
— 9 Parallel data structures

9 Parallel data structures
Contemporary computers often have multiple processors.〈1〉 To utilize all available com-
puting power, programs typically start multiple processes or threads, which run in parallel
on different processors. This brings a new challenge: designing data structures which sup-
port concurrent access. These are often called parallel or concurrent data structures.

Parallel computing involves a lot of technical details. We tried to keep the exposition as
straightforward as possible, but you can find many details in footnotes.

9.1 Parallel RAM
Details of multi-processor computers are quite complex and they vary between machines.
Therefore, we will study parallel algorithms in a simple theoretical model instead, like
we did with sequential algorithms. Our model is called the Parallel RAM (PRAM). It
consists of several instances of the Random-Access Machine. We will call each instance
a processor.

Instructions of the machine can access data in local memory of the current processor
and also in global memory shared among all processors. There are no instructions for
computing directly with data in global memory — we always have to read the data to
local memory, modify them there, and write them back to global memory.

All processors execute the same program. However, the program has access to the iden-
tifier of the current processor, so it can easily switch to different branches of code on
different processors. The sequences of instructions executed by the processors are called
processes.

Many variants of the PRAM model guarantee that the instructions are executed in lock-
step – in a single tick of a global system clock, each processor executes a single instruction
of its process. As this is not true on real hardware, we will make no such assumption and
allow each processor to execute instructions at its own pace.

It remains to specify what happens when multiple processes access the same cell of the
global memory simultaneously. Concurrent reads will be considered correct. Concurrent
writes and combinations of reads and writes will have undefined behavior.

〈1〉 Sometimes, these are called cores or hardware threads, but this is a purely technical difference. Unless
you are programming at a very low level, these behave as separate processors.

2023-11-15 Martin Mareš: Lecture notes on data structures 1



— 9.2 Parallel data structures – Locks

You can argue that it is almost impossible to produce correct parallel programs on ma-
chines with such weak semantics. We agree, so we are going to extend the machine later
in this chapter by introducing locks and atomic operations with well-defined semantics.

9.2 Locks
Let us start small. Imagine a simple counter in global memory called cnt with an incre-
ment operation. Since we cannot compute in global memory, the increment must consist
of three steps:

Procedure GlobalInc
1. t← cnt
2. t← t+ 1

3. cnt ← t

On a single processor, it is certainly correct. But consider that cnt = 1 and two processors
try to increment it concurrently. It can happen that both read cnt to their local variables,
both increment the local variable to 2, and then both write 2 back to cnt (in either order).
So the end result is 2 instead of 3.

This is a prototypical example of what is called a race condition – the result of a compu-
tation depends on the exact ordering of operations across processors.

Race conditions are frequently avoided using synchronization primitives. The simplest
such primitive is a mutex (short for ‘‘mutual exclusion’’, sometimes also called a lock). At
any given moment, the mutex is either unlocked or locked. It supports two operations:

• Lock – If the mutex is unlocked, lock it. If it is locked, wait until it is unlocked by
somebody else and then lock it.

• UnLock – If the mutex is locked, unlock it. If it is unlocked, crash (this should not
happen in a correct program).

At this moment, we do not know how to implement the mutex. For the time being,
we can consider it an extra feature of our machine. Later, we will show that it can be
constructed from atomic instructions.

Typically, each instance of a data structure has its own mutex. Every operation on the
structure is wrapped in an Lock/UnLock pair. This guarantees that at most one process
is working with the data structure at any given time (this is the mutual exclusion). Hence,
all operations are atomic — if we perform an operation, any other observer sees it either
not started, or completely finished.

2 Martin Mareš: Lecture notes on data structures 2023-11-15



— 9.2 Parallel data structures – Locks

The dreaded deadlock
Problems arise if we want to perform atomic operations which affect more than one
instance of the data structure. Consider the following situation: We have doubly linked
lists, each list with its own mutex. Insertion and deletion is easy, but what if we want
to move an item x from list A to list B atomically? (This means that for any outside
observer, the item is always seen either in A, or in B.) An obvious solution would be:

Procedure AtomicMove
1. Lock the mutex of A.
2. Lock the mutex of B.
3. Delete x from A.
4. Insert x to B.
5. Unlock the mutex of B.〈2〉
6. Unlock the mutex of A.

Although this seems to be intuitively correct, it can fail badly. What if a process P1 tries
to move an item x from A to B, while another process P2 tries to move y from B to A?
It can happen that when P1 obtains the mutex for A, P2 obtains the mutex for B. In the
next step, P1 wants the mutex for B, while P2 wants the mutex for A. So each process
is waiting for a mutex held by the other process, and both processes will wait infinitely
long.

This is called a deadlock and next to the race condition, it is the most frequent bug in
parallel programs. Generally, more than two processes can participate in a deadlock. Let
us consider the dependency graph. It is a directed graph, whose vertices are processes
and an edge from i to j means that process i is waiting for a mutex currently locked by
process j. If there is a directed cycle in this graph, the processes are obviously deadlocked.
Otherwise, the computation can proceed from the source vertices of the graph (those with
no incoming edges).

There is a simple solution to deadlocks: Establish an ordering of all mutexes in the system
and always lock mutexes in increasing order. E.g., we can order them by their addresses
in memory. This way, no deadlock can occur, because a cycle in the dependency graph
would imply a cycle in the order. (In fact, the order need not be total — a partial order
suffices as long as all locks taken by every single process are totally ordered.)

This technique can prevent all deadlocks as long as we can tell in advance, which mutexes
will be needed by an operation (we have to sort them first). This is not true in all cases:
for example, we might want to move an item to a list chosen according to the item’s value.

〈2〉 The order of unlocks is arbitrary, but we prefer to have the lock-unlock pairs nested properly.

2023-11-15 Martin Mareš: Lecture notes on data structures 3



— 9.2 Parallel data structures – Locks

Granularity of locks
Sometimes, one lock per instance is not the best possible granularity. If we have many
small data structures, individual locks can consume too much memory. In such cases,
we can have an array of mutexes and a hash function mapping an address of an instance
to a mutex in the array. This can be very efficient, but when constructing operations
working with multiple instances, beware that two instances can be mapped to the same
mutex.

On the other hand, if all processes spend most of their time accessing a single instance, the
lock guarding this instance will become a performance bottleneck. If it is so, we should
try splitting the data structure to parts guarded by different locks. This is particularly
easy if the data structure is a hash table: we can assign a separate mutex to each bucket.
As long as different processes operate on different buckets (which is quite likely), they
run with no contention. Beware that this setup does not support rehashing — the main
pointer to the array of buckets is not guarded by a lock, so it must stay read-only.

We will see more examples of fine-grained locking in section 9.3.

Problems with locking
Locking is conceptually simple (though tricky to implement correctly), but it is not
a panacea. There are multiple issues associated with locking:

• Deadlocks — operations which need to acquire more than one lock can cause dead-
locks. As we saw, deadlocks can be usually prevented by ordering the locks, but it is
not always possible.

• Lack of composability — intuitively, if operations α and β can be each performed
atomically, it should be possible to do the composition αβ atomically, too. This is
not the case with locks, especially if we are not allowed to look inside α and β. Even if
we are allowed, the problems with deadlocks arise. Full composability would require
a completely different approach, for example transactional semantics. We will not
discuss it here.

• Fairness — generally, there is no guarantee that a single process will finish in finite
time. If there is a lot of contention at a lock, a process can wait indefinitely if other
processes can always obtain the lock faster. This situation differs from the deadlock,
because if other processes are stopped, the current process finishes. This is usually
called starvation. It can be prevented by implementing the locks in a way which
guarantees fairness.

• Priority inversion — if we have a system where processes have different priorities
(e.g., real-time calculations have a high priority, while interaction with the user
a lower one), a high-priority process can be blocked by a low-priority process if

4 Martin Mareš: Lecture notes on data structures 2023-11-15



— 9.3 Parallel data structures – Locking in search trees

the former waits on a lock held by the latter. The standard fix for that in real-time
systems is priority inheritance — a process holding a lock has its priority raised
to the maximum priority of processes currently waiting for the lock. This further
complicates implementation of locks.

• Performance — although modern operating systems supply a well-optimized imple-
mentation of locks, it still slows down the program and consumes memory. Especially
if locking is fine-grained.

• Fault tolerance — if a process is terminated abnormally, all locks it held are left
locked forever. If any other process tries to access the data structures protected by
these locks, it will wait forever. The operating system could break the locks force-
fully, but that would make other processes access the data structure in a potentially
inconsistent state.

Some (but not all) of these problems will be solved by lock-free data structures introduced
in section 9.4.

9.3 Locking in search trees
Let us try to combine binary search trees with fine-grained locking. We add a mutex
to each node of the tree in attempt to make operations as parallel as possible. We will
consider operations Find, Insert, and Delete on the tree.

Locking a path
Trivial solution first. Whenever we want to operate on an item, we follow a path from the
root downwards and we lock the nodes on the path as we visit them. Find just follows
the path. Insert without balancing follows the path and adds a new leaf at the end of
the path. Delete follows the path and it either finds a node with at most 1 child (which
can be cut out), or a node with 2 children, which is to be replaced by its successor, but
finding the successor just extends the path further down.

This is obviously correct as all decisions we make (to go to the left or to the right) remain
valid until the end of the operation — all nodes which affected the decision are kept
locked. Even better, we can add rebalancing, which traverses the same path from the
bottom to the top.

It can be also easily proven that no deadlock can occur: we can order the nodes by their
depth in the tree and keep nodes at the same depth incomparable. This is a partial order
in which every downward path forms a chain.

However, there is one huge fault in this approach: every path contains the root. So all
operations are serialized by the lock in the root and the other locks have no effect.

2023-11-15 Martin Mareš: Lecture notes on data structures 5



— 9.3 Parallel data structures – Locking in search trees

Locking a sliding window
If the only operations on the tree are Find and Insert with no balancing, there is no
need to keep the nodes we already passed locked. It is sufficient to have locked only the
current node and its child where we want to go. This corresponds to sliding a window of
size 2 over the path and locking only the nodes inside the window.

In a single step of Find(x), we compare x with the key in the current node and read the
pointer to the corresponding child. We did this with the current node locked, so we do
not race with other processes modifying the same node. Then we lock the child, unlock
the current node and make the child the new current node. If we are Inserting, we finish
by creating a new node (it need not be locked, since we are the only process possessing
a pointer to it) and attaching it as a child to the current node (whose lock we hold).

This approach allows much greater concurrency — even though all paths start at the root,
the root is quickly unlocked and we can expect that the paths will soon diverge, especially
when accessing random items. Still, if the number of processes exceeds the height of the
tree, the contention at the root can be significant.

Deadlocks are still impossible, because we take the locks in the order of increasing depth
in the tree.

However, it is not clear how to add Delete and most importantly balancing. Traditional
methods of balancing (AVL or red-black) do not work as they need to propagate changes
upwards, possibly up to the root.

Arguing correctness: serializability
We would like to argue that our construction is correct, but we need to give an appropriate
definition of correctness first. For example, what is the right answer if we are searching
for an item, while another process is inserting an item with the same key?

The standard way of formulating correctness in concurrent systems is using serializability.
A sequence of operations on a data structure is serializable if there exists a linear (total)
order on all operations such that (1) the result of each operation is consistent with the
operations preceding it in the order, (2) from the point of view of every process, the order
of operations executed by that process is consistent with the total order.

Try to prove that the previous construction with Insert and Find is correct in the sense
of serializability.

Sometimes, a stronger concept is used instead of serializability. It is called sequential
consistency and it requires a single linear order common to all data structures. Reasoning
in this model is much easier, but it is inefficient to implement on current hardware.

6 Martin Mareš: Lecture notes on data structures 2023-11-15



— 9.4 Parallel data structures – Lock-free data structures

Top-down (a,b)-trees
The idea of locking by sliding a window over a path is much better suited to (a, b)-trees.
We will use the version of (a, b)-trees with top-down balancing from section ??.

In Insert, we hold a lock on the current node and its parent. In each step, we split the
current node if needed. Then we unlock the parent, find the appropriate child, lock it,
and move there.

Delete is similar, but besides the current node and its parent, we sometimes need to lock
a sibling. This requires more careful ordering of locks to avoid deadlocks. The primary
ordering will be still by level (depth), but at the same level we will order the locks from
the left to the right. This can be a problem, if after examining the current node we decide
to look at the left sibling. One solution is to always lock the left sibling before the current
node, even if it is not accessed. For another, see exercise 2.

Another problem in Delete is deletion of a key which is not at the lowest level. This is
usually solved by replacing the key by its successor, but when looking for the successor,
we need to keep the current node locked. This can be slow (e.g., if the current node is
the root, we are effectively locking the whole tree). If this is a problem, we can keep the
key there and mark it as deleted.

Exercises
1. Modify top-down Delete so that it guarantees that at most a half of all keys is

marked as deleted.

2. Prove that that we can safely lock the children of a common parent in arbitrary
order if the parent is locked first.

9.4 Lock-free data structures
We already mentioned multiple problems with locking. In this section, we will investigate
data structures that do not need locks.

Atomic instructions
Without locks, we need to achieve consistency by other means. Fortunately, real machines
typically offer a small set of instructions which guarantee atomicity of some kind. We can
add them to our parallel RAM, too. Here are typical examples of atomic instructions.
They usually operate on cells of global memory called atomic registers. Operations on
individual atomic registers are serializable.

2023-11-15 Martin Mareš: Lecture notes on data structures 7



— 9.4 Parallel data structures – Lock-free data structures

• Read and write — the most basic guarantee is that an atomic register can be read
or written as a whole. Concurrent accesses to the same atomic register are resolved
in an unknown, but consistent order.〈3〉

• Exchange — exchange contents of an atomic register with a value in local memory.
This is sufficient for implementing a mutex: an unlocked mutex will have a zero
value. Locking the mutex will exchange the register with 1. If the original value is
zero, we have succeeded. If it was 1, we retry. To unlock the mutex, we write a zero
atomically.〈4〉

• Test and set bit — set a given bit of an atomic register and return its original value.
This is another popular building block for locks.

• Fetch and add — add a number to an atomic register and return its original value.

• Compare and swap (CAS) — it is given an atomic register R and values old and new.
If R equals old, it is changed to new. Otherwise R is not changed. In all cases, the
original value of R is returned.

• Load linked and store conditional (LL/SC) — a linked load is a normal atomic read,
but the processor remembers the address and keeps monitoring it for access by other
processors. A later store conditional to the same address succeeds if the address was
not written to by other processors. Otherwise it reports failure.〈5〉

Current hardware implements atomic read/write and either CAS or LL/SC. The other
atomic operations are either implemented or they can be simulated using CAS or LL/SC.
CAS can be simulated using LL/SC, but not vice versa — the difference will play an
important role in the next section.

Lock-free stack
Let us build a simple lock-free implementation of a stack. It will be represented as a linked
list of nodes. Each node will contain data of the item and an atomic pointer to the next
item. We will also keep an atomic pointer to the head of the list (the most recent item in
the stack).

〈3〉 Surprisingly, real hardware does not guarantee atomicity for normal memory accesses. For example,
a 64-bit value on a 32-bit machine has to be written by two instructions, so another process can see
a partially written value. More subtly, writes which cross a cache block boundary are also not atomic.
〈4〉 On a real operating system, we usually want to let the process sleep instead of actively checking
the register in a loop. For our simplistic introduction, spinning in a loop will suffice. This known as
a spinlock.
〈5〉 Real machines have various restrictions on LL/SC. Usually, only a very limited number of addresses
can be monitored simultaneously. Also, monitoring is often based on cache blocks, so a write to another
variable within the same cache block can also trigger SC failure.

8 Martin Mareš: Lecture notes on data structures 2023-11-15



— 9.4 Parallel data structures – Lock-free data structures

We will implement the operations Push (insert a new item at the top of the stack) and
Pop (remove an item from the top of the stack) as follows.

Procedure Push
Input: A new node n containing the item to be pushed.

1. Repeat:
2. h← stack.head
3. n.next ← h

4. If CAS(stack.head, h, n) = h:
5. Return.

Procedure Pop
1. Repeat:
2. h← stack.head
3. s← h.next
4. if CAS(stack.head, h, s) = h:
5. Return h.

Output: A node removed from the top of the stack.

The CAS guarantees that if another process interferes with the operation, we detect
the interference and restart the operation. In the worst case, we can loop indefinitely
and never complete the operation — this is called a livelock. In practice, the livelock is
extremely improbable, because there is a lot of random factors which affect scheduling of
processes, so every process eventually succeeds.

The ABA problem
Livelocks aside, the implementation looks correct. It is tempting to prove that it is
serializable by the order of CASes on the list head. There is however one subtle hole in
this argument: it works only if we assume that all nodes ever pushed to the stack are
distinct.

Let us see what can happen if they are not. We start with the situation displayed in the
figure: a stack containing items A (at the top) and B.

One process performs:

Procedure Process1
1. x← Pop / We have x = A.
2. y ← Pop / We have y = B.
3. Push(x) / We push A back to the stack.

2023-11-15 Martin Mareš: Lecture notes on data structures 9



— 9.4 Parallel data structures – Lock-free data structures

Another process starts a Pop, but it will be slower. It manages to perform steps 2 and 3
before Process1 starts popping, but step 4 will proceed after Process1 is done. So the
second process sets h = A and s = B. When it executes its CAS, the head is A again, so
the head is changed to B. But this is wrong — B should not be in the list any longer as
it was already removed by Process1’s second Pop.

head

A B null

Figure 9.1: The list before Process1 starts

The core of the problem is that the original node A was confused with a logically different
node stored at the same address.

This is called the ABA problem and it is a very typical fault of concurrent data structures.
Let us consider some solutions:

• Use LL/SC instead of CAS. If step 2 of Pop is a LL and step 4 is a SC, the SC fails
even if the head changed from A to B and back in the meantime.

• Have the machine support a double-CAS (alias DCAS or CAS2), which is a CAS on
a pair of atomic registers simultaneously. Then we can replace the CAS in step 4 by

CAS2(〈stack.head, h.next〉 , 〈h, n〉 , 〈n, n〉),

which detects that the head node was re-connected and it has a different successor
now. Alas, no current processor supports CAS2.

• Have the machine support a wide CAS (WCAS), also called double-width CAS (DW-
CAS). It is a CAS2 on two variables which are adjacent in memory. This can be used
for versioning of pointers: each pointer will be accompanied by an integer version,
which will be incremented every time the pointer is changed.〈6〉 Then step 2 becomes

〈h, v〉 ← 〈stack.head, stack.head version〉

and the test in step 4 becomes

If WCAS(〈stack.head, stack.head version〉 , 〈h, v〉 , 〈n, v + 1〉) = 〈h, v〉 .

〈6〉 The version number can overflow, but as long as it does not wrap around in a single invocation of
Pop, overflows are harmless. Also, a 64-bit version number is not likely to overflow within the lifetime of
our program.

10 Martin Mareš: Lecture notes on data structures 2023-11-15



— 9.4 Parallel data structures – Lock-free data structures

Unlike general CAS2, WCAS is often supported by hardware.

• Avoid recycling of nodes: for every Push, allocate a new node.

Memory allocation
Another subtle issue with concurrent data structures is memory allocation. With a locking
data structure, we can free memory used by a node once we Pop the node off the stack.
In the lock-free version, this could have disastrous consequences: even though the node
is already popped, other processes can still access it. This happens if they obtained
a pointer to the node before its Pop finished. Later, their CAS will reveal that the node
is no longer present. But in the meantime, they might have accessed invalid memory and
crashed.

The usual solution is to collect all unused nodes in a free list — an atomic list managed
like our lock-free stack — and free them after we make sure that no processes reference
them. There are multiple possibilities:

• Global synchronization — from time to time, we synchronize all processes at a point
where they hold no pointers of their own, and free up all chunks from the free list.
This is simple, but in many cases the synchronization points are hard to find.

• Reference counting — in every node, we keep an atomic counter of references to the
node (i.e., local variables which point to the node). Again, we keep a free list. From
time to time, we scan the free list and free up all nodes with zero references.

Time to scan the list can be amortized nicely. If we have P processes and each
of them holds at most R references, there are at most RP references at any given
moment. Therefore if we start the scan once the list accumulates at least 2RP items,
we always free up at least a half of the nodes in the list. So time spent on scanning
can be charged on the freed nodes, each node paying O(1) time.

Maintenance of the reference counters is surprisingly tricky. In the short time window
before we read a pointer to a node from memory and increment the node’s reference
count, the node might have been already freed. We can figure out that this happened
by re-reading the pointer. In this case, we decrement the counter back and retry.
But if the node’s memory was already recycled for different use, we might have
temporarily corrupted an unrelated data structure. To avoid this, we will recycle
memory only as nodes of the same memory layout with the reference counter at
a fixed position.

Let us modify Pop to handle reference counting:

2023-11-15 Martin Mareš: Lecture notes on data structures 11



— 9.4 Parallel data structures – Lock-free data structures

Procedure PopRefCnt
1. Repeat:
2. h← stack.head
3. Increment h.ref cnt.
4. If h 6= stack.head:
5. Decrement h.ref cnt and retry the loop.
6. s← h.next
7. if CAS(stack.head, h, s) = h:
8. Decrement h.ref cnt and return h.
9. Decrement h.ref cnt.

Output: A node removed from the top of the stack.

Note that we can safely decrease the ref cnt in step 8, because as the „owner“ of
the popped item, we are the only process which can free it. By the same argument,
Push need not be modified because it references only the new node, which is owned
by the current process.

• Hazard pointers – instead of keeping track of „hazardous references“ in each node,
we collect all hazardous references in a single global array. The array is usually split
to fixed-size blocks, each owned by a single process.

Maintenance of hazard pointers is similar to that of reference counters. When a pro-
cess wants to access a node, it sets one of its hazard pointers to that node. As with
reference pointers, it is necessary to re-check that the node is still connected to the
data structure.

Let us see a version of Pop with hazard pointers. Again, Push need not be modified.
Procedure PopHP

1. Repeat:
2. h← stack.head
3. hp← h / One of our hazard pointers
4. If h 6= stack.head:
5. Retry the loop. / No need to reset hp here
6. s← h.next
7. if CAS(stack.head, h, s) = h:
8. Let hp← ∅ and return h.

Output: A node removed from the top of the stack.

When we want to scan the free list, we take a snapshot of the hazard pointer array
and build a static data structure for the set of hazard pointers (in the simple case,

12 Martin Mareš: Lecture notes on data structures 2023-11-15



— 9.4 Parallel data structures – Lock-free data structures

it is a sorted array with binary search). For each node in the free list, we query the
data structure to see if the node is still being accessed.

It takes some effort to prove that no node can be freed under our hands:

• Before a node enters the free list, it was disconnected from the data structure
by a PopHP.

• If any concurrent PopHP reached step 6 with h pointing to the node, the node
was not in the free list yet.

• So the hazard pointer in the concurrent PopHP is set before the node enters
the free list.

• Hence the snapshot taken when freeing memory includes all relevant hazard
pointers.

Hierarchy of concurrent data structures
Concurrent data structures differ in guarantees they provide. The typical guarantees form
a hierarchy with each level stronger than the preceding one:

• blocking – the data structure is correct, but an operation can wait indefinitely, for
example for a lock held by another process.

• obstruction-free — if all other processes stop, my operation will succeed in finite time.

• lock-free — if multiple processes execute operations, at least one of them will succeed
in finite time. However, there is no guarantee of fairness — livelocks are allowed.

• wait-free — every operation is guaranteed to succeed in finite time.

• bounded wait-free — in addition to that, there is an upper bound on the time (typi-
cally a function of the number of processes competing for the data structure).

Our stack is indeed lock-free, but not wait-free.

Trouble with hardware and compilers*
In our discussion of concurrency, we made several simplifying assumptions, which are not
always valid on real computers. We briefly mention what can go wrong, but will leave
the details to texts on low-level programming.

Most importantly, we assumed that all observers see the same order of writes to global
memory: if we write a node to the memory and then we make an atomic register point
to this node, everybody who sees the new value of the atomic pointer will also see the

2023-11-15 Martin Mareš: Lecture notes on data structures 13



— 9.4 Parallel data structures – Lock-free data structures

contents of the node. This is generally not true in practice — writes to memory can be
re-ordered by the hardware and different observers can see different order of writes.

To alleviate this problem, hardware usually supports memory barrier instructions. Mem-
ory operations issued before the barrier will complete earlier than memory operations
issued after the barrier.〈7〉

Locking data structures need not care, because locks implicitly include memory barri-
ers. Lock-free data structures typically require explicit barriers. Details vary between
machines.

Also, reasoning about concurrent programs can be badly broken by program optimizations
performed by compilers. Most compilers assume sequential semantics, so for example:

x = 1;
while (x == 1)

// Do something, which does not involve x.

will be compiled to an infinite loop, even though another process can modify x and thus
interrupt the loop. Another example is:

if (node_valid) {
x = node;
// Do something with x.

}

In sequential semantics, this can be rewritten as:

x = node;
if (node_valid) {

// Do something with x.
}

which is not equivalent in a concurrent program.

To avoid problems of this type, compilers must be made aware that the variables can be
accessed by other processes. For example, recent standards of the C and C++ languages
define a formal memory model with concurrency, which includes explicit types for atomic
variables.

〈7〉 This is called a full barrier. There are also weaker barriers, for example one which orders writes, but
not reads. Weaker barriers are faster than full ones.

14 Martin Mareš: Lecture notes on data structures 2023-11-15


