
— 8 Strings

8 Strings
Notation:

• Σ is an alphabet – a finite set of characters.
• Σ∗ is the set of all strings (finite sequences) over Σ.
• We will use Greek letters for string variables, Latin letters for character and numeric

variables, and typewriter letters for concrete characters. We will make no difference
between a character and a single-character string.
• |α| is the length of the string α.
• ε is the empty string — the only string of length 0.
• αβ is the concatenation of strings α and β; we have αε = εα = α for all α.
• α[i] is the i-th character of the string α; characters are indexed starting with 0.
• α[i : j] is the substring α[i]α[i + 1] . . . α[j − 1]; note that α[j] is the first character

behind the substring, so we have |α[i : j]| = j − i. If i ≥ j, the substring is empty.
Either i or j can be omitted, the beginning or the end of α is used instead.
• α[: j] is the prefix of α formed by the first j characters. A word of length n has n+1

prefixes, one of them being the empty string.
• α[i :] is the suffix of α from character number i to the end. A word of length n has
n+ 1 suffixes, one of them being the empty string.
• α[:] = α.
• α ≤ β denotes lexicographic order of strings: α ≤ β if α is a prefix of β or if there

exists k such that α[k] < β[k] and α[: k] = β[: k].

8.1 Suffix arrays
Definition: The suffix array for a string α of length n is a permutation S of the set
{0, . . . , n} such that α[S[i] :] < α[S[i+ 1] :] for all 0 ≤ i < n.

Claim: The suffix array can be constructed in time O(n).

Once we have the suffix array for a string α, we can easily locate all occurrences of a given
substring β in α. Each occurrence corresponds to a suffix of α whose prefix is β. In the
lexicographic order of all suffixes, these suffixes form a range. We can easily find the start
and end of this range using binary search on the suffix array. We need O(log |α|) steps,
each step involves string comparison with α, which takes O(|β|) time in the worst case.
This makes O(|β| log |α|) total.

2023-09-22 Martin Mareš: Lecture notes on data structures 1

— 8.1 Strings – Suffix arrays

i S[i] R[i] L[i] suffix
0 14 3 0 ε
1 8 11 3 ananas
2 10 10 2 anas
3 0 7 2 annbansbananas
4 4 4 1 ansbananas
5 12 12 0 as
6 7 14 3 bananas
7 3 6 0 bansbananas
8 9 1 2 nanas
9 11 8 1 nas

10 2 2 1 nbansbananas
11 1 9 1 nnbansbananas
12 5 5 0 nsbananas
13 13 13 1 s
14 6 0 — sbananas

Figure 8.1: Suffixes of annbansbananas and the arrays S, R , and L

Corollary: Using the suffix array for α, we can enumerate all occurrences of a substring β
in time O(|β| log |α|+ p), where p is the number of occurrences reported. Only counting
the occurrences costs O(|β| log |α|) time.

Note: With further precomputation, time complexity of searching can be improved to
O(|β|+ log |α|).

Definition: The rank array R[0 . . . n] is the inverse permutation of S. That is, R[i] tells
how many suffixes of α are lexicographically smaller than α[i :].

Note: The rank array can be trivially computed from the suffix array in time O(n).

Definition: The LCP array L[0 . . . n − 1] stores the length of the longest common prefix
of each suffix and its lexicographic successor. That is, L[i] = LCP(α[S[i] :], α[S[i+1] :]),
where LCP(γ, δ) is the maximum k such that γ[: k] = δ[: k].

Claim: Given the suffix array, the LCP array can be constructed in time O(n).

Observation: The LCP array can be easily used to find the longest common prefix of any
two suffixes α[i :] and α[j :]. We use the rank array to locate them in the lexicographic
order of all suffixes: they lie at positions i′ = R[i] and j′ = R[j] (w.l.o.g. i′ < j′). Then
we compute k = min(L[i′], L[i′ + 1], . . . , L[j′ − 1]). We claim that LCP(α[i :], α[j :]) is
exactly k.

2 Martin Mareš: Lecture notes on data structures 2023-09-22

— 8.1 Strings – Suffix arrays

First, each pair of adjacent suffixes in the range [i′, j′] has a common prefix of length
at least k, so our LCP is at least k. However, it cannot be more: we have k = L[`] for
some ` ∈ [i′, j′ − 1], so the `-th and (` + 1)-th suffix differ at position k + 1 (or one of
the suffixes ends at position k, but we can simply imagine a padding character at the
end, ordered before all ordinary characters.) Since all suffixes in the range share the
first k characters, their (k + 1)-th characters must be non-decreasing. This means that
the (k + 1)-th character of the first and the last suffix in the range must differ, too.

This suggests building a Range Minimum Query (RMQ) data structure for the array L:
it is a static data structure, which can answer queries for the position of the minimum
element in a given range of indices. One example of a RMQ structure is the 1-dimensional
range tree from section ??: it can be built in time O(n) and it answers queries in time
O(log n). There exists a better structure with build time O(n) and query time O(1).

Examples: The arrays we have defined can be used to solve the following problems in
linear time:

• Histogram of k-grams: we want to count occurrences of every substring of length k.
Occurrences of every k-gram correspond to ranges of suffixes in their lexicographic
order. These ranges can be easily identified, because we have L[. . .] < k at their
boundaries. We only have to be careful about suffixes shorter than k, which contain
no k-gram.

• The longest repeating substring of a string α: Consider two positions i and j in α.
The length of the longest common substring starting at these positions is equal to
the LCP of the suffixes α[i :] and α[j :], which is a minimum over some range in L.
So it is always equal to some value in L. It is therefore sufficient to consider only
pairs of suffixes adjacent in the lexicographic order, that is to find the maximum
value in L.

• The longest common substring of two strings α and β: We build a suffix array and
LCP array for the string α#β, using a separator # which occurs in neither α nor β.
We observe that each suffix of α#β corresponds to a suffix of either α or β. Like
in the previous problem, we want to find a pair of positions i and j such that the
LCP of the i-th and j-th suffix is maximized. We however need one i and j to come
from α and the other from β. Therefore we find the maximum L[k] such that S[k]
comes from α and S[k + 1] from β or vice versa.

Construction of the LCP array: Kasai’s algorithm
We show an algorithm which constructs the LCP array L in linear time, given the suffix
array S and the rank array R. We will use αi to denote the i-th suffix of α in lexicographic
order, that is α[S[i] :].

2023-09-22 Martin Mareš: Lecture notes on data structures 3

— 8.1 Strings – Suffix arrays

We can easily compute all L[i] explicitly: for each i, we compare the suffixes αi and αi+1

character-by-character from the start and stop at the first difference. This is obviously
correct, but slow. We will however show that most of these comparisons are redundant.

Consider two suffixes αi and αi+1 adjacent in lexicographic order. Suppose that their
LCP k = L[i] is non-zero. Then αi[1 :] and αi+1[1 :] are also suffixes of α, equal to αi′

and αj′ for some i′ < j′. Obviously, LCP(αi′ , αj′) = LCP(αi, αi+1)−1 = k−1. However,
this LCP is a minimum of the range [i′, j′] in the array L, so we must have L[i′] ≥ k− 1.

This allows us to process suffixes of α from the longest to the shortest one, always obtain-
ing the next suffix by cutting off the first character of the previous suffix. We calculate
the L of the next suffix by starting with L of the previous suffix minus one and comparing
characters from that position on:

Algorithm BuildLCP
Input: A string α of length n, its suffix array S and rank array R

1. k ← 0 / The LCP computed in previous step
2. For p = 0, . . . , n− 1: / Start of the current suffix in α

3. k ← max(k − 1, 0) / The next LCP is at least previous− 1

4. i← R[p] / Index of current suffix in sorted order
5. q ← S[i+ 1] / Start of the lexicographically next suffix in α

6. While (p+ k < n) ∧ (q + k < n) ∧ (α[p+ k] = α[q + k]):
7. k ← k + 1 / Increase k while characters match
8. L[i]← k / Record LCP in the array L

Output: LCP array L

Lemma: The algorithm BuildLCP runs in time O(n).

Proof: All operations outside the while loop take O(n) trivially. We will amortize time
spent in the while loop using k as a potential. The value of k always lies in [0, n] and it
starts at 0. It always changes by 1: it can be decreased only in step 3 and increased only
in step 7. Since there are at most n decreases, there can be at most 2n increases before
k exceeds n. So the total time spent in the while loops is also O(n). �

Construction of the suffix array by doubling
There is a simple algorithm which builds the suffix array in O(n log n) time. As before,
α will denote the input string and n its length. Suffixes will be represented by their
starting position: αi denotes the suffix α[i :].

The algorithm works in O(log n) passes, which sort suffixes by their first k characters,
where k = 20, 21, 22, . . . For simplicity, we will index passes by k.

4 Martin Mareš: Lecture notes on data structures 2023-09-22

— 8.1 Strings – Suffix arrays

Definition: For any two strings γ and δ, we define comparison of prefixes of length k:
γ =k δ if γ[: k] = δ[: k], γ ≤k δ if γ[: k] ≤ δ[: k].

The k-th pass will produce a permutation Sk on suffix positions, which sorts suffixes
by ≤k. We can easily compute the corresponding ranking array Rk, but this time we
have to be careful to assign the same rank to suffixes which are equal by =k. Formally,
Rk[i] is the number of suffixes αj such that αj <k αi.

In the first pass, we sort suffixes by their first character. Since the alphabet can be
arbitrarily large, this might require a general-purpose sorting algorithm, so we reserve
O(n log n) time for this step. The same time obviously suffices for construction of the
ranking array.

In the 2k-th pass, we get suffixes ordered by ≤k and we want to sort them by ≤2k. For
any two suffixes αi and αj , the following holds by definition of lexicographic order:

αi ≤2k αj ⇐⇒ (αi <k αj) ∨ ((αi =k αj) ∧ (αi+k ≤k αj+k)) .

Using the ranking function Rk, we can write this as lexicographic comparison of pairs
(Rk[i], Rk[i + k]) and (Rk[j], Rk[j + k]). We can therefore assign one such pair to each
suffix and sort suffixes by these pairs. Since any two pairs can be compared in constant
time, a general-purpose sorting algorithm sorts them in O(n log n) time. Afterwards, the
ranking array can be constructed in linear time by scanning the sorted order.

There remains a little problem: the suffixes αi and αj can be shorter than 2k characters.
In that case, i+ k and/or j + k can point outside α. This is easy to fix: we replace any
out-of-range suffix by the empty suffix, whose rank is always zero. (Alternatively, we can
imagine that α is padded by n more null characters, which are smaller than all regular
characters. This way, all suffixes will be well defined and ≤k will always compare exactly
k characters.)

Overall, we have O(log n) passes, each taking O(n log n) time. The whole algorithm
therefore runs in O(n log2 n) time. In each pass, we need to store only the input string α,
the ranking array from the previous step, the suffix array of the current step, and the
encoded pairs. All this fits in O(n) space.

We can improve time complexity by using Bucketsort to sort the pairs. As the pairs
contain only numbers between 0 and n, we can sort in two passes with n buckets. This
takes O(n) time, so the whole algorithm runs in O(n log n) time. Please note that the
first pass still remains O(n log n), unless we can assume that the alphabet is small enough
to index buckets. Space complexity stays linear.

2023-09-22 Martin Mareš: Lecture notes on data structures 5

