From 1945e3fcfc7a8306ab351a35d20c6e746513c182 Mon Sep 17 00:00:00 2001 From: Martin Mares Date: Sat, 26 Jan 2008 00:03:11 +0100 Subject: [PATCH] More Fibonacci. --- macros.tex | 6 ++++-- mst.tex | 15 +++++++++++++++ notation.tex | 1 + 3 files changed, 20 insertions(+), 2 deletions(-) diff --git a/macros.tex b/macros.tex index bedae0c..eb4d4ee 100644 --- a/macros.tex +++ b/macros.tex @@ -294,9 +294,11 @@ \medskip } -\def\proclaim#1{\advance\thmcount by 1 +\def\para{\advance\thmcount by 1 \edef\currentid{\the\chapcount.\the\seccount.\the\thmcount} -\noindent {\bo \currentid.\enspace #1.\enspace}} +\noindent {\bo \currentid.\enspace}} + +\def\proclaim#1{\para {\bo #1.\enspace}} \def\thm{\proclaim{Theorem}} \def\lemma{\proclaim{Lemma}} diff --git a/mst.tex b/mst.tex index b8396b2..9bde5ab 100644 --- a/mst.tex +++ b/mst.tex @@ -595,6 +595,7 @@ We will also keep a list of all vertex structures. During the bucket sort, each structure will contain a pointer to the corresponding bucket and the vertex list will define the order of vertices (which can be arbitrary). +\para Graph contractions are indeed a~very powerful tool and they can be used in other MST algorithms as well. The following lemma shows the gist: @@ -944,8 +945,22 @@ authors claim implementation advantages. \FIXME{Mention Thorup's Fibonacci-like heaps for integers?} +\rem +For sparse graphs, we can cross-breed this algorithm with the contractive +Bor\o{u}vka's algorithm: First perform $\log\log n$ steps of contractive +Bor\o{u}vka, which takes $\O(m\log\log n)$ time and produces a~graph~$G'$ +with $m'\le m$ and $n'\le n/\log n$. Then run Algorithm~\ref{jarniktwo} on~$G'$ +and it finishes in time $\O(m'+n'\log n') = \O(m)$. Finally combine MST edges +found by both algorithms to a~single tree as in~the Contraction lemma (\ref{contlemma}). + +\para Xyzzy. + +\FIXME{Describe the heap limitation trick and the $\O(m\beta(m,n))$ algorithm.} + + +% use \para % G has to be connected, so m=O(n) % mention Steiner trees % mention matroids diff --git a/notation.tex b/notation.tex index 429e7dd..0da0035 100644 --- a/notation.tex +++ b/notation.tex @@ -35,6 +35,7 @@ \n{$\deg_G(v)$}{degree of vertex~$v$ in graph~$G$; we omit $G$ if it is clear from context} \n{${\bb E}X$}{expected value of a~random variable~$X$} \n{${\rm Pr}[\varphi]$}{probability that a predicate~$\varphi$ is true} +\n{$\log n$}{a binary logarithm of the number~$n$} } \section{Multigraphs and contractions} -- 2.39.5