From 9297cb765d9ed0affcf98bfdb47c7c4f25d7211e Mon Sep 17 00:00:00 2001 From: Martin Mares Date: Wed, 27 Feb 2008 21:37:09 +0100 Subject: [PATCH] More references. More! --- PLAN | 1 - adv.tex | 5 +++-- biblio.bib | 49 +++++++++++++++++++++++++++++++++++++++++++++++++ rank.tex | 17 +++++++++++++++++ 4 files changed, 69 insertions(+), 3 deletions(-) diff --git a/PLAN b/PLAN index 432e52d..3e7490d 100644 --- a/PLAN +++ b/PLAN @@ -67,7 +67,6 @@ Ranking: - the general perspective: is it only a technical trick? - ranking of permutations on general sets, relationship with integer sorting -- mention approximation of permanent Notation: diff --git a/adv.tex b/adv.tex index 8c02792..2941a98 100644 --- a/adv.tex +++ b/adv.tex @@ -32,8 +32,9 @@ Non-trivial minor-closed classes include: \para Many of the nice structural properties of planar graphs extend to -minor-closed classes, too (see \cite{diestel:gt} for a~nice overview -of this theory). The most important property is probably the characterization +minor-closed classes, too (see \cite{lovasz:minors} for a~nice survey +of this theory and \cite{diestel:gt} for some of the deeper results). +The most important property is probably the characterization of such classes in terms of their forbidden minors. \defn diff --git a/biblio.bib b/biblio.bib index fccd482..d8ba965 100644 --- a/biblio.bib +++ b/biblio.bib @@ -821,3 +821,52 @@ inproceedings{ pettie:minirand, pages={189--201}, year={1979} } + +@article{ jerrum:permanent, + title={{A Polynomial-Time Approximation Algorithm for the Permanent of a Matrix with Nonnegative Entries}}, + author={Jerrum, M. and Sinclair, A. and Vigoda, E.}, + journal={Journal of the ACM}, + volume={51}, + number={4}, + pages={671--697}, + year={2004} +} + +@article{ kasteleyn:crystals, + title={{Graph theory and crystal physics}}, + author={Kasteleyn, P. W.}, + journal={Graph Theory and Theoretical Physics}, + publisher={Academic Press, London}, + pages={43--110}, + year={1967} +} + +@article{ yuster:matching, + title={{Maximum matching in graphs with an excluded minor}}, + author={Yuster, R. and Zwick, U.}, + journal={Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms}, + pages={108--117}, + year={2007}, + publisher={Society for Industrial and Applied Mathematics Philadelphia, PA, USA} +} + +@article{ mucha:matching, + title={{Maximum Matchings in Planar Graphs via Gaussian Elimination}}, + author={Mucha, M. and Sankowski, P.}, + journal={Algorithmica}, + volume={45}, + number={1}, + pages={3--20}, + year={2006}, + publisher={Springer} +} + +@article {lovasz:minors, + title={{Graph Minor Theory}}, + author={Lov\'asz, L.}, + journal={Bulletin of the American Mathematical Society}, + volume={43}, + number={1}, + pages={75--86}, + year={2005} +} diff --git a/rank.tex b/rank.tex index 5be516d..c457a81 100644 --- a/rank.tex +++ b/rank.tex @@ -561,6 +561,23 @@ spend time $\O(n^2)$ on operations with the set~$A$, $\O(n^4)$ on matrix manipul and $\O(n^2\cdot t(n))$ by the computations of the~$N_0$'s. \qed +\rem +In cases where the efficient evaluation of the permanent is out of our reach, +we can consider using the fully-polynomial randomized approximation scheme +for the permanent described by Jerrum, Sinclair and Vigoda in \cite{jerrum:permanent}. +We then get an~approximation scheme for the ranks. + +\rem +There are also deterministic algorithms for computing the number of perfect matchings +in various special graph families (which imply polynomial-time ranking algorithms for +the corresponding families of permutations). If the graph is planar, we can +use the Kasteleyn's algorithm \cite{kasteleyn:crystals} based on Pfaffian +orientations which runs in time $\O(n^3)$. +It has been recently extended to arbitrary surfaces by Yuster and Zwick +\cite{yuster:matching} and sped up to $\O(n^{2.19})$. The counting problem +for arbitrary minor-closed classes (cf.~section \ref{minorclosed}) is still +open. + %-------------------------------------------------------------------------------- \section{Hatcheck lady and other derangements} -- 2.39.2