
Olympiads in Informatics, 2007, Vol. 1, 124–130 124
© 2007 Institute of Mathematics and Informatics, Vilnius

Perspectives on Grading Systems

Martin MAREŠ

Department of Applied Mathematics, Faculty of Math and Physics, Charles University in Prague
Malostranské nám. 25, 118 00 Praha 1, Czech Republic
e-mail: mares@kam.mff.cuni.cz

Abstract. Programming contests often use automatic grading of the submitted solutions. This arti-
cle describes one such system we have developed for the Czech national programming olympiad,
the experiences gathered over the course of its development and also our perspectives on the future
of such systems.

Key words: automatic grading, mo-eval, Linux.

1. Introduction

Many programming contests in the world, including the IOI, are based on automatic
grading of the submitted solutions. This is accomplished by running them on batches
of input data and testing correctness of the output. Time and space limits are usually
enforced during the process, which allows to judge by not only the (approximation of)
the correctness of the solution, but also its time and space complexity.

Multiple such evaluation systems have been developed, but most of them are used only
in a single country and they are usually neither publicly available nor well documented.
This seems to be a waste of effort by inventing the same things over and over and also by
making mistakes somebody else has already made and understood.

This article is our modest attempt to help mapping the landscape of automatic evalu-
ation of solutions. We will describe the MO contest environment we have designed and
developed for several Czech programming contests. We will try to review the experiences
gathered over the course of its development and present our perspectives on the future of
similar systems.

The current version of the MO system can be downloaded from the web site listed in
references. At the time of this writing, it was in use for several years in the Czech national
olympiad in programming, at the Czech-Polish-Slovak preparation camps (which serve
as a training for both our contestants and the system) and also for testing of student
homeworks at our faculty. A new version is currently being finished for the Central-
European olympiad in informatics (CEOI 2007) .



Perspectives on Grading Systems 125

2. The Contest System

2.1. Building Blocks

The MO contest system consists of the following parts:
• development environment – editors, compilers, debuggers and similar tools used by

the contestants for writing the solutions. In our case, this is just an appropriately
configured Debian Linux system with a couple of packages added;

• submitter – this is the user interface of the contest system for contestants. It is
primarily used for submitting a finished task solution for grading. Currently, we use
a simple command-line utility for the national olympiad and a web-based interface
for our classes;

• evaluator (also known as a grader) – takes care of testing the solutions and impos-
ing limits. This is the core of the whole system;

• feedback – presents the results of the evaluator to the users. In IOI-type contests,
its only role is to generate the evaluation reports and rank lists, but in general it can
provide on-line feedback to contestants and/or spectators;

• auxiliary services – printing and similar. They vary from contest to contest and
there are out of scope of this paper.

In this article, we will focus on the evaluator part, but we will keep in mind its con-
nections to the other parts.

2.2. Design Goals

When we were designing our contest system, we had several basic goals in mind:
First of all, the system should be flexible. There are many types of contests ranging

from the strictly off-line nature of the IOI to those with fully on-line feedback as the ACM
ICPC. The variety of contest tasks and their types of interaction is probably even higher.
Therefore we should try to expect the unexpected and make the system highly config-
urable and modular, so that the usual tasks can be dealt with by setting the parameters,
while for the exotic ones we can plug in new modules.

Second, we should make the system secure. The submitted solutions can try to attack
the evaluation system in various ways (not necessarily intentionally). A thorough study
of known attacks has been recently published by M. Forišek. Hence the evaluator must be
robust enough and isolate the examined solution from the rest of the evaluation system.
This is an instance of the classical problem of running untrusted code, frequently studied
as a part of OS security.

Last, but not least, the evaluator should be as simple as possible (but of course not
simpler) in order to allow easy review of the whole code for security and correctness.
Because of this, we have avoided putting any user interface into the evaluator and we
prefer trivial input and output interfaces instead, which can be then presented to the user
by some other components of the contest system.

We have also decided that having the system work on Linux is enough for our pur-
poses. However, most parts of the evaluator can run on any POSIX-compliant system,
the only exception being the sandbox, which makes heavy use of special features of the
Linux kernel.



126 M. Mareš

3. The Evaluator

3.1. Sandbox

The sandbox is the core of the evaluator. Its purpose is to run a program in a controlled
environment, where both the interaction with other programs and the consumption of sys-
tem resources (time, memory and disk space) is limited. We use the sandbox for running
the solutions being evaluated, but also (with a relaxed set of restrictions) for compiling
them.

The implementation of the sandbox makes use of the ptrace interface of the Linux ker-
nel, originally designed for attaching debuggers to programs. It runs the program within
a separate process and asks the kernel to interrupt the process every time it tries to make
a system call. The sandbox then examines the parameters of the call and either lets the
program continue its execution, or terminates it. For example, allocation of memory is al-
ways allowed, opening of files is allowed after inspecting the path to the file, and creating
a new process is always forbidden.

This approach has been well studied by the secure system researchers and it has sev-
eral known drawbacks, mostly related to race conditions in multi-threaded programs (an-
other thread can modify the parameters of a syscall in the small time window between
checking the parameters by the monitor and really executing the call). Fortunately, none
of these problems apply to our case as no concurrency takes place. Another thing needing
some extra attention is that although the contestants are not expected to use any syscalls
outside the basic reading and writing of files and allocating memory, the standard libraries
they call do use much more. We can however still manage with a simple list of obviously
safe syscalls and a handful of easily verifiable exceptions.

Consumption of resources is controlled in the usual ways. We use the ulimit mech-
anism provided by the kernel whereever it is possible, that is to constrain the memory
(address space) allocated by the process and also the maximum number of file handles
used. Disk space filled by the program is limited by a disk quota for a special user ID
which is used exclusively for the sandbox.

Limitation of execution time is slightly more complex, because it is not obvious what
exactly should the time mean. The sandbox allows to measure either the user time of
the process (which is accounted by the kernel and includes only timer ticks spent in
the specific process in the user mode of the processor, that is, excluding syscalls and
interrupts) or the wall clock time (as reported by the real-time clock of the OS). In both
cases, the sandbox monitors the state of the timer periodically, kills the process when it
exceeds the allowed time and it also checks the exact value of the timer when the program
finishes successfully.

We currently use the first method for almost all tasks, since it makes the timing of
the program less dependent on other programs running on the same system (but not com-
pletely independent, see the discussion below). As the kernel measures the user time by
sampling on timer ticks, this method can be circumvented by processes which tend to
work in short time quanta and sleep in the meantime, but in our case no syscalls for
sleeping should be available.



Perspectives on Grading Systems 127

The second method is sometimes used for interactive tasks, where substantial amounts
of time can be spent by waiting for the system’s reply and a deadlock is possible when vi-
olating the protocol. Proper accounting for communication delays and deadlock detection
are obviously preferable, but they are not always easy to perform.

3.2. The Scripts

Except for the sandbox, the rest of the evaluator is implemented as a set of scripts for the
Bourne shell. This can sound strange at first, but as most of the job is just gluing small
parts together, the shell is often a better tool than a “real” programming language.

As we have already mentioned, the design is modular. We have a library of shell
functions serving as building blocks for performing the basic tasks: compilation of the
contestant’s solution, preparing inputs, running it inside a sandbox, fetching and valida-
tion of the program’s outputs. The evaluator itself (the front-end used by the organizers
to process the solutions) is then a simple script which just calls the building blocks in the
right order.

All modules also record whatever they are doing in a common log file, which can be
later examined by the contestants to understand what they have done wrong.

3.3. Configuration

All the building blocks are highly configurable. The configuration variables range from
simple settings like the table of compilers and their options for various languages, or time
and memory limits, to commands run to perform various tasks (for example verification
of correctness of program output).

The configuration files are again shell scripts. Their primary task is to set environment
variables corresponding to the configuration settings. First, a global configuration file for
the contest is loaded (it usually defines the basic parameters like the compilers and also
provides defaults for all other settings), then it can be modified by per-task configuration
and finally even individual test cases can override anything (for example, different time
limits can be used for different test cases).

3.4. Task Types

The standard building blocks know how to handle the usual types of contest tasks. If the
task is of one of these types, it is sufficient to set the corresponding parameters in the
configuration. You can of course define your own task types by providing a couple of
shell functions or scripts.

The most common task type is the input/output task. The tested program is given an
input file and it produces an output file. Alternatively, communication by standard input
and output can be used. A judge program specified in the configuration is then run to
check the correctness of the output and its exit code determines the outcome. The default
judge is just a call of the diff utility, set up to compare the file with the (unique) correct
output, ignoring differences in white space. The judge can also write messages to its
standard error output, which become a part of the evaluation log.



128 M. Mareš

Other tasks can be interactive. Such tasks are for example games, which communicate
on-line with an opponent played by the judge. In this mode, the evaluator runs the tested
program and the judge in parallel and it connects the standard output of the program to the
standard input of the judge and vice versa. The exit code and the error output of the judge
are again used to determine the outcome and log messages. We usually wrap the protocol
between the program and the judge in a library linked to the evaluated programs, so that
the contestants do not have to take care about details of the communication protocol and
proper flushing of I/O buffers.

The third group of standard tasks are the open-data tasks, in which the testing data are
public and the contestants submit only the output files, which they can obtain in whatever
way they wish. In this mode, the modules taking care of compilation and running of the
solution are replaced by a simple fetching of the submitted output file and the file is then
processed like in an I/O task.

3.5. Hacks

The flexibility of a system can be probably best judged by its applications to situations
unknown at the time of its design. Here we show a couple of such “hacks”.

At one of the previous preparation camps, we had an approximation task and the
points were determined by the quality of the approximation (as we did not know the
exact optimum, the quality was measured relative to the maximum of the best of the con-
testants’ solutions and our program). This does not fit well the structure of the evaluator,
because it is run separately for different contestants. However, we can take advantage of
the simple interface between the evaluator and the rest of the contest systems – for every
contestant, the evaluator creates a simple text file containing points and judge’s verdicts
for all test cases. Hence we can let the judge check the validity of the output and record its
value in the verdict and after evaluating all contestants plug in a simple program, which
will read all verdicts and recalculate the scores appropriately.

This method can be also used for grouping of test cases (we want to avoid awarding
points to programs which always print “No solution”, so we combine test cases of roughly
the same complexity to groups and award points only if the whole group is answered
correctly). We let the evaluator assign points for individual test cases and then a grouping
module is run, which calculates the group scores. As the grouping technique is becoming
commonplace, this module will be moved to the library of standard modules soon.

Another interesting application is pitting the solutions against each other if the task
is a two-player game. Instead of playing against a judge provided by the organizers, we
simulate a tournament in which all possible pairs of matches are played and then the
points are assigned according to the outcome of the tournament. This again does not fit
in the framework directly, but we can replace the default interface of the evaluator by a
simple program (in fact, it was something like 30 lines of shell script), which will use
the standard modules to compile the programs, run them in the respective sandboxes and
connect them together through a judge, which will make sure that everybody follows the
rules of the game and the communication protocol.



Perspectives on Grading Systems 129

4. Perspectives

Our contest environment has proven itself useful in multiple contests, but it is far from
being the final word on the subject. Several questions keep arising and the answers will
shape the future contest environments (and also future versions of ours).

4.1. Time Measurement

The computers are becoming gradually faster and the traditional one-second resolution
of time limits requires still larger input data to distinguish between efficient and slow
solutions. Also, the speed of the processor is increasing faster than the speed of disks, so
with larger inputs the proportion of time spent by reading the input increases.

The obvious solution is of course increasing the timer resolution and use sub-second
timing, but it is not so easy as it might seem, because there is a lot of noise in the time
measurements, which suddenly becomes very visible on this scale. Many different factors
contribute to the noise, the most important of them being caches (both the code and data
caches of the processor and the disk cache of the operating system). The initial contents of
caches when the program is started are unpredictable and the algorithms controlling cache
operations are usually very complex and they involve hidden variables. For example, most
data caches are set-associative and indexed by physical addresses, so the efficiency of the
caches is influenced by placement of the pages of memory allocated by the program in
the physical address space of the processor. While it is very rare for the cache effects
to cause slowdown on the order of magnitude (even this has been observed, but not in a
contest task), the effects are large enough to become a significant factor in millisecond
time measurements.

We can try to use the standard engineering techniques to deal with the noise: repeat
the measurements several times and take a minimum or an average of the values, or try
to make the initial state more predictable (e.g., by letting the evaluator pre-read the input
file to increase the probability of it being present in the disk cache; by the way, in our
evaluator this is a pleasant side-effect of copying the input file to the directory accessible
to the sandbox just before running the program). This helps to eliminate the most visible
effects, but definitely not all of them, since the physical addresses used in the different
testing runs will very likely be correlated.

An interesting approach has been recently suggested by Szymon Acedanski and tested
at CPSPC 2006 in Warszawa. Instead of measuring the time, we can count the number of
instructions executed in the user mode of the processor. This can be easily accomplished
by a simple kernel patch using the performance counters of the processor. The instruction
count corresponds to the execution time on an idealized computer and it is not influenced
by any cache effects nor other sources of noise, so the resolution can be arbitrarily fine.
The only drawback is that it could hide more implementation details than we would wish
– for example, this model makes integer addition and floating-point multiplication equally
expensive, which might not be desired.

We plan to implement this type of timing in our environment to give it more field
testing.



130 M. Mareš

4.2. Inputs and Outputs

Large input files are necessary not only because of precision of timing, but also when
we want to distinguish between similar time complexities, especially between linear and
linear-logarithmic one. As already mentioned, this leads to a big fraction of time being
spent on parsing of files and it also significantly hurts contestants using the slower I/O
libraries (for example, we have seen several tasks which are impossible to solve if one
uses C++ streams, because the stream library is unable to read the input within the time
limit).

Experienced authors of tasks often take this problem into account and they use tighter
encodings of inputs, like describing a tree by its traversal sequence. This helps in some
cases, but it is far from being a universal technique. It can also unnecessarily complicate
parsing of inputs.

One possibility (again suggested by Szymon Acedanski) is to ask the contestants to
use a special library for reading the input, which provides functions for reading values of
all standard types. These functions consume input files preprocessed to a special binary
format, which saves most of the reading and parsing overhead. However, the contestants
have to learn the new functions.

A similar effect with less complications for the contestants could be achieved by mak-
ing the evaluation system parse the input before the clock starts and providing it to the
program in global variables. The program can then access its input data by simply link-
ing with a library. This trick of course leaves out an interesting class of problems – the
streaming problems, where the input is larger than available memory and it has to be pro-
cessed sequentially. On the other hand, we can view such problems as a special case of
interactive tasks and also hide the implementation of input and output in a library.

It is not clear if this format of input is the best answer to the problem, but it is definitely
worth trying and we plan to experiment with it in our framework in the near future.

References

Forišek, M. (2006). Security of programming contest systems. In Informatics in Secondary Schools, Evolution
and Perspectives, Vilnius, Lithuania.

Mareš, M. (2007). The MO-eval web site.
http://mj.ucw.cz/mo-eval/

M. Mareš is a doctoral student at the Department of Applied Mathe-
matics of Faculty of Mathematics and Physics of the Charles Univer-
sity in Prague, a researcher at the Institute for Theoretical Computer
Science of the same faculty, organizer of several Czech programming
contests, member of the IOI Scientific Committee and a Linux hacker.


