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Abstract. Programming contests with automatic evaluation of submitted solutions usually employ
a sandbox. Its job is to run the solution in a controlled environment, while enforcing security and
resource limits. We present a new construction of a sandbox, based on recently added container
features of Linux kernel. Unlike previous sandboxes, it has no measurable overhead and is able to
handle multi-threaded programs.
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1. Introduction

Many programming contests in the world employ automatic grading of programs submit-
ted by contestants. This is usually accomplished by running the submissions on batches
of input data and testing correctness of the output. The program must also finish each
test run within given time and memory limits, so that it is possible to distinguish between
correct solutions of different efficiency.

Additionally, proper security measures must be taken to avoid cheating – e.g., the pro-
gram must not be allowed to access files to steal the correct answer, kill other processes,
nor communicate over the network.

To achieve both security and limits on resources, programs are usually run within
a controlled environment called a sandbox. In recent years, most programming contests
seem to be run on Linux systems, so we will study Linux sandboxes only.

By far, the most common kind is a tracing sandbox; see, e.g., Mareš (2007) or Kolstad
(2009). It uses the ptrace system call to ask the kernel to stop the sandboxed program
whenever it is about to execute a system call. A monitoring process then examines the
arguments of the system call and either lets the call proceed, or kills the program for
committing a security violation. Time and memory limits are usually enforced by a com-
bination of system call monitoring and the standard resource limit infrastructure inside
the kernel (the setrlimit system call).

Recently, the overhead of system call tracing has received lots of attention. Merry
(2010) has shown that especially in the case of interactive tasks, the number of system
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calls can become very large and so can the time spent monitoring them. Mareš (2011) has
published a more careful analysis, which shows that while the overhead is significant, it
does not affect contest fairness much. He also evaluates several techniques for decreasing
variance of time measurements, like pinning of tasks to specific processor cores, or real-
time scheduling.

Another common problem with ptrace-based sandboxes is that they are unable to
enforce security of programs running in multiple processes of threads. At the first sight, it
seems not to matter, since programming contests rarely involve writing parallel programs.
However, the run-time environments of several programming languages automatically
create several service threads. This happens for example in the Java Virtual Machine, and
in Mono, which is an implementation of the Microsoft Common Language Infrastructure.

Ptrace-based sandboxes are also highly architecture-specific. Supporting both 32-bit
and 64-bit execution environments on x86 requires different implementations of several
aspects of the sandbox, including the list of allowable system calls. This is complicated
even further on 64-bit x86 machines, as the evaluated program may be either a 32-bit or
64-bit binary, or even a 64-bit binary using 32-bit system calls.

In this paper, we present a new design of a contest sandbox. It is based on namespaces
and control groups, which are new features of the Linux kernel. These are primarily
intended for partitioning a large machine with many processors into multiple nodes, but
have turned out to be useful for our purposes, too. The advantages of this approach include
a much smaller overhead and the ability to reliably sandbox multi-threaded programs.

In Section 2 we give a brief overview of some related state-of-the-art sandboxing tech-
niques. In Section 3 we outline our requirements of a sandbox for programming contest
environments. In Section 4 we describe the kernel features which we use for our sand-
box, followed by a description of our implementation in Section 5. Finally, we measure
the performance overhead of our sandbox in Section 6.

2. Related Work

Research on code isolation did not stop with simple tracing of system calls. Let us review
currently known sandboxing techniques first.

Merry (2009) has suggested a contest sandbox based on the Linux Security Module
infrastructure. Instead of monitoring the system calls by a user-space program, it inserts
a kernel module, which uses kernel security hooks to check parameters of system calls.
The time and memory overhead is almost zero, but Merry’s implementation does not
support multiple threads and it would be complicated to do that. The main drawback of
this approach is the instability of the security module interfaces between kernel versions –
thus the module has to be updated for every new kernel release.

It is also possible to use hardware virtualization or para-virtualization, so that the
contestant’s program can run on its own virtual machine with its own instance of the
operating system (OS). All interaction between the program and the rest of the world can
be easily limited by the configuration of the virtual machine. Unfortunately, the overhead
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of contemporary virtual machines is very high and suffers from a large variance, so it
does not seem possible to use them in a fair contest.

Software fault isolation (SFI) is a method of enforcing the secure execution of arbi-
trary code, as described in Wahbe et al. (1993). SFI is typically used to provide isolation
between modules running in the same address space (e.g., dynamically loaded plug-ins).
This approach is overkill for batch-processing type tasks used by many contests, as a
contestant’s program executes in a separate address space, enforced by the processor. It
could be applicable to interactive tasks where the context switching overheads are high.
However, many of these techniques have high overheads, and require recompilation of
code using special compilers to intercept all potentially harmful operations.

Native Client (NaCl) is another approach to sandboxing native executables proposed
by Yee et al. (2009). It implements software fault isolation, performing static analysis to
ensure that all user-supplied code can be safely executed, but also makes use of hardware
support to enforce memory protection. Once checked and loaded, user code runs at native
speed. NaCl enforces specific requirements on the executable’s structure to ensure the
static analysis is sound. Like other SFI-based approaches, binaries must be compiled
with specific compilers and libraries.

Linux also offers a security module known as seccomp, which can limit the system
calls accessible to a program. This is similar in spirit to ptrace-based approaches, but in
its original version, it was limited to allowing a very restrictive, fixed set of system calls.
Programs had to be significantly modified to execute under seccomp. More flexible forms
of seccomp have been proposed in the past, but as of the time of writing, none of these
have made it into the upstream Linux kernel.

TxBox, developed by Jana et al. (2011), supports sandboxing of arbitrary processes
through the use of operating system-level transaction support. Using transactions can
limit the impact of untrusted insecure code, as system state can be “rolled back” after
execution. This provides strong isolation properties and can work with arbitrary executa-
bles, but requires significant modifications to the OS kernel, and is not (yet) supported in
popular Linux distributions.

3. Requirements for a Contest Sandbox

Most programming contests require students to submit the source code for their solution,
which is automatically compiled and graded on a server. We wish to minimize the work
required for a contest organiser in setting up such a server, and as such we aim to support
a modern unmodified Linux distribution. We also wish to support as many languages as
is practically feasible. This precludes the use of special customized OS kernels, distribu-
tions or custom language-specific toolchains. We aim to sandbox binaries compiled using
standard compilers, and still ensure the integrity of the system.

In contest environments, the only untrusted part of the system is the program submit-
ted by the contestant. All security risks therefore involve interaction between this program
and the rest of the system. Any such interaction requires the use of system calls. Let us
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review the list of all Linux system calls and look for their potential security issues. (We
refer the reader to Kerrisk et al. (2012) for a concise description of Linux system calls
and to Kerrisk (2010) for a more comprehensive treatise on Linux system interfaces.)

We note that our list includes only the security risks known to us (including those
mentioned by Forišek (2006)) and we do not have a formal proof that it is complete. (In
fact, such a proof would necessarily include a proof of correctness of the whole Linux
kernel.)

The problematic system call groups are:

• Access to files (open, read, write, stat, . . . ). The set of files available inside
the sandbox can be easily restricted by using traditional filesystem permissions.
The sandboxed program runs under its own user and group ID and all directories
outside a designated area are made inaccessible or read-only for that user ID. Ad-
ditionally, we can change the root directory of the process to some sub-directory.
We must not forget that the amount of data written to disk by the program has to
be limited, which can be achieved using disk quotas.

• Allocation of memory (brk, mmap, mlock, . . . ). We must restrict the amount of
memory available to the program. Even if we do not want to grade memory com-
plexity of solutions, we must avoid exhaustion of system memory, which could
cause the other parts of the contest system to fail. In case of a single process,
setrlimit can be used to limit the total amount of address space available.
There is no traditional UNIX mechanism for limiting total memory consumption
of a group of processes.

• Creation of processes and threads (fork, clone, vfork). In a traditional Pas-
cal/C environment, only a single process or thread (Linux does not distinguish
between them internally) should be allowed. If we want to support multi-threaded
runtimes, we must place a limit on the total number of processes to avoid over-
loading the task scheduler. Fortunately, there is a system resource limit on the
total number of processes run by a given user. Also, a program may attempt to
evade time limits by splitting the calculation into several processes, each running
on different physical processors. To prohibit this, we have to measure the sum of
execution times of all processes within the sandbox.

• Sending of signals (kill, killpg, tkill, . . . ). Signals are asynchronous events
delivered to processes or threads. Sending of signals to our own process is harmless,
but we must forbid sending signals to other processes. Otherwise, a part of the
grader or even an unrelated process can be killed or confused. As expected, UNIX
already disallows signalling processes run by other users, so running the process
under a unique user ID suffices.

• Inter-process communication (shmget, msgget, mq_open, . . . ). There are sev-
eral APIs for sending messages and sharing parts of memory. They are controlled
by filesystem-like permissions, but a process can create a message queue or shared
memory object accessible to everybody. This could be used for cheating, so we
want to forbid such operations, or even better put a barrier between communica-
tion objects of our process and the rest of the system. Alas, there is no traditional
mechanism for that.
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• Networking (socket, bind, . . . ). All attempts to communicate over the network
must be stopped. This includes not only TCP/IP networking, but also other ad-
dress families, including local sockets addressed as a part of the filesystem. The
traditional UNIX socket API does not offer any configurable limits.

• Executing other programs (execve). The program can run other applications and
let them handle a part of the competition task. For example, it could replace calcu-
lations with big integers by calls to bc or python. While we do not necessarily
consider such tricks unfair, we would still like to support contest organizers who
do so. We do not see a way how to disallow execve, but it is easy to keep the
directory tree available inside the sandbox free of all foreign programs. Optionally,
some parts of the directory tree can be mounted with the noexec option, so that
binaries stored in them cannot be executed at all.

• Sleeping (pause, sigsuspend, wait, nanosleep, poll, . . . ). There are
multiple system calls which suspend the program until some event occurs. This
may be for example an arrival of a signal, exit of a child process, readiness of data
on a file descriptor, or simply the expiration of a timer. None of these operations
compromise security, but they can lock up the grading system for an indefinite
amount of time. To avoid that, we limit not only the execution time, but also the
time elapsed on a “wall clock” (i.e., an independent clock measuring real time).
The wall-clock time limit is usually set somewhat higher than the run-time limit,
so the program does not time out if it shares the processor with other programs.

• Accessing system time (alarm, gettimeofday, . . . ). The rules of some contests
explicitly forbid reading of system time. This limitation is hard to support without
explicit system call tracing and we do not consider it important as there are many
side-channels which can be used to estimate elapsed time. One example is the time-
stamp counter (TSC) inside the processor, which is essentially a register containing
the number of CPU cycles since system boot. We have therefore decided not to limit
time-related system calls.

• Flushing buffers to disk (sync, fsync, sync_file_range, . . . ). These opera-
tions do not compromise any secrets, but can result in added disk I/O activity. This
extra disk activity can slow down the execution of both the contestant’s program
and other processes on the system. In our opinion, imposing wall-clock time limits
is sufficient to limit the effects. For those contest administrators who are still con-
cerned, one possible work-around is to put the writeable part of the directory tree
on a RAM-disk.

4. Kernel Compartments

Traditional virtualization focuses on running multiple instances of Linux using a hy-
pervisor, whereas OS-level virtualization (or compartments) offers lower overheads and
greater timing predictability. There exist several projects to add OS-level virtualiza-
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tion into the Linux kernel, including OpenVZ1, LXC2, and the Linux-VServer project3.
Thanks to these projects, there is now sufficient infrastructure in the official Linux kernel
to support compartments for running arbitrary untrusted code.

4.1. Namespaces

The Linux kernel provides the ability to isolate groups of processes through the use of
namespaces. A namespace is a context used for specific kernel operations, such as net-
working, filesystem access or process control. Specifically, each Linux process belongs
to:

• a process namespace: this is the set of all processes which are visible to a com-
partment. An isolated process should live in its own empty process namespace,
preventing it from signalling or otherwise interfering with any other process on the
system. Process namespaces form a hierarchy when created, such that a process
is visible in its own namespace and all parent namespaces. Furthermore, when the
top-level process of a namespace exits, all other processes spawned by it are au-
tomatically terminated. (Without this feature, reliably terminating a hierarchy of
possibly malicious processes is almost impossible.)

• a networking namespace: this determines the set of networking devices available to
the compartment, which for isolated processes should be none. Although isolated
processes can still create IP sockets, they cannot use them as there are no network
devices (not even the loopback interface).

• a filesystem namespace: this defines the set of mounted filesystems that can be
accessed by processes. An isolated process may have its accessible filesystems
stripped down to the bare minimum – this may simply be a single RAM-disk. Un-
like traditional chroot jails, filesystem namespaces cannot be easily circumvented.

• an IPC namespace: this namespace protects the inter-process communication sys-
tem calls which provide shared memory and message-passing (shmget, msgget,
mq_open, . . . ). In a typical UNIX system, all processes on a machine may poten-
tially communicate. By placing an isolated process in an empty IPC namespace, it
is unable to interact with any other processes on the system using IPC.

When a new process is created using the clone system call, it can be optionally
placed into new empty namespaces in each of the above categories (or otherwise inherit
its parent’s). These can be used to effectively limit what kernel resources are accessible
to a process.

4.2. Control Groups

In the previous section, we showed that namespaces can tightly control access to kernel-
provided resources and limit interaction between processes. However, they do not en-
force any control over CPU time or memory resources. Traditional UNIX mechanisms

1http://www.openvz.org/.
2http://lxc.sourceforge.net/.
3http://www.linux-vserver.org/.
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only allow CPU and memory to be limited on a per-process basis. They do not scale for
enforcing these limits for groups of processes.

Linux has recently introduced the concept of control groups to achieve this. The ad-
ministrator can define a hierarchy of control groups and place processes at arbitrary points
within it. New processes automatically inherit their parent’s control group.

A hierarchy can have several controllers connected to it. A typical controller manages
some resource. For each group, it tracks the usage of the resource by all processes inside
the group and its subgroups. Each group can also have its own limits on the maximum
allowed usage.

The following controllers are interesting for our purposes:

• CPU set controller: processes inside a group can be tied to a subset of available
processors, processor cores or memory nodes. We want to reserve such a subset
for exclusive use by the sandbox. This helps us minimize timing noise caused by
context switches and related caching effects. This timing noise can add significant
variance to the measured execution time, as shown by Merry (2010).

• memory controller: total memory used by the group can be tracked and limited.
This includes not only explicit memory allocations by processes, but also every-
thing implicitly allocated by the kernel on behalf of these processes, for example
cached parts of files.
The accounting of memory pages is complicated by the presence of pages shared
between processes belonging to different control groups. The memory controller
accounts for them on one more-or-less randomly chosen group. Fortunately, we
have already limited inter-process communication, so the only shared pages which
can really occur are parts of commonly used files (e.g., shared libraries). When
the memory gets tight, such pages are reclaimed, so while they can affect reported
memory use of the sandbox, they should not influence memory limits.

• CPU accounting controller: this controller does not impose any limits. It just tracks
total CPU time used by processes inside the group. Unlike traditional task timers
which are based on statistical sampling, this controller works with nanosecond-
precision timestamps of context switches used internally by the process scheduler.
We periodically monitor the CPU time used and when it exceeds the limit, we
terminate all processes.

5. Implementation

We have implemented a new sandbox based on the ideas described above and checked
that it withstands all attacks on security known to us.

The sandbox has been incorporated in the Moe modular contest system (see Mareš
(2009) for an overview), but it does not depend on any other modules, so it can be
easily used in other contest systems, too. Source code and a test suite are available at
http://www.ucw.cz/moe/.

Please note that a recent Linux kernel is required (we have used version 3.2.2) and that
it must be configured to support namespaces and control groups. This is not always the



A New Contest Sandbox 107

case with default kernels supplied by Linux distributions. We refer to the documentation
accompanying the source code for more details on system configuration issues.

5.1. Features

By default, our sandbox runs in a light-weight mode, which uses only namespaces and
user identity separation to achieve security. In this mode, programs are limited to a single
process or thread only. (In fact, more processes can be allowed, but time and memory
limits then apply to each individual process, which is seldom useful.)

When use of control groups is switched on, the sandbox uses the CPU and memory
controllers to limit overall consumption of resources. In this mode, an arbitrary number
of processes and threads may be run.

Both modes support time and memory limits. There are separate time limits for real
execution time and wall clock time. It is possible to keep the program running for a while
after the time limit expires, so that the exact run time is known even for programs which
have timed out. Memory limits in the control-group mode affect the total memory usable
by both by the OS and processes, while in the light-weight mode they affect all virtual
memory allocated by the process only.

All processes are started with a custom root directory stored in a RAM-disk. This
directory contains only a set of mount points used for bind-mounting selected portions of
the system directory tree. These usually include standard libraries mounted read-only and
a read-write working directory, which holds input and output files of the program and it
is limited by a disk quota. The contents of the custom root are configurable.

Unlike ptrace-based sandboxes, we do not require any knowledge of the CPU archi-
tecture. Our sandbox uses only isolation primitives provided by the Linux kernel, and
is therefore portable to any host CPU architecture that is supported by Linux. This also
avoids the complications associated with 32-bit and 64-bit executables, described earlier.

5.2. Achieving Better Reproducibility

As Linux is a very complex system, running on inherently complex hardware, there are
an exponential number of states a system may be in when judging a solution. The state of
the system when a program commences can directly affect not only the execution time of
that program, but also its behaviour. There are a number of measures that must be taken
in order to improve the consistency of the system across executions. They are essential to
the fairness of any contest environment, not only of our sandbox. (See Mareš (2011) for
further discussion.)

Address-space randomization is a feature used to protect system binaries from code-
injection exploits. It does this by altering the address-space layout of a process each time
it is started. Although this poses no concern for correct programs, buggy programs with
memory management errors may behave inconsistently as the bugs might occur only for
certain address-space layouts. This is clearly undesirable for a programming contest, and
can be turned off by writing 0 to /proc/sys/kernel/randomize_va_space.
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Table 1

The measured execution times of a process performing 1,000,000 system calls under different sandboxing
techniques. The results are the average (and standard deviation) of 50 executions

Sandbox Execution time Slowdown against

[seconds] native

None 3.56 (0.014) –

Ptrace 9.26 (0.015) 160%

Namespaces 3.56 (0.010) 0%

Modern computer systems are designed to save energy when unutilized. One of the
ways in which this is achieved is by scaling the CPU’s frequency to best suit the cur-
rent workload. This directly affects the run-time of processes and its behaviour depends
heavily on what other activities are executing on the system. For a contest environment,
frequency scaling must be disabled to ensure consistency across executions. This can
be done on Linux by forcing the CPU to the highest available frequency, by writing
performance to /sys/devices/system/cpu/cpu*/cpufreq/scaling_
governor for each CPU on the system.

6. Evaluation

We compare the improvement in run-time of our sandbox over a traditional ptrace-based
sandbox as used in Moe. Processes that perform very few system calls have negligible im-
pact from either sandboxing approach. The overheads of ptrace-sandboxing are only seen
when many system calls are performed. The results for a process performing 1,000,000
system calls are shown in Figure 1. These experiments were performed on an Intel Core-
2 Duo T8300 CPU running at 2.4 GHz, using a 3.2.2 Linux kernel.

We measured the overhead introduced by a ptrace-sandbox to be 5.6 μs per system
call. For many batch tasks, where the number of system calls performed is in the order
of 10,000 at the most, this is negligible. However, interactive tasks which communicate
with other processes could easily demand over 1,000,000 system calls. Here, the ptrace
sandbox would add over five seconds to the evaluation time.

In contrast, we measured no overhead using our sandbox and all standard deviations
were less than 0.5% of the mean. This is not surprising, as all isolation is performed inside
the kernel using its standard mechanisms.

7. Conclusion

We have described a new type of sandbox, primarily intended for, but not limited to, use
in programming contests. Unlike other sandboxes, it is able to isolate multiple processes
and has very small overhead, while its implementation is very simple and architecture-
independent.
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Thanks to the small overhead, it gives significantly more precise execution timing for
programs involving lots of system calls, especially for interactive contest tasks.

Support for multiple processes allows us to evaluate programs written in programming
languages with multi-threaded runtimes, like Java, C#, or Erlang. Furthermore, it can be
easily used to isolate execution of compilers and graders.

We are aware that the mechanism we use is not completely secure with respect to
new kernel versions. A new kernel may include additional system calls to operate on new
types of kernel objects, which do not belong to namespaces known to the sandbox. We
however expect that such objects will be accompanied by new namespaces, so it will be
possible to trivially extend the sandbox to handle them.
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