and the query will take Θ(log2 n) time as we need to binary search in each list.
Since building requires sorting the array, building one requires Θ(n log n) and insertion
thus costs Θ(log2 n) amortized time.

6 Martin Mareš: Lecture notes on data structures 2021-09-21

— 51.2 Dynamization – General semidynamization

We can speed up insertion time. Instead of building the list anew, we can merge the lists
in Θ(n) time, therefore speeding up insertion to O(log n) amortized.

Worst-case semidynamization
So far we have created a data structure that acts well in the long run, but one insertion
can take long time. This may be unsuitable for applications where we require a low
latency. In such cases, we would like that each insertion is fast even in the worst case.

Our construction can be deamortized for the price that the resulting semidynamic data
structure will be more complicated. We do this by not constructing the block at once, but
decomposing the construction such that on each operation we do does a small amount of
work on it until eventually the whole block is constructed.

However, insertion is not the only operation, we can also ask queries even during the
construction process. Thus we must keep the old structures until the construction finishes.
As a consequence, more than one block of each size may exist at the same time.

For each rank i let B0
i , B

1
i , B

2
i be complete blocks participating in queries. No such block

contains a duplicate element and union of all complete blocks contains the whole set X.

Next let B∗
i be a block in construction. Whenever two blocks Ba

i , B
b
i of same rank i meet,

we will immediately start building B∗
i+1 using elements from Ba

i ∪Bb
i .

This construction will require 2i+1 steps until B∗
i+1 is finished, allocating enough time for

each step. Once we finish B∗
i+1, we add it to the structure as one of the three full blocks

and finally remove Ba
i and Bb

i .

We will show that, using this scheme, this amount of blocks is enough to book-keep the
structure.

Lemma: At any point of the structure’s life, for each rank i, there are at most three
finished blocks and at most one block in construction.

Proof: For an empty structure, this certainly holds.

Consider a situation when two blocks B0
i and B1

i meet and B1
i has just been finalized.

Then we start constructing B∗
i+1. 2i+1 steps later Bi+1 is added and blocks B0

i , B1
i are

removed.

There may appear a new block B2
i earlier. However, this can only happen 2i steps later.

For the fourth block B3
i to appear, another 2i steps are required. The earliest time is

then 2 · 2i = 2i+1 steps later, during which B∗
i+1 has been already finalized, leaving at

most two blocks together and no block of rank i+ 1 in construction. �

2021-09-21 Martin Mareš: Lecture notes on data structures 7

— 51.2 Dynamization – General semidynamization

An insertion is now done by simply creating new block B0. Next, we additionally run one
step of construction for each B∗

j . There may be up to log n blocks in construction.

Theorem: Let S be a static data structure answering a decomposable problem f . Then
there exists semidynamic structure with parameters

• QD(n) ∈ O(QS(n) · logn),
• SD(n) ∈ O(SS(n)),
• ID(n) ∈ O(BS(n)/n · log n) worst-case.

Proof: Since there is now a constant amount of blocks of each rank, the query time and
space complexities have increased by a constant compared to previous technique.

Each insertion builds a block of size 1 and then runs up to log n construction steps, each
taking BS(2

i)/2i time. Summing this together, we get the required upper bound. �

Full dynamization
For our definition of search problems, it is not easy to delete elements, as anytime we
wished to delete an element we would need to take apart and split a structure into a few
smaller ones. This could never be able to amortize to decent deletion time.

Instead of that, we will want the underlying static structure to have an ability to cross
out elements. These elements will no longer participate in queries, but they will count
towards the structure size and complexity.

Once we have ability to cross out elements, we can upgrade the semidynamic data struc-
ture to support deletion. We add a binary search tree or another set structure which maps
each element to a block it lives in. For each element we keep a pointer on its instance in
the BST. When we build a new block, we can update all its current elements in the tree
in constant time (and insert the new one in logarithmic time).

Insertion time complexity then will always take at least logarithmic time and space re-
quirements increase by the BST.

Deletion then finds an element in the BST, locates it in the corresponding block and
crosses it out. We also keep the count of crossed out elements. If this count becomes a
certain fraction of all elements, we rebuild the structure completely.

Before having to rebuild the whole structure, we cross-out at least Θ(n) elements, so the
deletion time can be amortized and it will result in same time complexity as insertion.

There also exists an worst-case version of full dynamization which carefully manipulates
with blocks, splitting and merging them as required. The details are somewhat compli-
cated, so we will not look at them further.

8 Martin Mareš: Lecture notes on data structures 2021-09-21

