From: Martin Mares Date: Mon, 2 Apr 2007 11:51:10 +0000 (+0200) Subject: Pribyla kapitola o Strassenove algoritmu a hledani medianu. X-Git-Url: http://mj.ucw.cz/gitweb/?a=commitdiff_plain;h=dd1eb7f63e685c7b61df29c4c52e6a698c430188;p=ads1.git Pribyla kapitola o Strassenove algoritmu a hledani medianu. --- diff --git a/3-strassen/3-strassen.tex b/3-strassen/3-strassen.tex new file mode 100644 index 0000000..a500aa4 --- /dev/null +++ b/3-strassen/3-strassen.tex @@ -0,0 +1,179 @@ +\input ../lecnotes.tex +\input epsf.tex + +\prednaska{3}{Rozdìl a panuj}{(zapsali Luká¹ Hermann, Vincent Krí¾, Oto Petøík)} + +\h{Násobení matic n$\times$n} + +Nejdøíve si pøipomeneme definici násobení dvou ètvercových matic typu $n \times n$. Platí, ¾e prvek v $i$-tém øádku a $j$-tém sloupci výsledné matice $Z$ se rovná standardnímu skalárnímu souèinu $i$-tého øádku první matice $X$ a $j$-tého sloupce druhé matice $Y$. Formálnì zapsáno: + +$$ Z_{ij} = \sum_{k=1}^n X_{ik} \cdot Y_{kj} $$ + +\figure{nasobeni-matic.eps}{Násobení matic}{\epsfxsize} + +Algoritmus, který by násobil matice podle této definice, by mìl èasovou slo¾itost $ \Theta(n^3) $, proto¾e poèet prvkù ve výsledné matici je $n^2$ a jeden skalární souèin vektorù dimenze $n$ vy¾aduje lineární poèet operací. + +My se s touto èasovou slo¾itostí ov¹em nespokojíme a budeme postupovat podobnì jako pøi vylep¹ování algoritmu na násobení velkých èísel. Bez újmy na obecnosti pøedpokládejme, ¾e budeme násobit dvì matice typu $n \times n$, kde $n=2^k, k \in N$. Obì tyto matice rozdìlíme na ètvrtiny a tyto èásti postupnì oznaèíme u matice X - A, B, C a D, u matice Y - P, Q, R a S. Z definice násobení matic zjistíme, ¾e ètvrtiny výsledné matice Z mù¾eme zapsat pomocí èástí násobených matic. Levá horní ètvrtina bude odpovídat výsledku operací AP+BR, pravá horní ètvrtina bude AQ+BS, levá dolní CP+DR a zbylá CQ+DS (viz obrázek). + +\figure{nasobeni-matic-2.eps}{Násobení rozètvrcených matic}{\epsfxsize} + +\break + +Pøevedli jsme tedy problém násobení ètvercových matic øádu $n$ na násobení ètvercových matic øádu ${n \over 2}$. Tímto rozdìlovánín bychom mohli pokraèovat, dokud bychom se nedostali na matice øádu 1, jejich¾ vynásobení je triviální. Dostali jsme tedy klasický algoritmus typu {\it rozdìl a panuj}. Pomohli jsme si ale nìjak ? V ka¾dém kroku provádíme 8 násobení matic polovièního øádu a navíc konstantní poèet operací na $n^2$ prvcích. Dostáváme tedy rekurentní zápis èasové slo¾itosti: + +$$ T(n) = 8T\left({n \over 2}\right) + \O(n^2) $$ + +Po aplikaci Master Theoremu pak lehce dojdeme k závìru, ¾e slo¾itost je stále $O(n^3)$, tedy stejná jako pøi násobení matic z definice. Zdánlivì jsme si tedy nepomohli, ale stejnì jako tomu bylo u násobení velkých èísel, i teï mù¾eme zredukovat poèet násobení matic polovièního øádu, které nejvíce ovlivòuje èasovou slo¾itost algoritmu. Není to bohu¾el nic triviálního, a proto si radìji rovnou øekneme správné øe¹ení. Jedná se o Strassenùv algoritmus, který redukuje potøebný poèet násobení na 7, a je¹tì pøed tím, ne¾ si uká¾eme, jak funguje, doká¾eme si, jak nám to s èasovou slo¾itostí vlastnì pomù¾e: + +$$ T(n) = 7T\left({n \over 2}\right) + \O(n^2) \Longrightarrow \O(n^{log_2 7}) \doteq \O(n^{2.808}) $$ + +Výsledná slo¾itost Strassenova algoritmu je tedy pøibli¾nì $\O(n^{2.808})$, co¾ je sice malé, ale pro velké matice znatelné zlep¹ení oproti algoritmu vycházejícího pøímo z definice. A nyní u¾ obrázkový dùkaz tohoto algoritmu: + +% zacatek slidu z prednasky +\s{Strassenùv algoritmus: vzorce} + +\def\\{\noalign{\vskip 7pt}} + +$$ +\pmatrix{A & B \cr\\ C & D \cr} +\cdot +\pmatrix{P & Q \cr\\ R & S \cr} += +\pmatrix{ +T_1 + T_4 - T_5 + T_7 & +T_3 + T_5 \cr\\ +T_2 + T_4 & +T_1 - T_2 + T_3 + T_6 \cr +},$$ + +kde: + +$$\vbox{\halign{$#$\hfil\qquad &$#$\hfil\qquad \cr +T_1 = (A+D)\cdot(P+S) & T_5 = (A+B)\cdot S \cr\\ +T_2 = (C+D)\cdot P & T_6 = (C-A)\cdot (P+Q) \cr\\ +T_3 = A\cdot(Q-S) & T_7 = (B-D)\cdot (R+S) \cr\\ +T_4 = D\cdot(R-P) \cr +}}$$ + +\medskip + +7 násobení místo 8 $\Rightarrow$ èasová slo¾itost $\O(n^{\log_2 7}) = \O(n^{2.808})$. + +\medskip + +[Zatím nejlep¹í výsledek: $\O(n^{2.376})$ \uv{s~opravdu velkým~$\O$.}] + +\break + +\s{Strassenùv algoritmus: dùkaz} + +Do ètvercù $4 \times 4$ si napí¹eme znaky $+$ nebo $-$ podle toho, jestli se pøi výpoètu dané matice pøièítá nebo odeèítá pøíslu¹ný souèin dvou matic. Øádky znamenají matice A, B, C a D a sloupce znaèí matice P, Q, R a S. Pokud se tedy v prvním øádku a prvním sloupci vyskytuje znak +, znamená to ¾e pøièteme souèin matic A a P. Nejdøíve si spoèítáme pomocné matice $T_1$ a¾ $T_7$ a z nich pak dopoèítáme, co bude na pøíslu¹ných místech ve výsledné matici. + +\def\bbb#1{\vbox to 10pt{\vss\hbox to 10pt{\hss\tenrm #1\hss}\vss}} +\def\bb#1{\ifx#1.\bbb{$\cdot$}\else\bbb#1\fi} +\def\zz#1#2#3#4{\bb#1\bb#2\bb#3\bb#4} +\def\qq#1#2#3#4{{\offinterlineskip\vcenter{\halign{\vrule ##\vrule \cr\noalign{\hrule}\zz#1\cr\zz#2\cr\zz#3\cr\zz#4\cr\noalign{\hrule}}}}} + +$$ +T_1 = \qq{+..+}{....}{....}{+..+} \qquad +T_2 = \qq{....}{....}{+...}{+...} \qquad +T_3 = \qq{.+.-}{....}{....}{....} \qquad +T_4 = \qq{....}{....}{....}{-.+.} +$$ +$$ +T_5 = \qq{...+}{...+}{....}{....} \qquad +T_6 = \qq{--..}{....}{++..}{....} \qquad +T_7 = \qq{....}{..++}{....}{..--} +$$ + +\medskip + +\def\\{\noalign{\vskip 7pt}} +$$ +\eqalign{ +T_1 + T_4 - T_5 + T_7 &= \qq{+...}{..+.}{....}{....} = AP + BR \cr\\ +T_3 + T_5 &= \qq{.+..}{...+}{....}{....} = AQ + BS \cr\\ +T_2 + T_4 &= \qq{....}{....}{+...}{..+.} = CP + DR \cr\\ +T_1 - T_2 + T_3 + T_6 &= \qq{....}{....}{.+..}{...+} = CQ + DS \cr +} +$$ + +% konec slidu z prednasky + +Jak je vidìt, výsledná matice je tvoøena stejnými èástmi jako pøi obyèejném násobení. Tím je dùkaz dokonèen. + +\h{Hledání $k$-tého nejmen¹ího prvku (mediánu)} + +V tomto oddílu se budeme zabývat tím, jak co nejrychleji najít v jakékoli posloupnosti $n$ èísel $k$-tý nejmen¹í prvek popøípadì medián. Pro ty, co medián neznají, tu máme definici: + +\s{Definice:} Medián posloupnosti $a_1, a_2,\ldots , a_n$ je takové $m=a_i$, kde $\vert{j:a_j < m}\vert < {n \over 2}$ a $\vert{j:a_j > m}\vert < {n \over 2}$. kde $i,j \in {1, 2,\ldots , n} $ + +Nejjednodu¹¹ím øe¹ením by urèitì bylo celou posloupnost nejdøíve setøídit a pak u¾ jednodu¹e vyhmátnout po¾adovaný prvek. To bychom dokázali v celkem slu¹ném èase $\O(n\ log(n))$, ale u¾ teï mù¾eme prozradit, ¾e to jde v èase $\O(n)$. Jak? + +Pou¾ívat budeme metodu {\it rozdìl a panuj}. Nìjakým zpùsobem si zvolíme jeden prvek posloupnosti, který nazveme {\it pivot}. Poté rozdìlíme zadanou posloupnost na tøi disjunktní mno¾iny. Do první dáme v¹echny prvky men¹í ne¾ pivot, do druhé stejné jako pivot a do tøetí vìt¹í ne¾ pivot. Tímto máme zaji¹tìno, ¾e prvky z první mno¾iny jsou urèitì men¹í ne¾ prvky z druhé a ty ne¾ prvky z tøetí. + +O tom, jak jsou prvky uspoøádány uvnitø tìchto mno¾in ale nic nevíme. V posledním kroku na¹eho algoritmu se pak rozhodneme, na kterou mno¾inu ná¹ algoritmus rekurzivnì zavoláme. Pokud je $k$ men¹í ne¾ velikost první mno¾iny, pokraèujeme v první mno¾inì, pokud je $k$ men¹í ne¾ souèet velikostí první a druhé mno¾iny, pak hledaným prvkem je právì vybraný pivot a algoritmus skonèí, a nakonec pokud ani jedna podmínka splnìna nebyla, pustíme se do hledání v tøetí mno¾inì, ov¹em u¾ nehledáme $k$-tý nejmen¹í prvek, ale $l$-tý, kde $l$ se rovná $k$ minus velikost prvních dvou mno¾in. Pro vìt¹í názornost zapí¹eme tento algoritmus schematicky: + + +{\bo Select($k,X$)} +\algo +\:if $\vert M\vert \leq 1 \Rightarrow $ triviální o¹etøení +\:zvolíme pivota $p \in X$ +\:$M = \{x \in X; x < p\}, P = \{x \in X; x = p\}, V = \{x \in X; x > p\}$ +\:if $k \leq \vert M \vert \Rightarrow $ return {\bo Select($k,M$)} +\:else if $k \leq\vert M\vert +\vert P\vert \Rightarrow $ return $p$ +\:else return \bo{Select($k-\vert M \vert -\vert P\vert , V$)} +\endalgo + +Na první pohled je vidìt, ¾e se algoritmus zastaví (vstup se v¾dy zmen¹í alespoò o 1) a ¾e vydá v¾dy správný výsledek. Jak je to ov¹em s èasovou slo¾itostí? Rozdìlení do mno¾in a podmínky v druhém a tøetím kroku mají lineární slo¾itost, èemu¾ se nevyhneme. Pøi ne¹»astné volbì pivota se nám mù¾e stát, ¾e poèet rekurencí mù¾e být a¾ $n$, tedy celková slo¾itost v nejhor¹ím pøípadì je $\O(n^2)$, èím¾ jsme si oproti prostému setøídìní je¹tì pohor¹ili. Co s tím? Jak je vidìt, velmi dùle¾itá je volba pivota. Tu mù¾eme provést nìkolika zpùsoby: + +a) Pivot by se v setøídìné posloupnosti vyskytoval uprostøed, vstup by se tedy stále pùlil. Èasovou slo¾itost vypoèteme z rekurentního zápisu: + +$$ T(n) = T\left({n \over 2}\right) + \O(n) \Longrightarrow \O(n) $$ + +To by bylo sice skvìlé, ale nalezení takového pivota je vlastnì vyøe¹ení úlohy hledání mediánu, o co¾ se sna¾íme. Tedy jsme si vùbec nepomohli. + +\break + +b) Pivot by se v setøídìné posloupnosti nacházel v prostøedních dvou ètvrtinách. Tím bychom v ka¾dém kroku urèitì odstranili mno¾inu velikosti ètvrtiny vstupu. Èasová slo¾itost tohoto øe¹ení by byla: + +$$ T(n) = T\left({3 \over 4}n\right) + \O(n) \Longrightarrow \O(n) $$ + +Tímto bychom tedy také dosáhli lineární èasové slo¾itosti. Ale jak vybrat pivota tak, aby se nacházel v prostøedních dvou ètvrtinách, aby nám nám to nepokazilo lineární slo¾itost? + +c) Pivot bude v¾dy prostøední prvek zadané posloupnosti. V tomto pøípadì je zøejmé, ¾e existují urèité vstupy, pro které bude èasová slo¾itost $\O(n^2)$, ale v prùmìrném pøípadì, který je¹tì neumíme analyzovat, bude èasová slo¾itost $\O(n)$. + +d) Pivot bude náhodnì zvolený prvek zadané posloupnosti. Tímto dosáhneme nìèeho podobného jako v pøedchozím pøípadì, ale u¾ nebude existovat vstup, pro který by èasová slo¾itost byla $\O(n^2)$, jen nìkteré prùbìhy tohoto algoritmu na rùzných vstupech budou trvat takto dlouho. Prùmìrná èasová slo¾itost je tedy zase $O(n)$. + +My se ale nespokojíme pouze s lineární prùmìrnou èasovou slo¾itostí. Chceme dosáhnout lineární slo¾itosti i v nejhor¹ím pøípadì. Ne¾ si ale prozradíme takové øe¹ení, rozmyslíme si, ¾e u¾ teï známe 3 èasové slo¾itosti, i kdy¾ ne v¹echny je¹tì umíme analyzovat. Je to èasová slo¾itost v nejhor¹ím pøídadì, v prùmìrném pøípadì pøes v¹echny vstupy a v prùmìrném pøípadì pøes v¹echny bìhy programu. V¹imnìte si hlavnì rozdílu posledních dvou. + +A nyní u¾ slibované øe¹ení s lineární nejhor¹í èasovou slo¾itostí. Vyjdeme z mo¾nosti b), tedy pokusíme se najít takového pivota, který by na pøí¹tí krok zaruèenì omezil velikost analyzované mno¾iny. Dosáhneme toho tímto algoritmem: + +{\bo Volba pivota} +\algo +\:rozdìlíme vstup na pìtice - $\O(n)$ +\:spoèteme medián ka¾dé pìtice - $\O(n)$ +\:spoèteme medián mediánù pìtic = Select(${n \over 10}$, {mediány pìtic}) a to je pivot +\endalgo + +Abychom dokázali, ¾e tento algoritmus bude mít opravdu lineární èasovou slo¾itost, musíme si nejdøíve dokázat následující lemma: + +\s{Lemma:} V ka¾dém kroku vypadne alespoò ${3 \over 10}n$ prvkù. + +\proof Ten provedeme obrázkem. Pøedstavme si vybrané pìtice seøazené podle velikosti od nejvìt¹ího prvku a zakresleme je do sloupcù. Jejich mediány tedy vyplòují prostøední øadu. Tyto pìtice pak seøaïme podle velikosti jejich mediánù (nejmen¹í vlevo). Hledaný pivot se tedy nachází (pokud pøedpokládáme pro jednoduchost lichý poèet pìtic) pøesnì uprostøed. O prvcích nad pivotem a napravo od nìj mù¾eme urèitì øíct, ¾e jsou vìt¹í nebo rovny pivotu, prvky pod ním a nalevo od nìj jsou zase urèitì men¹í nebo rovny pivotu. + +Podle konstrukce algoritmu tedy zaruèenì vypadne jedna nebo druhá skupina prvkù. Obì tyto skupiny pøitom obsahují, jak je vidìt z obrázku, alespoò ${3 \over 10}n$ prvkù. + +\figure{petice.eps}{Pìtice}{125mm} + +Nyní u¾ se tedy mù¾eme pustit do výpoètu èasové slo¾itosti. V ka¾dém kroku funkce zavolá sama sebe nejdøíve na vstup velikosti ${n \over 5}$ a poté na vstup velikosti nejvý¹e ${7 \over 10}n$. Ostatní operace zùstávají lineární. Nejhor¹í èasovou slo¾itost tedy mù¾eme zapsat rekuretním vzorcem: + +$$ T(n) = \O(n) + T\left({n \over 5}\right) + T\left({7 \over 10}n\right) $$ + +Tento rekurentní vzorec ale zatím neumíme obecnì øe¹it. Mohli bychom ho postupnì rozepsat, ale trvalo by dlouho, ne¾ bychom z toho nìco vykoukali. Lep¹í bude rovnou dokázat, ¾e tento rekurentní vzorec implikuje lineární slo¾itost. Zkusíme tedy dosadit $T(n) = c.n$: + +$$ cn = n + {cn \over 5} + {7 \over 10}cn \Leftrightarrow c = 10 $$ + +Tímto jsme tedy dokázali, ¾e èasovná slo¾itost tohoto algoritmu v nejhor¹ím pøípadì je $\O(n)$. + +\bye diff --git a/3-strassen/Makefile b/3-strassen/Makefile new file mode 100644 index 0000000..bc44cc4 --- /dev/null +++ b/3-strassen/Makefile @@ -0,0 +1,3 @@ +P=3-strassen + +include ../Makerules diff --git a/3-strassen/nasobeni-matic-2.eps b/3-strassen/nasobeni-matic-2.eps new file mode 100644 index 0000000..4d705b9 Binary files /dev/null and b/3-strassen/nasobeni-matic-2.eps differ diff --git a/3-strassen/nasobeni-matic.eps b/3-strassen/nasobeni-matic.eps new file mode 100644 index 0000000..0f285e3 Binary files /dev/null and b/3-strassen/nasobeni-matic.eps differ diff --git a/3-strassen/petice.eps b/3-strassen/petice.eps new file mode 100644 index 0000000..8faaf16 --- /dev/null +++ b/3-strassen/petice.eps @@ -0,0 +1,1255 @@ +%!PS-Adobe-3.0 EPSF-3.0 +%%BoundingBox: -48 621 487 773 +%%LanguageLevel: 1 +%%Creator: CorelDRAW 12 +%%Title: nasobenie_matic3.eps +%%CreationDate: Thu Mar 29 19:59:29 2007 +%%DocumentProcessColors: Black +%%DocumentSuppliedResources: (atend) +%%EndComments +%%BeginProlog +/AutoFlatness false def +/AutoSteps 0 def +/CMYKMarks true def +/UseLevel 1 def +%Build: CorelDRAW Version 12.154 +%Color profile: Disabled +/CorelIsEPS true def +%%BeginResource: procset wCorel12Dict 12.0 0 +/wCorel12Dict 300 dict def wCorel12Dict begin +% Copyright (c)1992-2003 Corel Corporation +% All rights reserved. v12 r0.0 +/bd{bind def}bind def/ld{load def}bd/xd{exch def}bd/_ null def/rp{{pop}repeat} +bd/@cp/closepath ld/@gs/gsave ld/@gr/grestore ld/@np/newpath ld/Tl/translate ld +/$sv 0 def/@sv{/$sv save def}bd/@rs{$sv restore}bd/spg/showpage ld/showpage{} +bd currentscreen/@dsp xd/$dsp/@dsp def/$dsa xd/$dsf xd/$sdf false def/$SDF +false def/$Scra 0 def/SetScr/setscreen ld/@ss{2 index 0 eq{$dsf 3 1 roll 4 -1 +roll pop}if exch $Scra add exch load SetScr}bd/SepMode_5 where{pop}{/SepMode_5 +0 def}ifelse/CorelIsSeps where{pop}{/CorelIsSeps false def}ifelse +/CorelIsInRIPSeps where{pop}{/CorelIsInRIPSeps false def}ifelse/CorelIsEPS +where{pop}{/CorelIsEPS false def}ifelse/CurrentInkName_5 where{pop} +{/CurrentInkName_5(Composite)def}ifelse/$ink_5 where{pop}{/$ink_5 -1 def} +ifelse/$c 0 def/$m 0 def/$y 0 def/$k 0 def/$t 1 def/$n _ def/$o 0 def/$fil 0 +def/$C 0 def/$M 0 def/$Y 0 def/$K 0 def/$T 1 def/$N _ def/$O 0 def/$PF false +def/s1c 0 def/s1m 0 def/s1y 0 def/s1k 0 def/s1t 0 def/s1n _ def/$bkg false def +/SK 0 def/SM 0 def/SY 0 def/SC 0 def/$op false def matrix currentmatrix/$ctm xd +/$ptm matrix def/$ttm matrix def/$stm matrix def/$ffpnt true def +/CorelDrawReencodeVect[16#0/grave 16#5/breve 16#6/dotaccent 16#8/ring +16#A/hungarumlaut 16#B/ogonek 16#C/caron 16#D/dotlessi 16#27/quotesingle +16#60/grave 16#7C/bar 16#80/Euro +16#82/quotesinglbase/florin/quotedblbase/ellipsis/dagger/daggerdbl +16#88/circumflex/perthousand/Scaron/guilsinglleft/OE +16#91/quoteleft/quoteright/quotedblleft/quotedblright/bullet/endash/emdash +16#98/tilde/trademark/scaron/guilsinglright/oe 16#9F/Ydieresis +16#A1/exclamdown/cent/sterling/currency/yen/brokenbar/section +16#a8/dieresis/copyright/ordfeminine/guillemotleft/logicalnot/minus/registered/macron +16#b0/degree/plusminus/twosuperior/threesuperior/acute/mu/paragraph/periodcentered +16#b8/cedilla/onesuperior/ordmasculine/guillemotright/onequarter/onehalf/threequarters/questiondown +16#c0/Agrave/Aacute/Acircumflex/Atilde/Adieresis/Aring/AE/Ccedilla +16#c8/Egrave/Eacute/Ecircumflex/Edieresis/Igrave/Iacute/Icircumflex/Idieresis +16#d0/Eth/Ntilde/Ograve/Oacute/Ocircumflex/Otilde/Odieresis/multiply +16#d8/Oslash/Ugrave/Uacute/Ucircumflex/Udieresis/Yacute/Thorn/germandbls +16#e0/agrave/aacute/acircumflex/atilde/adieresis/aring/ae/ccedilla +16#e8/egrave/eacute/ecircumflex/edieresis/igrave/iacute/icircumflex/idieresis +16#f0/eth/ntilde/ograve/oacute/ocircumflex/otilde/odieresis/divide +16#f8/oslash/ugrave/uacute/ucircumflex/udieresis/yacute/thorn/ydieresis]def +/L2?/languagelevel where{pop languagelevel 2 ge}{false}ifelse def/Comp?{ +/LumSepsDict where{pop false}{/AldusSepsDict where{pop false}{1 0 0 0 @gs +setcmykcolor currentcmykcolor @gr add add add 0 ne 0 1 0 0 @gs setcmykcolor +currentcmykcolor @gr add add add 0 ne 0 0 1 0 @gs setcmykcolor currentcmykcolor +@gr add add add 0 ne 0 0 0 1 @gs setcmykcolor currentcmykcolor @gr add add add +0 ne and and and}ifelse}ifelse}bd/@PL{/LV where{pop LV 2 ge L2? not and{@np +/Courier findfont 12 scalefont setfont 72 144 m +(The PostScript level set in the Corel application is higher than)show 72 132 m +(the PostScript level of this device. Change the PS Level in the Corel)show 72 +120 m(application to Level 1 by selecting the PostScript tab in the print)show +72 108 m(dialog, and selecting Level 1 from the Compatibility drop down list.) +show flush spg quit}if}if}bd/@BeginSysCorelDict{systemdict/Corel30Dict known +{systemdict/Corel30Dict get exec}if systemdict/CorelLexDict known{1 systemdict +/CorelLexDict get exec}if}bd/@EndSysCorelDict{systemdict/Corel30Dict known +{end}if/EndCorelLexDict where{pop EndCorelLexDict}if}bd AutoFlatness{/@ifl{dup +currentflat exch sub 10 gt{ +([Error: PathTooComplex; OffendingCommand: AnyPaintingOperator]\n)print flush +@np exit}{currentflat 2 add setflat}ifelse}bd/@fill/fill ld/fill{currentflat{ +{@fill}stopped{@ifl}{exit}ifelse}bind loop setflat}bd/@eofill/eofill ld/eofill +{currentflat{{@eofill}stopped{@ifl}{exit}ifelse}bind loop setflat}bd/@clip +/clip ld/clip{currentflat{{@clip}stopped{@ifl}{exit}ifelse}bind loop setflat} +bd/@eoclip/eoclip ld/eoclip{currentflat{{@eoclip}stopped{@ifl}{exit}ifelse} +bind loop setflat}bd/@stroke/stroke ld/stroke{currentflat{{@stroke}stopped +{@ifl}{exit}ifelse}bind loop setflat}bd}if L2?{/@ssa{true setstrokeadjust}bd}{ +/@ssa{}bd}ifelse/d/setdash ld/j/setlinejoin ld/J/setlinecap ld/M/setmiterlimit +ld/w/setlinewidth ld/O{/$o xd}bd/R{/$O xd}bd/W/eoclip ld/c/curveto ld/C/c ld/l +/lineto ld/L/l ld/rl/rlineto ld/m/moveto ld/n/newpath ld/N/newpath ld/P{11 rp} +bd/u{}bd/U{}bd/A{pop}bd/q/@gs ld/Q/@gr ld/&{}bd/@j{@sv @np}bd/@J{@rs}bd/g{1 +exch sub/$k xd/$c 0 def/$m 0 def/$y 0 def/$t 1 def/$n _ def/$fil 0 def}bd/G{1 +sub neg/$K xd _ 1 0 0 0/$C xd/$M xd/$Y xd/$T xd/$N xd}bd/k{1 index type +/stringtype eq{/$t xd/$n xd}{/$t 0 def/$n _ def}ifelse/$k xd/$y xd/$m xd/$c xd +/$fil 0 def}bd/K{1 index type/stringtype eq{/$T xd/$N xd}{/$T 0 def/$N _ def} +ifelse/$K xd/$Y xd/$M xd/$C xd}bd/x/k ld/X/K ld/sf{1 index type/stringtype eq{ +/s1t xd/s1n xd}{/s1t 0 def/s1n _ def}ifelse/s1k xd/s1y xd/s1m xd/s1c xd}bd/i{ +dup 0 ne{setflat}{pop}ifelse}bd/v{4 -2 roll 2 copy 6 -2 roll c}bd/V/v ld/y{2 +copy c}bd/Y/y ld/@w{matrix rotate/$ptm xd matrix scale $ptm dup concatmatrix +/$ptm xd 1 eq{$ptm exch dup concatmatrix/$ptm xd}if 1 w}bd/@g{1 eq dup/$sdf xd +{/$scp xd/$sca xd/$scf xd}if}bd/@G{1 eq dup/$SDF xd{/$SCP xd/$SCA xd/$SCF xd} +if}bd/@D{2 index 0 eq{$dsf 3 1 roll 4 -1 roll pop}if 3 copy exch $Scra add exch +load SetScr/$dsp xd/$dsa xd/$dsf xd}bd/$ngx{$SDF{$SCF SepMode_5 0 eq{$SCA} +{$dsa}ifelse $SCP @ss}if}bd/@MN{2 copy le{pop}{exch pop}ifelse}bd/@MX{2 copy ge +{pop}{exch pop}ifelse}bd/InRange{3 -1 roll @MN @MX}bd/@sqr{dup 0 rl dup 0 exch +rl neg 0 rl @cp}bd/currentscale{1 0 dtransform matrix defaultmatrix idtransform +dup mul exch dup mul add sqrt 0 1 dtransform matrix defaultmatrix idtransform +dup mul exch dup mul add sqrt}bd/@unscale{}bd/wDstChck{2 1 roll dup 3 -1 roll +eq{1 add}if}bd/@dot{dup mul exch dup mul add 1 exch sub}bd/@lin{exch pop abs 1 +exch sub}bd/cmyk2rgb{3{dup 5 -1 roll add 1 exch sub dup 0 lt{pop 0}if exch} +repeat pop}bd/rgb2cmyk{3{1 exch sub 3 1 roll}repeat 3 copy @MN @MN 3{dup 5 -1 +roll sub neg exch}repeat}bd/rgb2g{2 index .299 mul 2 index .587 mul add 1 index +.114 mul add 4 1 roll pop pop pop}bd/WaldoColor_5 where{pop}{/SetRgb +/setrgbcolor ld/GetRgb/currentrgbcolor ld/SetGry/setgray ld/GetGry/currentgray +ld/SetRgb2 systemdict/setrgbcolor get def/GetRgb2 systemdict/currentrgbcolor +get def/SetHsb systemdict/sethsbcolor get def/GetHsb systemdict +/currenthsbcolor get def/rgb2hsb{SetRgb2 GetHsb}bd/hsb2rgb{3 -1 roll dup floor +sub 3 1 roll SetHsb GetRgb2}bd/setcmykcolor where{pop/LumSepsDict where{pop +/SetCmyk_5{LumSepsDict/setcmykcolor get exec}def}{/AldusSepsDict where{pop +/SetCmyk_5{AldusSepsDict/setcmykcolor get exec}def}{/SetCmyk_5/setcmykcolor ld +}ifelse}ifelse}{/SetCmyk_5{cmyk2rgb SetRgb}bd}ifelse/currentcmykcolor where{ +pop/GetCmyk/currentcmykcolor ld}{/GetCmyk{GetRgb rgb2cmyk}bd}ifelse +/setoverprint where{pop}{/setoverprint{/$op xd}bd}ifelse/currentoverprint where +{pop}{/currentoverprint{$op}bd}ifelse/@tc_5{5 -1 roll dup 1 ge{pop}{4{dup 6 -1 +roll mul exch}repeat pop}ifelse}bd/@trp{exch pop 5 1 roll @tc_5}bd +/setprocesscolor_5{SepMode_5 0 eq{SetCmyk_5}{0 4 $ink_5 sub index exch pop 5 1 +roll pop pop pop pop SepsColor true eq{$ink_5 3 gt{1 sub neg SetGry}{0 0 0 4 +$ink_5 roll SetCmyk_5}ifelse}{1 sub neg SetGry}ifelse}ifelse}bd +/findcmykcustomcolor where{pop}{/findcmykcustomcolor{5 array astore}bd}ifelse +/Corelsetcustomcolor_exists false def/setcustomcolor where{pop +/Corelsetcustomcolor_exists true def}if CorelIsSeps true eq CorelIsInRIPSeps +false eq and{/Corelsetcustomcolor_exists false def}if +Corelsetcustomcolor_exists false eq{/setcustomcolor{exch aload pop SepMode_5 0 +eq{pop @tc_5 setprocesscolor_5}{CurrentInkName_5 eq{4 index}{0}ifelse 6 1 roll +5 rp 1 sub neg SetGry}ifelse}bd}if/@scc_5{dup type/booleantype eq{dup +currentoverprint ne{setoverprint}{pop}ifelse}{1 eq setoverprint}ifelse dup _ eq +{pop setprocesscolor_5 pop}{findcmykcustomcolor exch setcustomcolor}ifelse +SepMode_5 0 eq{true}{GetGry 1 eq currentoverprint and not}ifelse}bd/colorimage +where{pop/ColorImage{colorimage}def}{/ColorImage{/ncolors xd/$multi xd $multi +true eq{ncolors 3 eq{/daqB xd/daqG xd/daqR xd pop pop exch pop abs{daqR pop +daqG pop daqB pop}repeat}{/daqK xd/daqY xd/daqM xd/daqC xd pop pop exch pop abs +{daqC pop daqM pop daqY pop daqK pop}repeat}ifelse}{/dataaq xd{dataaq ncolors +dup 3 eq{/$dat xd 0 1 $dat length 3 div 1 sub{dup 3 mul $dat 1 index get 255 +div $dat 2 index 1 add get 255 div $dat 3 index 2 add get 255 div rgb2g 255 mul +cvi exch pop $dat 3 1 roll put}for $dat 0 $dat length 3 idiv getinterval pop}{ +4 eq{/$dat xd 0 1 $dat length 4 div 1 sub{dup 4 mul $dat 1 index get 255 div +$dat 2 index 1 add get 255 div $dat 3 index 2 add get 255 div $dat 4 index 3 +add get 255 div cmyk2rgb rgb2g 255 mul cvi exch pop $dat 3 1 roll put}for $dat +0 $dat length ncolors idiv getinterval}if}ifelse}image}ifelse}bd}ifelse +/setcmykcolor{1 5 1 roll _ currentoverprint @scc_5/$ffpnt xd}bd +/currentcmykcolor{GetCmyk}bd/setrgbcolor{rgb2cmyk setcmykcolor}bd +/currentrgbcolor{currentcmykcolor cmyk2rgb}bd/sethsbcolor{hsb2rgb setrgbcolor} +bd/currenthsbcolor{currentrgbcolor rgb2hsb}bd/setgray{dup dup setrgbcolor}bd +/currentgray{currentrgbcolor rgb2g}bd/InsideDCS false def/IMAGE/image ld/image +{InsideDCS{IMAGE}{/EPSDict where{pop SepMode_5 0 eq{IMAGE}{dup type/dicttype eq +{dup/ImageType get 1 ne{IMAGE}{dup dup/BitsPerComponent get 8 eq exch +/BitsPerComponent get 1 eq or currentcolorspace 0 get/DeviceGray eq and{ +CurrentInkName_5(Black)eq{IMAGE}{dup/DataSource get/TCC xd/Height get abs{TCC +pop}repeat}ifelse}{IMAGE}ifelse}ifelse}{2 index 1 ne{CurrentInkName_5(Black)eq +{IMAGE}{/TCC xd pop pop exch pop abs{TCC pop}repeat}ifelse}{IMAGE}ifelse} +ifelse}ifelse}{IMAGE}ifelse}ifelse}bd}ifelse/WaldoColor_5 true def/$fm 0 def +/wfill{1 $fm eq{fill}{eofill}ifelse}bd/@Pf{@sv SepMode_5 0 eq $Psc 0 ne or +$ink_5 3 eq or{0 J 0 j[]0 d $t $c $m $y $k $n $o @scc_5 pop $ctm setmatrix 72 +1000 div dup matrix scale dup concat dup Bburx exch Bbury exch itransform +ceiling cvi/Bbury xd ceiling cvi/Bburx xd Bbllx exch Bblly exch itransform +floor cvi/Bblly xd floor cvi/Bbllx xd $Prm aload pop $Psn load exec}{1 SetGry +wfill}ifelse @rs @np}bd/F{matrix currentmatrix $sdf{$scf $sca $scp @ss}if $fil +1 eq{CorelPtrnDoFill}{$fil 2 eq{@ff}{$fil 3 eq{@Pf}{$fil 4 eq +{CorelShfillDoFill}{$t $c $m $y $k $n $o @scc_5{wfill}{@np}ifelse}ifelse} +ifelse}ifelse}ifelse $sdf{$dsf $dsa $dsp @ss}if setmatrix}bd/f{@cp F}bd/S{ +matrix currentmatrix $ctm setmatrix $SDF{$SCF $SCA $SCP @ss}if $T $C $M $Y $K +$N $O @scc_5{matrix currentmatrix $ptm concat stroke setmatrix}{@np}ifelse $SDF +{$dsf $dsa $dsp @ss}if setmatrix}bd/s{@cp S}bd/B{@gs F @gr S}bd/b{@cp B}bd/_E{ +5 array astore exch cvlit xd}bd/@cc{currentfile $dat readhexstring pop}bd/@sm{ +/$ctm $ctm currentmatrix def}bd/@E{/Bbury xd/Bburx xd/Bblly xd/Bbllx xd}bd/@c{ +@cp}bd/@P{/$fil 3 def/$Psn xd/$Psc xd array astore/$Prm xd}bd/tcc{@cc}def/@B{ +@gs S @gr F}bd/@b{@cp @B}bd/@sep{CurrentInkName_5(Composite)eq{/$ink_5 -1 def} +{CurrentInkName_5(Cyan)eq{/$ink_5 0 def}{CurrentInkName_5(Magenta)eq{/$ink_5 1 +def}{CurrentInkName_5(Yellow)eq{/$ink_5 2 def}{CurrentInkName_5(Black)eq +{/$ink_5 3 def}{/$ink_5 4 def}ifelse}ifelse}ifelse}ifelse}ifelse}bd/@whi{@gs +-72000 dup m -72000 72000 l 72000 dup l 72000 -72000 l @cp 1 SetGry fill @gr} +bd/@neg{[{1 exch sub}/exec cvx currenttransfer/exec cvx]cvx settransfer @whi} +bd/deflevel 0 def/@sax{/deflevel deflevel 1 add def}bd/@eax{/deflevel deflevel +dup 0 gt{1 sub}if def deflevel 0 gt{/eax load}{eax}ifelse}bd/eax{{exec}forall} +bd/@rax{deflevel 0 eq{@rs @sv}if}bd systemdict/pdfmark known not{/pdfmark +/cleartomark ld}if/wclip{1 $fm eq{clip}{eoclip}ifelse}bd +% Copyright (c)1992-2003 Corel Corporation +% All rights reserved. v12 r0.0 +/z{exch findfont exch scalefont setfont}bd/ZB{9 dict dup begin 4 1 roll +/FontType 3 def/FontMatrix xd/FontBBox xd/Encoding 256 array def 0 1 255{ +Encoding exch/.notdef put}for/CharStrings 256 dict def CharStrings/.notdef{} +put/Metrics 256 dict def Metrics/.notdef 3 -1 roll put/BuildChar{exch dup +/$char exch/Encoding get 3 index get def dup/Metrics get $char get aload pop +setcachedevice begin Encoding exch get CharStrings exch get end exec}def end +definefont pop}bd/ZBAddChar{findfont begin dup 4 1 roll dup 6 1 roll Encoding 3 +1 roll put CharStrings 3 1 roll put Metrics 3 1 roll put end}bd/Z{findfont dup +maxlength 2 add dict exch dup{1 index/FID ne{3 index 3 1 roll put}{pop pop} +ifelse}forall pop dup dup/Encoding get 256 array copy dup/$fe xd/Encoding exch +put dup/Fontname 3 index put 3 -1 roll dup length 0 ne{0 exch{dup type 0 type +eq{exch pop}{$fe exch 2 index exch put 1 add}ifelse}forall pop}if dup 256 dict +dup/$met xd/Metrics exch put dup/FontMatrix get 0 get 1000 mul 1 exch div 3 +index length 256 eq{0 1 255{dup $fe exch get dup/.notdef eq{pop pop}{5 index 3 +-1 roll get 2 index mul $met 3 1 roll put}ifelse}for}if pop definefont pop pop +}bd/CorelIsValidCharpath{pathbbox 3 -1 roll sub abs 0.5 ge 3 1 roll sub abs 0.5 +ge and}bd/@ftx{{currentpoint 3 -1 roll(0)dup 3 -1 roll 0 exch put dup @gs true +charpath $ctm setmatrix CorelIsValidCharpath{@@txt}if @gr @np stringwidth pop 3 +-1 roll add exch m}forall}bd/@ft{matrix currentmatrix exch $sdf{$scf $sca $scp +@ss}if $fil 1 eq{/@@txt/@pf ld @ftx}{$fil 2 eq{/@@txt/@ff ld @ftx}{$fil 3 eq +{/@@txt/@Pf ld @ftx}{$fil 4 eq{/@@txt/CorelShfillDoFill ld @ftx}{$t $c $m $y $k +$n $o @scc_5{show}{pop}ifelse}ifelse}ifelse}ifelse}ifelse $sdf{$dsf $dsa $dsp +@ss}if setmatrix}bd/@st{matrix currentmatrix exch $SDF{$SCF $SCA $SCP @ss}if $T +$C $M $Y $K $N $O @scc_5{{currentpoint 3 -1 roll(0)dup 3 -1 roll 0 exch put dup +@gs true charpath $ctm setmatrix $ptm concat stroke @gr @np stringwidth pop 3 +-1 roll add exch m}forall}{pop}ifelse $SDF{$dsf $dsa $dsp @ss}if setmatrix}bd +/@te{@ft}bd/@tr{@st}bd/@ta{dup @gs @ft @gr @st}bd/@t@a{dup @gs @st @gr @ft}bd +/@tm{@sm concat}bd/e{/t{@te}def}bd/r{/t{@tr}def}bd/o{/t{pop}def}bd/a{/t{@ta} +def}bd/@a{/t{@t@a}def}bd/t{@te}def/T{@np $ctm setmatrix/$ttm matrix def}bd/ddt +{t}def/@t{/$stm $stm currentmatrix def 3 1 roll m $ttm concat ddt $stm +setmatrix}bd/@n{/$ttm exch matrix rotate def}bd/@s{}bd/@l{}bd/_lineorientation +0 def/_bitfont null def/_bitlobyte 0 def/_bitkey null def/_bithibyte 0 def +% Copyright (c)1992-2003 Corel Corporation +% All rights reserved. v12 r0.0 +/@ii{concat 3 index 3 index m 3 index 1 index l 2 copy l 1 index 3 index l 3 +index 3 index l clip pop pop pop pop}bd/@i{@sm @gs @ii 6 index 1 ne{/$frg true +def pop pop}{1 eq{s1t s1c s1m s1y s1k s1n $O @scc_5/$frg xd}{/$frg false def} +ifelse 1 eq{@gs $ctm setmatrix F @gr}if}ifelse @np/$ury xd/$urx xd/$lly xd +/$llx xd/$bts xd/$hei xd/$wid xd/$dat $wid $bts mul 8 div ceiling cvi string +def $bkg $frg or{$SDF{$SCF $SCA $SCP @ss}if $llx $lly Tl $urx $llx sub $ury +$lly sub scale $bkg{$t $c $m $y $k $n $o @scc_5 pop}if $wid $hei abs $bts 1 eq +{$bkg}{$bts}ifelse[$wid 0 0 $hei neg 0 $hei 0 gt{$hei}{0}ifelse]/tcc load $bts +1 eq{imagemask}{image}ifelse $SDF{$dsf $dsa $dsp @ss}if}{$hei abs{tcc pop} +repeat}ifelse @gr $ctm setmatrix}bd/@I{@sm @gs @ii @np/$ury xd/$urx xd/$lly xd +/$llx xd/$ncl xd/$bts xd/$hei xd/$wid xd $ngx $llx $lly Tl $urx $llx sub $ury +$lly sub scale $wid $hei abs $bts[$wid 0 0 $hei neg 0 $hei 0 gt{$hei}{0}ifelse +]$msimage false eq $ncl 1 eq or{/$dat $wid $bts mul $ncl mul 8 div ceiling cvi +string def/@cc load false $ncl ColorImage}{$wid $bts mul 8 div ceiling cvi $ncl +3 eq{dup dup/$dat1 exch string def/$dat2 exch string def/$dat3 exch string def +/@cc1 load/@cc2 load/@cc3 load}{dup dup dup/$dat1 exch string def/$dat2 exch +string def/$dat3 exch string def/$dat4 exch string def/@cc1 load/@cc2 load +/@cc3 load/@cc4 load}ifelse true $ncl ColorImage}ifelse $SDF{$dsf $dsa $dsp +@ss}if @gr $ctm setmatrix}bd/@cc1{currentfile $dat1 readhexstring pop}bd/@cc2{ +currentfile $dat2 readhexstring pop}bd/@cc3{currentfile $dat3 readhexstring pop +}bd/@cc4{currentfile $dat4 readhexstring pop}bd/$msimage false def/COMP 0 def +/MaskedImage false def L2?{/@I_2{@sm @gs @ii @np/$ury xd/$urx xd/$lly xd/$llx +xd/$ncl xd/$bts xd/$hei xd/$wid xd/$dat $wid $bts mul $ncl mul 8 div ceiling +cvi string def $ngx $ncl 1 eq{/DeviceGray}{$ncl 3 eq{/DeviceRGB}{/DeviceCMYK} +ifelse}ifelse setcolorspace $llx $lly Tl $urx $llx sub $ury $lly sub scale 8 +dict begin/ImageType 1 def/Width $wid def/Height $hei abs def/BitsPerComponent +$bts def/Decode $ncl 1 eq{[0 1]}{$ncl 3 eq{[0 1 0 1 0 1]}{[0 1 0 1 0 1 0 1]} +ifelse}ifelse def/ImageMatrix[$wid 0 0 $hei neg 0 $hei 0 gt{$hei}{0}ifelse]def +/DataSource currentfile/ASCII85Decode filter COMP 1 eq{/DCTDecode filter}{COMP +2 eq{/RunLengthDecode filter}if}ifelse def currentdict end image $SDF{$dsf $dsa +$dsp @ss}if @gr $ctm setmatrix}bd}{/@I_2{}bd}ifelse/@I_3{@sm @gs @ii @np/$ury +xd/$urx xd/$lly xd/$llx xd/$ncl xd/$bts xd/$hei xd/$wid xd/$dat $wid $bts mul +$ncl mul 8 div ceiling cvi string def $ngx $ncl 1 eq{/DeviceGray}{$ncl 3 eq +{/DeviceRGB}{/DeviceCMYK}ifelse}ifelse setcolorspace $llx $lly Tl $urx $llx sub +$ury $lly sub scale/ImageDataDict 8 dict def ImageDataDict begin/ImageType 1 +def/Width $wid def/Height $hei abs def/BitsPerComponent $bts def/Decode $ncl 1 +eq{[0 1]}{$ncl 3 eq{[0 1 0 1 0 1]}{[0 1 0 1 0 1 0 1]}ifelse}ifelse def +/ImageMatrix[$wid 0 0 $hei neg 0 $hei 0 gt{$hei}{0}ifelse]def/DataSource +currentfile/ASCII85Decode filter COMP 1 eq{/DCTDecode filter}{COMP 2 eq{ +/RunLengthDecode filter}if}ifelse def end/MaskedImageDict 7 dict def +MaskedImageDict begin/ImageType 3 def/InterleaveType 3 def/MaskDict +ImageMaskDict def/DataDict ImageDataDict def end MaskedImageDict image $SDF +{$dsf $dsa $dsp @ss}if @gr $ctm setmatrix}bd/@SetMask{/$mbts xd/$mhei xd/$mwid +xd/ImageMaskDict 8 dict def ImageMaskDict begin/ImageType 1 def/Width $mwid def +/Height $mhei abs def/BitsPerComponent $mbts def/DataSource maskstream def +/ImageMatrix[$mwid 0 0 $mhei neg 0 $mhei 0 gt{$mhei}{0}ifelse]def/Decode[1 0] +def end}bd/@daq{dup type/arraytype eq{{}forall}if}bd/@BMP{/@cc xd UseLevel 3 eq +MaskedImage true eq and{7 -2 roll pop pop @I_3}{12 index 1 gt UseLevel 2 eq +UseLevel 3 eq or and{7 -2 roll pop pop @I_2}{11 index 1 eq{12 -1 roll pop @i}{ +7 -2 roll pop pop @I}ifelse}ifelse}ifelse}bd +end +%%EndResource +%%EndProlog +%%BeginSetup +wCorel12Dict begin +@BeginSysCorelDict +2.6131 setmiterlimit +1.00 setflat +/$fst 128 def +%%BeginResource: font TimesNewRomanPSMT-NormalItalic +%!FontType1-1.0: TimesNewRomanPSMT-NormalItalic 001.003 %%Creator: Corel PostScript Engine 10 dict begin /FontName /TimesNewRomanPSMT-NormalItalic def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 77 /M put dup 101 /e put dup 100 /d put dup 105 /i put dup 225 /aacute put dup 110 /n put dup 121 /y put dup 112 /p put dup 116 /t put dup 99 /c put dup 72 /H put dup 108 /l put dup 97 /a put dup 253 /yacute put dup 118 /v put dup 111 /o put readonly def /FontBBox {0 0 0 0} readonly def currentdict end currentfile eexec +A22DD33CB9A1B84FC323D538B9AE6C6014672C02872FAD31037218C4EC2B7124C58AFC4A0E2584B50A778936CFE1053450FEC35486F87A4DA48EF5124EE42DE6 +9DDB8A5C33C2868DDADC1C9B4725483A678DFD1BEF77D7BDC50D39DB17FF02031F39030455C675716EB1B292EA6078E9937BB936698E457C365396CC5708EAAB +921AD0271E16D4A5F1689C7D8DEDA69051F9EA8B689EDEA8949F2C93CE777268FD3CE5D1713388D0E33A640C77DFB1D300C88E302BEFDF0083AF060D407FD007 +23D3F76465C679461FC0471E7F6EFFFCB5A8E513C1661D98B93E8667005CB8B30093BCB089336AFAB7D61973B6F27AC993F52C52238826E221A63575C2C867DB +E9C0264C99B65994DB79F83B4627E129923C7C8B2B1AAA93324C834C75D1F5601DFFE6B14A5A85B0ACAD953462B5AC8C800841BA8EFB424E9A608C7245B55BBD +BAA431986E188F126C069DFD8AFA988AE03C02B04B4C8AEB5E66664FC066DACEAFDBA51EC23B3497A280F0CD52CECEADFA90F2E9D334C0883ED7936FF52AB11E +9CAA4A29E503DCE59D40A92836D9231EFD0388538350B3BBC2B5D06F1F3E36439DAC9ED1785FEE5B5BD5A9D52D5A5DB0918E8687E45D4E1140BDE9BDF2FD7DC7 +B5D09D36455EEC816C190B49AE7C5AC067455643E4FC4F9BA32B0295CC7184B7B1DA5C5C2D055FC9CA0D1D0ADE65750036EA8031AC20D89DA23EF765DC3CFFF8 +68D5AEB4CCE654439976E1DE697CC3ABA7F216B347C174B7B54775779670965FA04FAEA4B4427C7D36A49BB15F06F514C40EBA0EA9DA47A3D67F1F6800E179D7 +24E5BD03AE75BD68EF48B2C7E1ED09DFD7990BC9A1CF25DAB084E5FE7F0EC25767DD8FED594B680F8065A2D1CFC3500901A23BB3656ECEB83964AE367AA96953 +84574040B90B4B4F30EE57F7FAC901F1BACEDF4F17FFDA48AC7982F19F3657C6DCD6C56605D1BB5A0DDE2EDD505AF6B69D9E6FD6B92C9B04C07856E3B11E05D1 +ED463A49371CD5D4D3167314E97D74BA2CD0F8DA75A01BF876784C72226D5C8947F3EC864A3338924DD1E13E3B1C97472C7E46DACDD9FFDEBC4251519743F272 +ACC820CEB82EEFCBD7E8B36212A7614E5635D5803157D6D417143DEF0EA7C6626C744355B882231B7509DAB611D4856EE63531C33CDA3737A8662F4B2EE5936D +DEA195A6BDBB9625457F0B6EA17B690CAA12017C1CB0980398CD30C5A6D17BA278C65D664293441DE6119436508C8DF6B3DA7595A077D6F596573E323A3B8E13 +81C6240F390E9C657471F5BD0FCFA2CDF9A1591AC9B592F228AC9A6E2EEF48D12C3B83221A4EC5B048555F958A83D6E3CEC669B0013D966FD04C11690A0822D9 +9C21A1B92B76A40EA5EA3EDF77C4498F0C6D7A2634BEC793700FE35ED4E8BEDAF98FB0DC3AA246CF067B963DED084C12C88EC9E573921F80BBB143F5A0101A44 +DD50A7CB14E23D33DFCD359FA0FB8725F104C8727A36CA5CE4C380A7B6BF4FFF8882A4E6FF4C76DC60B02E37BAB35946158665C3D84ADED6C5DDBF629DA512AE +6C20A7D6396F27D1DBFFC31E71CC5EFDDBB4A3E4540799A1024DDF58C78CE3D041E9324B902C978B82E4C48CB4D5B91AF70981740EDF9EC72056AFE3A96FC530 +C4B8500E2518941382F276BB1E4FEFFA40F30D7F265437B2389D87AAA6AE6217AED7C7C7F9D412BE98E0390C9F0EE5FD9E5F0661E29A9ABE540541D49F1662EF +31EA44A4D0C9E9A3A193E6CB63F7883F05BBDF1E334030F9D02F12055EE06663FFF8C2D5BC0DDF46ACAA9D006471189401FF9608D3F9D0BEC2E7D3BDC16E6919 +65A8058526819790178C8AB28D579169C87D615D4DA11E255A5215F0A74718D177538366F2B225D2563E4145135C941016AE6174B957F3CF8CF05A88548B4F24 +C17A75E6EDCF53907056F8ADE0E7ED334D7296200D88B83963EDB10959813F1483C88201577DDA9E0FFBB17E63B69113D7E557EAA776E26D3BFF69A9F81C1F62 +1189E123AE1D302E818A31F89C17D60A2E7B1245CB6F380E3F0324F6418F8613C63DA2466AB70E45BCD2B14F49E60A9F267843A40623E3A9B4A713BC3CF13279 +9F8147913EAABC2FBD6834C8A2E3689B87BB37FBE84CD6ED7F23A1024AEBEB4B7DEBFD4224B67DD9962AB12BBCA83708B5F079B5C1F035E1AE89CE272383D746 +21A8A2689EE66C431D5A4EBD02DF5CAD9B69B79DC583A365713EB92AAE6456DD6B2218C0976C362C0E985456008124F1AA83545F7EC53CD3DFDA4BD129F69F61 +118B69F5C4A2D04D24931D93E33E0E6BEAF5BD544DAE31C52AE2D348FB909A9C641216BD9280262BE001843B8CE2A91E3B77A0667B091F4151343394C9EC5EEF +10E289017EDE181266C3C9EB796FBA573A9E27D530010237B5176D895CE4DE45A1BC9CBCFDEDBCD91624E905C46B9AA91C6A3ECF38C87D6776EFC5BB97EC7AEE +A90B3CE175E31249EE5261BD9D56FB15276E75FBEDE155296F4F79BAB753F602669CA8EDF559241F0187689BF037B012882AAA39DC6EE4106928E5C85365BEFE +03607C76292823493F8BE795040018A3255F49B055F1EC2F5DB998D5130EEB0F4C1E9393AD4003F740484924C359E20BA49091AF6722CBBAA2686CDD3A9F2742 +03FA2815879D15FBABF53E1E65923171756FD096BCD3990365799BAB009BAC00973D00A71917FA43AB1C50683E20C71854D49F59E88925D2749A8396D370DB4A +820F03BDD6531A9039CA91316BADF3B27BD63309A32BC9F8476C8706E1666D368E19DBED60582B031067A791610B9D4F3D6F68385676368E77224E200134A1A5 +F4148DDA34EB8BBB46024D894564D9DADCB609B69D5398DD506DAF64722DE9092F533170142F5F1FD704B3CDF89A07650E5CDA63EB51A57222DA4F06D01AE8CA +38026141EDA62CBF0AE494D635AE982E8EAB3D064B5B0D830B2E0E0228977979C4525A85BCC128A76DE166E220A0484608B47CFB62216D1EDE07CEBC6F78E3AA +2B2BD00F461CCDDF9AC12E86FC7D30434053695643786539E46E6800B66405ECE43F77E3517525D10325375F8EE04442A893734BD1128455B82F26B87E99F9A3 +30D26E1E16CB63AC917BB8F9BD8C07130CECE73C846E3AEA2000BB6B8C928B23FA30240CA2F5388B252CFD7ADE6D8117D73B46B6B41B07918AAF9C803BD5D92D +5B5BAC8EFEAC4D82C20E32BA0637BD6CAAB5297614B2C74AE74DFBB4CCA4F3B9ED4C37526C71EDC0EE21C86462DC36940505007DE40EB2EC672C06BBD5E7CB7D +77EB3A6EB9C583896C298401E9B858A725580419F201140F56920B23F4FB9D15698A41D8538151000CDA91282E734363C8E40B60ECFB7D906C5C13A4FCD79C3F +F654555A8B3E5032746E1E75F7FEDC34D55B2A7B292CB3E103BE33F1438ABBCB19BFB69B396B16DF97839EFD4AE0301295BD12CBD330450B87C97A37DB0081C8 +458E9402D91B922BFE3FF48CE112045179F357553696AA89C99654DD40A65FE0F965FE93E639F263C405F5D3F774108BDB73F34179990DF7AEA6DB4B3BB0802A +A8FEB086AC1C4960ADCB7B3DDCDC654FB0EF1314DCB48C82A95B5A4ED8CF2D8C5FFABCD84856779C11059364CCE630016B071A0D67C47B8FCDF1B511F847BEE1 +415A2DCC42067E338FCF20D662CED7F433AC5CB525DDAD1832F37CE3566567F18776AF87187FFD87A1AB3EA728FCC7A9E16BDA0FDF6E10C9AA7E7E2466A1F3A0 +506845016A9F6FC74B3EC65DA8AC99E43D91A6AB23726A8F313EC2CB950D1B603D5CFEEE6CC35E69C1005B92A502183E2860279649B70511D60E55B72C010246 +FE15257202C99BBAAF6E9F4A1E793FDFA59B159DF3E480146F2DBDD6099313D225ED6046760721361B17EF53F6A888D6903E264C0A575F014A87BBC6B2A2E0EF +8778408A4E9FD2139770966835EE37CFA097E93E35BFA8A355165D30A97427E5875D0D77E4C62B2CBDA86D94EB43D4BE70DD54D519A678078F00F8CD5CF9B36B +0F730831C856A437220DD841C0C4D2E58E722A3745FEAF68CEA6426BFEFE84A71D2555234290127EE2499A10CC9EC2029151C45B010E9202C19563B23283BC18 +EEDF092BC1ED36F531867DAF23DBA44CC072489B3EF39937E2D774E4671AA1C81867A51279B05427F2043E22DF713F65E20B9946A2CE5BAB4990FA814B01B5F7 +0734888EFA9925D3D7383395F260AFBC277913286B86E8344CA047DB95FDBE07F43E761ADD5A715CEF876E004734A30885806A9DE0DA14AC03477B0C53AA9360 +3F59E7BAC2795F7543A399884B04B6922B8CE7D778AA7891D2928FCC059B1A17EDACBE7C161627ECBD7ECBCE3942AD49AB3BA1C574E1A780DA9E5AADED769844 +5A662AC96F06CEBC557B8FCAD97D3443A40DD6FB2FDF894DCA11C1DA5E04E9D834A3D6F7BB04D4C0B53987813438DDABD321F93C83254719DFDAB7C58DC6F0DA +4F213EA42F809E84B90A9A75073DF889A170D145346DA4868C654A90460F5E2CE425A616893D2527436BD372D9224DB7CE51A2087C3A32E88A6C23BA861BC667 +40ED06AC72B0EC921216169B63B69A129B659670418A5879B9E6539F3EAFA74D4964D469C12278A3C3EF7BC0966BFD855CD38D247834FB22616AF357CAB29656 +2FBB1A6794288DDAE78F8C13BDEF7D362DA026C7AE17E2EE311081E22E8B296FD2D6E087418CBC636826E2055EC70E45E546ECEB21CAB0F473D2A2A3B81A6E16 +0D025B016E9FDB3DCE02361252A9A37AC156377A119A2191F68E02F58F0C838F82988EC089FFE431A586F5A64287086C8584095EEA3B027208054B8D47B15125 +7CC0E867E74CC743F2BC0B8CB72D2CB03F719764A7822FD6DB26A0378C8D321AB8A143FDBC49A5118756E2ED32CB7BFA17583FCBF258EE7EF316D6C2394B1000 +994035CA4C59BA3510A61178C856C6533F7778E531D826E641A3B5A889D264C4BF88E74FA8E9582D91AE15C732BE5A946F8923906F1C4216582543B3127BB031 +E06EC208473BB3051B198D2D4E06371FF8760248A9B330FE00AF9CCF0C7281F904E743EC1C00F8C1B7B4F20F9E4BFBDC6DBF8EA35A6E1659E8E9AEB3456F13B7 +D0E8E7518FADB25AA7BFC7398D97B7BF22A4902A96B935AC08508DEED775F788234150EBFEEE43FFFC3948C499A726934B5DF1C5976FA6EFFB9E0BD1A02386A9 +1152A47F6CDFE86A6CDD97EF75C5C85D0DFCE8D90C39E319F159BD335690FC164D3A1D699A72E83024572959A2C43D1E2D925B636EBB3EE14B5A0A9F68120D1F +657BBD5DF4830FA9B6B243910CDE7FC79990207E43E190E8A673F90761E1CAE715CA6BBA0A28F32109014000E9725BE952E460D068C4ED099590CAE33C6F8891 +3581D5235A45823140957BEF947DDFDE1ACED94F9E980B64E660111A558B90791D7DB34761441DAD66334FDA772920EE240F9C1D36EDD041B5DBCF792B0363C5 +CA63D788EE34576B9562E65DA7087C721F371B3E467C2C4727A091C1194B6083987D0A2C666859877C7748FEEB88FCE71E7B88E087F156355AB375830E0F8010 +33FFE54440A68F82ADB60C699967893BE8FD441E4670DBFB89B68FB83B4E2EDED950CDCEE9D72F7E1349D5F78D1D6E06077A144195F671D88DE6F5655519ABA4 +5D40911E01FE62C1BB0F4779C40F71C5A04473A20057AC2EC4BE76F94F0EF604329FB9B4138F1247CA854DFF589A8905F2DDAD8B1528A2EBCE80658D10F6422A +4EDA2D53D48384140A4A56DF42314C85B3E85FBEBE84FBA14B16211B582335935F +0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark +%%EndResource +[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 250 +333 420 500 500 833 778 214 333 333 500 675 250 333 250 278 500 +500 500 500 500 500 500 500 500 500 333 333 675 675 675 500 920 +611 611 667 722 611 611 722 722 333 444 667 556 833 667 722 611 +722 611 500 556 722 611 833 611 556 556 389 278 389 422 500 333 +500 500 444 500 444 278 500 500 278 278 444 278 722 500 500 500 +500 389 389 278 500 444 667 444 444 389 400 275 400 541 778 500 +778 333 778 556 889 500 500 778 1000 500 333 500 556 556 556 778 +333 333 556 556 350 500 889 778 980 389 333 389 364 389 389 250 +333 333 556 500 611 275 500 333 760 500 500 675 333 760 556 400 +549 333 278 333 576 523 250 333 500 389 500 556 333 364 389 611 +611 611 611 611 556 667 667 667 611 611 611 611 333 333 722 722 +667 667 722 722 722 722 675 611 722 722 722 722 556 556 500 389 +500 500 500 500 278 444 444 444 444 444 444 444 278 278 608 500 +500 500 500 500 500 500 549 389 500 500 500 500 444 278 333 ] +CorelDrawReencodeVect /_R1559757542333-TimesNewRomanPSMT-NormalItalic /TimesNewRomanPSMT-NormalItalic Z + +%%BeginResource: font TimesNewRomanPSMT-NormalItalic +%!FontType1-1.0: TimesNewRomanPSMT-NormalItalic 001.003 %%Creator: Corel PostScript Engine 10 dict begin /FontName /TimesNewRomanPSMT-NormalItalic def /PaintType 0 def /FontType 1 def /FontMatrix [0.001 0 0 0.001 0 0] readonly def /Encoding 256 array 0 1 255 {1 index exch /.notdef put} for dup 33 /ecaron put readonly def /FontBBox {0 0 0 0} readonly def currentdict end currentfile eexec +A22DD33CB9A1B84FC323D538B9AE6C6014672C02872FAD31037218C4EC2B7124C58AFC4A0E2584B50A778936CFE1053450FEC35486F87A4DA48EF5124EE42DE6 +9DDB8A5C33C2868DDADC1C9B4725483A678DFD1BEF77D7BDC50D39DB17FF02031F39030455C675716EB1B292EA6078E9937BB936698E457C365396CC5708EAAB +921AD0271E16D4A5F1689C7D8DEDA69051F9EA8B689EDEA8949F2C93CE777268FD3CE5D1713388D0E33A640C77DFB1D300C88E302BEFDF0083AF060D407FD007 +23D3F76465C679461FC0471E7F6EFFFCB5A8E513C1661D98B93E8667005CB8B30093BCB089336AFAB7D61973B6F27AC993F52C52238826E221A63575C2C867DB +E9C0264C99B65994DB79F83B4627E129923C7C8B2B18D54F9E0F0F9280A6425EED2E2B7BB29DA8D3D977AE0F4D887F72309ABE6CB09B8D1F5600779F7C13696C +8F3E4BE6CB52CAC5E18194854212DDB9CED0A26821B2E2FCC10593B2ADFFD48E7732CD72D1825BF8A50E6F18A3D5AB48D93C61DA901CF06733C53BBF273AAAF7 +F7D5CFD4913EE01247B742B01FD1E4725547920BA34B06B456720795B8829ADA2F2EB14AB4E9CC722176BEAF4B316D35709E2D35E8D3276E7FFC4B074CB65076 +F5973370FBD79EFDDF838A4A62BA785DF34A0F9FD80F8426F3BAC7764511B20F6A0BE481EBD853B2964D2B9AF0C2278A7E7B8FBAB93E9F7AE974CF86D854BCD3 +6C90A78513A1DFFA845B297560F9636EA091187E938827BC2277F43F7EDEC40730E45F96C89DFEB2D92247C2C98477C3C26AE972086A96DA036B0FA178F99DF6 +251B57119AEC02E44CE60A90A1799CD290AE30854B37BF9DC82A404B72E70E1B35BB771EEB7A5F04ADBF5BE2E11D74D53DE71A70B434411CF6A5B168206462E5 +97486AC11BD81FB078A9ED9A2CAC400D5AE6720232E02CA86F9E348FBC792E4A8CDD9CEB54BDFD450000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 0000000000000000000000000000000000000000000000000000000000000000 cleartomark +%%EndResource +/CorelDrawReencodeVect-TimesNewRomanPSMT-NormalItalic [16#21/ecaron ] def +[ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 +0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 250 +444 420 500 500 833 778 214 333 333 500 675 250 333 250 278 500 +500 500 500 500 500 500 500 500 500 333 333 675 675 675 500 920 +611 611 667 722 611 611 722 722 333 444 667 556 833 667 722 611 +722 611 500 556 722 611 833 611 556 556 389 278 389 422 500 333 +500 500 444 500 444 278 500 500 278 278 444 278 722 500 500 500 +500 389 389 278 500 444 667 444 444 389 400 275 400 541 778 500 +778 333 778 556 889 500 500 778 1000 500 333 500 556 556 556 778 +333 333 556 556 350 500 889 778 980 389 333 389 364 389 389 250 +333 333 556 500 611 275 500 333 760 500 500 675 333 760 556 400 +549 333 278 333 576 523 250 333 500 389 500 556 333 364 389 611 +611 611 611 611 556 667 667 667 611 611 611 611 333 333 722 722 +667 667 722 722 722 722 675 611 722 722 722 722 556 556 500 389 +500 500 500 500 278 444 444 444 444 444 444 444 278 278 608 500 +500 500 500 500 500 500 549 389 500 500 500 500 444 278 333 ] +CorelDrawReencodeVect-TimesNewRomanPSMT-NormalItalic /_R1559757542333-TimesNewRomanPSMT-NormalItalic-1 /TimesNewRomanPSMT-NormalItalic Z + +%%EndSetup + +%%Page: 1 1 +%LogicalPage: 1 +%%BeginPageSetup +@sv +@sm +@sv +%%EndPageSetup +@rax %Note: Object +68.81414 749.03499 90.76450 770.98535 @E +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +79.78932 770.98535 m +85.84980 770.98535 90.76450 766.07065 90.76450 760.01017 c +90.76450 753.94970 85.84980 749.03499 79.78932 749.03499 c +73.72885 749.03499 68.81414 753.94970 68.81414 760.01017 c +68.81414 766.07065 73.72885 770.98535 79.78932 770.98535 c +@c +S + +@rax %Note: Object +97.16060 749.03499 119.11096 770.98535 @E +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +108.13578 770.98535 m +114.19625 770.98535 119.11096 766.07065 119.11096 760.01017 c +119.11096 753.94970 114.19625 749.03499 108.13578 749.03499 c +102.07531 749.03499 97.16060 753.94970 97.16060 760.01017 c +97.16060 766.07065 102.07531 770.98535 108.13578 770.98535 c +@c +S + +@rax %Note: Object +125.50706 749.03499 147.45742 770.98535 @E +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +136.48224 770.98535 m +142.54271 770.98535 147.45742 766.07065 147.45742 760.01017 c +147.45742 753.94970 142.54271 749.03499 136.48224 749.03499 c +130.42176 749.03499 125.50706 753.94970 125.50706 760.01017 c +125.50706 766.07065 130.42176 770.98535 136.48224 770.98535 c +@c +S + +@rax %Note: Object +153.85351 749.03499 175.80387 770.98535 @E +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +164.82869 770.98535 m +170.88917 770.98535 175.80387 766.07065 175.80387 760.01017 c +175.80387 753.94970 170.88917 749.03499 164.82869 749.03499 c +158.76822 749.03499 153.85351 753.94970 153.85351 760.01017 c +153.85351 766.07065 158.76822 770.98535 164.82869 770.98535 c +@c +S + +@rax %Note: Object +182.19997 749.03499 204.15033 770.98535 @E +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +193.17515 770.98535 m +199.23562 770.98535 204.15033 766.07065 204.15033 760.01017 c +204.15033 753.94970 199.23562 749.03499 193.17515 749.03499 c +187.11468 749.03499 182.19997 753.94970 182.19997 760.01017 c +182.19997 766.07065 187.11468 770.98535 193.17515 770.98535 c +@c +S + +@rax %Note: Object +210.54643 749.03499 232.49679 770.98535 @E +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +221.52161 770.98535 m +227.58208 770.98535 232.49679 766.07065 232.49679 760.01017 c +232.49679 753.94970 227.58208 749.03499 221.52161 749.03499 c +215.46113 749.03499 210.54643 753.94970 210.54643 760.01017 c +210.54643 766.07065 215.46113 770.98535 221.52161 770.98535 c +@c +S + +@rax %Note: Object +238.89288 749.03499 260.84324 770.98535 @E +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +249.86806 770.98535 m +255.92854 770.98535 260.84324 766.07065 260.84324 760.01017 c +260.84324 753.94970 255.92854 749.03499 249.86806 749.03499 c +243.80759 749.03499 238.89288 753.94970 238.89288 760.01017 c +238.89288 766.07065 243.80759 770.98535 249.86806 770.98535 c +@c +S + +@rax %Note: Object +267.23934 749.03499 289.18970 770.98535 @E +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +278.21452 770.98535 m +284.27499 770.98535 289.18970 766.07065 289.18970 760.01017 c +289.18970 753.94970 284.27499 749.03499 278.21452 749.03499 c +272.15405 749.03499 267.23934 753.94970 267.23934 760.01017 c +267.23934 766.07065 272.15405 770.98535 278.21452 770.98535 c +@c +S + +@rax %Note: Object +295.58580 749.03499 317.53616 770.98535 @E +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +306.56098 770.98535 m +312.62145 770.98535 317.53616 766.07065 317.53616 760.01017 c +317.53616 753.94970 312.62145 749.03499 306.56098 749.03499 c +300.50050 749.03499 295.58580 753.94970 295.58580 760.01017 c +295.58580 766.07065 300.50050 770.98535 306.56098 770.98535 c +@c +S + +@rax %Note: Object +323.93225 749.03499 345.88261 770.98535 @E +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +334.90743 770.98535 m +340.96791 770.98535 345.88261 766.07065 345.88261 760.01017 c +345.88261 753.94970 340.96791 749.03499 334.90743 749.03499 c +328.84696 749.03499 323.93225 753.94970 323.93225 760.01017 c +323.93225 766.07065 328.84696 770.98535 334.90743 770.98535 c +@c +S + +@rax %Note: Object +352.27871 749.03499 374.22907 770.98535 @E +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +363.25389 770.98535 m +369.31436 770.98535 374.22907 766.07065 374.22907 760.01017 c +374.22907 753.94970 369.31436 749.03499 363.25389 749.03499 c +357.19342 749.03499 352.27871 753.94970 352.27871 760.01017 c +352.27871 766.07065 357.19342 770.98535 363.25389 770.98535 c +@c +S + +@rax %Note: Object +68.81414 720.68854 90.76450 742.63890 @E +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +79.78932 742.63890 m +85.84980 742.63890 90.76450 737.72419 90.76450 731.66372 c +90.76450 725.60324 85.84980 720.68854 79.78932 720.68854 c +73.72885 720.68854 68.81414 725.60324 68.81414 731.66372 c +68.81414 737.72419 73.72885 742.63890 79.78932 742.63890 c +@c +S + +@rax %Note: Object +97.16060 720.68854 119.11096 742.63890 @E +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +108.13578 742.63890 m +114.19625 742.63890 119.11096 737.72419 119.11096 731.66372 c +119.11096 725.60324 114.19625 720.68854 108.13578 720.68854 c +102.07531 720.68854 97.16060 725.60324 97.16060 731.66372 c +97.16060 737.72419 102.07531 742.63890 108.13578 742.63890 c +@c +S + +@rax %Note: Object +125.50706 720.68854 147.45742 742.63890 @E +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +136.48224 742.63890 m +142.54271 742.63890 147.45742 737.72419 147.45742 731.66372 c +147.45742 725.60324 142.54271 720.68854 136.48224 720.68854 c +130.42176 720.68854 125.50706 725.60324 125.50706 731.66372 c +125.50706 737.72419 130.42176 742.63890 136.48224 742.63890 c +@c +S + +@rax %Note: Object +153.85351 720.68854 175.80387 742.63890 @E +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +164.82869 742.63890 m +170.88917 742.63890 175.80387 737.72419 175.80387 731.66372 c +175.80387 725.60324 170.88917 720.68854 164.82869 720.68854 c +158.76822 720.68854 153.85351 725.60324 153.85351 731.66372 c +153.85351 737.72419 158.76822 742.63890 164.82869 742.63890 c +@c +S + +@rax %Note: Object +182.19997 720.68854 204.15033 742.63890 @E +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +193.17515 742.63890 m +199.23562 742.63890 204.15033 737.72419 204.15033 731.66372 c +204.15033 725.60324 199.23562 720.68854 193.17515 720.68854 c +187.11468 720.68854 182.19997 725.60324 182.19997 731.66372 c +182.19997 737.72419 187.11468 742.63890 193.17515 742.63890 c +@c +S + +@rax %Note: Object +210.54643 720.68854 232.49679 742.63890 @E +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +221.52161 742.63890 m +227.58208 742.63890 232.49679 737.72419 232.49679 731.66372 c +232.49679 725.60324 227.58208 720.68854 221.52161 720.68854 c +215.46113 720.68854 210.54643 725.60324 210.54643 731.66372 c +210.54643 737.72419 215.46113 742.63890 221.52161 742.63890 c +@c +S + +@rax %Note: Object +238.89288 720.68854 260.84324 742.63890 @E +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +249.86806 742.63890 m +255.92854 742.63890 260.84324 737.72419 260.84324 731.66372 c +260.84324 725.60324 255.92854 720.68854 249.86806 720.68854 c +243.80759 720.68854 238.89288 725.60324 238.89288 731.66372 c +238.89288 737.72419 243.80759 742.63890 249.86806 742.63890 c +@c +S + +@rax %Note: Object +267.23934 720.68854 289.18970 742.63890 @E +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +278.21452 742.63890 m +284.27499 742.63890 289.18970 737.72419 289.18970 731.66372 c +289.18970 725.60324 284.27499 720.68854 278.21452 720.68854 c +272.15405 720.68854 267.23934 725.60324 267.23934 731.66372 c +267.23934 737.72419 272.15405 742.63890 278.21452 742.63890 c +@c +S + +@rax %Note: Object +295.58580 720.68854 317.53616 742.63890 @E +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +306.56098 742.63890 m +312.62145 742.63890 317.53616 737.72419 317.53616 731.66372 c +317.53616 725.60324 312.62145 720.68854 306.56098 720.68854 c +300.50050 720.68854 295.58580 725.60324 295.58580 731.66372 c +295.58580 737.72419 300.50050 742.63890 306.56098 742.63890 c +@c +S + +@rax %Note: Object +323.93225 720.68854 345.88261 742.63890 @E +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +334.90743 742.63890 m +340.96791 742.63890 345.88261 737.72419 345.88261 731.66372 c +345.88261 725.60324 340.96791 720.68854 334.90743 720.68854 c +328.84696 720.68854 323.93225 725.60324 323.93225 731.66372 c +323.93225 737.72419 328.84696 742.63890 334.90743 742.63890 c +@c +S + +@rax %Note: Object +352.27871 720.68854 374.22907 742.63890 @E +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +363.25389 742.63890 m +369.31436 742.63890 374.22907 737.72419 374.22907 731.66372 c +374.22907 725.60324 369.31436 720.68854 363.25389 720.68854 c +357.19342 720.68854 352.27871 725.60324 352.27871 731.66372 c +352.27871 737.72419 357.19342 742.63890 363.25389 742.63890 c +@c +S + +@rax %Note: Object +68.81414 692.34208 90.76450 714.29244 @E + 0 O 0 @g +0.00 0.00 0.00 0.50 k +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +79.78932 714.29244 m +85.84980 714.29244 90.76450 709.37773 90.76450 703.31726 c +90.76450 697.25679 85.84980 692.34208 79.78932 692.34208 c +73.72885 692.34208 68.81414 697.25679 68.81414 703.31726 c +68.81414 709.37773 73.72885 714.29244 79.78932 714.29244 c +@c +B + +@rax %Note: Object +97.16060 692.34208 119.11096 714.29244 @E + 0 O 0 @g +0.00 0.00 0.00 0.50 k +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +108.13578 714.29244 m +114.19625 714.29244 119.11096 709.37773 119.11096 703.31726 c +119.11096 697.25679 114.19625 692.34208 108.13578 692.34208 c +102.07531 692.34208 97.16060 697.25679 97.16060 703.31726 c +97.16060 709.37773 102.07531 714.29244 108.13578 714.29244 c +@c +B + +@rax %Note: Object +125.50706 692.34208 147.45742 714.29244 @E + 0 O 0 @g +0.00 0.00 0.00 0.50 k +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +136.48224 714.29244 m +142.54271 714.29244 147.45742 709.37773 147.45742 703.31726 c +147.45742 697.25679 142.54271 692.34208 136.48224 692.34208 c +130.42176 692.34208 125.50706 697.25679 125.50706 703.31726 c +125.50706 709.37773 130.42176 714.29244 136.48224 714.29244 c +@c +B + +@rax %Note: Object +153.85351 692.34208 175.80387 714.29244 @E + 0 O 0 @g +0.00 0.00 0.00 0.50 k +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +164.82869 714.29244 m +170.88917 714.29244 175.80387 709.37773 175.80387 703.31726 c +175.80387 697.25679 170.88917 692.34208 164.82869 692.34208 c +158.76822 692.34208 153.85351 697.25679 153.85351 703.31726 c +153.85351 709.37773 158.76822 714.29244 164.82869 714.29244 c +@c +B + +@rax %Note: Object +182.19997 692.34208 204.15033 714.29244 @E + 0 O 0 @g +0.00 0.00 0.00 0.50 k +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +193.17515 714.29244 m +199.23562 714.29244 204.15033 709.37773 204.15033 703.31726 c +204.15033 697.25679 199.23562 692.34208 193.17515 692.34208 c +187.11468 692.34208 182.19997 697.25679 182.19997 703.31726 c +182.19997 709.37773 187.11468 714.29244 193.17515 714.29244 c +@c +B + +@rax %Note: Object +210.54643 692.34208 232.49679 714.29244 @E + 0 O 0 @g +0.00 0.00 0.00 1.00 k +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +221.52161 714.29244 m +227.58208 714.29244 232.49679 709.37773 232.49679 703.31726 c +232.49679 697.25679 227.58208 692.34208 221.52161 692.34208 c +215.46113 692.34208 210.54643 697.25679 210.54643 703.31726 c +210.54643 709.37773 215.46113 714.29244 221.52161 714.29244 c +@c +B + +@rax %Note: Object +238.89288 692.34208 260.84324 714.29244 @E + 0 O 0 @g +0.00 0.00 0.00 0.50 k +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +249.86806 714.29244 m +255.92854 714.29244 260.84324 709.37773 260.84324 703.31726 c +260.84324 697.25679 255.92854 692.34208 249.86806 692.34208 c +243.80759 692.34208 238.89288 697.25679 238.89288 703.31726 c +238.89288 709.37773 243.80759 714.29244 249.86806 714.29244 c +@c +B + +@rax %Note: Object +267.23934 692.34208 289.18970 714.29244 @E + 0 O 0 @g +0.00 0.00 0.00 0.50 k +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +278.21452 714.29244 m +284.27499 714.29244 289.18970 709.37773 289.18970 703.31726 c +289.18970 697.25679 284.27499 692.34208 278.21452 692.34208 c +272.15405 692.34208 267.23934 697.25679 267.23934 703.31726 c +267.23934 709.37773 272.15405 714.29244 278.21452 714.29244 c +@c +B + +@rax %Note: Object +295.58580 692.34208 317.53616 714.29244 @E + 0 O 0 @g +0.00 0.00 0.00 0.50 k +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +306.56098 714.29244 m +312.62145 714.29244 317.53616 709.37773 317.53616 703.31726 c +317.53616 697.25679 312.62145 692.34208 306.56098 692.34208 c +300.50050 692.34208 295.58580 697.25679 295.58580 703.31726 c +295.58580 709.37773 300.50050 714.29244 306.56098 714.29244 c +@c +B + +@rax %Note: Object +323.93225 692.34208 345.88261 714.29244 @E + 0 O 0 @g +0.00 0.00 0.00 0.50 k +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +334.90743 714.29244 m +340.96791 714.29244 345.88261 709.37773 345.88261 703.31726 c +345.88261 697.25679 340.96791 692.34208 334.90743 692.34208 c +328.84696 692.34208 323.93225 697.25679 323.93225 703.31726 c +323.93225 709.37773 328.84696 714.29244 334.90743 714.29244 c +@c +B + +@rax %Note: Object +352.27871 692.34208 374.22907 714.29244 @E + 0 O 0 @g +0.00 0.00 0.00 0.50 k +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +363.25389 714.29244 m +369.31436 714.29244 374.22907 709.37773 374.22907 703.31726 c +374.22907 697.25679 369.31436 692.34208 363.25389 692.34208 c +357.19342 692.34208 352.27871 697.25679 352.27871 703.31726 c +352.27871 709.37773 357.19342 714.29244 363.25389 714.29244 c +@c +B + +@rax %Note: Object +68.81414 663.99562 90.76450 685.94598 @E +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +79.78932 685.94598 m +85.84980 685.94598 90.76450 681.03128 90.76450 674.97080 c +90.76450 668.91033 85.84980 663.99562 79.78932 663.99562 c +73.72885 663.99562 68.81414 668.91033 68.81414 674.97080 c +68.81414 681.03128 73.72885 685.94598 79.78932 685.94598 c +@c +S + +@rax %Note: Object +97.16060 663.99562 119.11096 685.94598 @E +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +108.13578 685.94598 m +114.19625 685.94598 119.11096 681.03128 119.11096 674.97080 c +119.11096 668.91033 114.19625 663.99562 108.13578 663.99562 c +102.07531 663.99562 97.16060 668.91033 97.16060 674.97080 c +97.16060 681.03128 102.07531 685.94598 108.13578 685.94598 c +@c +S + +@rax %Note: Object +125.50706 663.99562 147.45742 685.94598 @E +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +136.48224 685.94598 m +142.54271 685.94598 147.45742 681.03128 147.45742 674.97080 c +147.45742 668.91033 142.54271 663.99562 136.48224 663.99562 c +130.42176 663.99562 125.50706 668.91033 125.50706 674.97080 c +125.50706 681.03128 130.42176 685.94598 136.48224 685.94598 c +@c +S + +@rax %Note: Object +153.85351 663.99562 175.80387 685.94598 @E +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +164.82869 685.94598 m +170.88917 685.94598 175.80387 681.03128 175.80387 674.97080 c +175.80387 668.91033 170.88917 663.99562 164.82869 663.99562 c +158.76822 663.99562 153.85351 668.91033 153.85351 674.97080 c +153.85351 681.03128 158.76822 685.94598 164.82869 685.94598 c +@c +S + +@rax %Note: Object +182.19997 663.99562 204.15033 685.94598 @E +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +193.17515 685.94598 m +199.23562 685.94598 204.15033 681.03128 204.15033 674.97080 c +204.15033 668.91033 199.23562 663.99562 193.17515 663.99562 c +187.11468 663.99562 182.19997 668.91033 182.19997 674.97080 c +182.19997 681.03128 187.11468 685.94598 193.17515 685.94598 c +@c +S + +@rax %Note: Object +210.54643 663.99562 232.49679 685.94598 @E +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +221.52161 685.94598 m +227.58208 685.94598 232.49679 681.03128 232.49679 674.97080 c +232.49679 668.91033 227.58208 663.99562 221.52161 663.99562 c +215.46113 663.99562 210.54643 668.91033 210.54643 674.97080 c +210.54643 681.03128 215.46113 685.94598 221.52161 685.94598 c +@c +S + +@rax %Note: Object +238.89288 663.99562 260.84324 685.94598 @E +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +249.86806 685.94598 m +255.92854 685.94598 260.84324 681.03128 260.84324 674.97080 c +260.84324 668.91033 255.92854 663.99562 249.86806 663.99562 c +243.80759 663.99562 238.89288 668.91033 238.89288 674.97080 c +238.89288 681.03128 243.80759 685.94598 249.86806 685.94598 c +@c +S + +@rax %Note: Object +267.23934 663.99562 289.18970 685.94598 @E +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +278.21452 685.94598 m +284.27499 685.94598 289.18970 681.03128 289.18970 674.97080 c +289.18970 668.91033 284.27499 663.99562 278.21452 663.99562 c +272.15405 663.99562 267.23934 668.91033 267.23934 674.97080 c +267.23934 681.03128 272.15405 685.94598 278.21452 685.94598 c +@c +S + +@rax %Note: Object +295.58580 663.99562 317.53616 685.94598 @E +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +306.56098 685.94598 m +312.62145 685.94598 317.53616 681.03128 317.53616 674.97080 c +317.53616 668.91033 312.62145 663.99562 306.56098 663.99562 c +300.50050 663.99562 295.58580 668.91033 295.58580 674.97080 c +295.58580 681.03128 300.50050 685.94598 306.56098 685.94598 c +@c +S + +@rax %Note: Object +323.93225 663.99562 345.88261 685.94598 @E +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +334.90743 685.94598 m +340.96791 685.94598 345.88261 681.03128 345.88261 674.97080 c +345.88261 668.91033 340.96791 663.99562 334.90743 663.99562 c +328.84696 663.99562 323.93225 668.91033 323.93225 674.97080 c +323.93225 681.03128 328.84696 685.94598 334.90743 685.94598 c +@c +S + +@rax %Note: Object +352.27871 663.99562 374.22907 685.94598 @E +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +363.25389 685.94598 m +369.31436 685.94598 374.22907 681.03128 374.22907 674.97080 c +374.22907 668.91033 369.31436 663.99562 363.25389 663.99562 c +357.19342 663.99562 352.27871 668.91033 352.27871 674.97080 c +352.27871 681.03128 357.19342 685.94598 363.25389 685.94598 c +@c +S + +@rax %Note: Object +68.81414 635.64917 90.76450 657.59953 @E +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +79.78932 657.59953 m +85.84980 657.59953 90.76450 652.68482 90.76450 646.62435 c +90.76450 640.56387 85.84980 635.64917 79.78932 635.64917 c +73.72885 635.64917 68.81414 640.56387 68.81414 646.62435 c +68.81414 652.68482 73.72885 657.59953 79.78932 657.59953 c +@c +S + +@rax %Note: Object +97.16060 635.64917 119.11096 657.59953 @E +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +108.13578 657.59953 m +114.19625 657.59953 119.11096 652.68482 119.11096 646.62435 c +119.11096 640.56387 114.19625 635.64917 108.13578 635.64917 c +102.07531 635.64917 97.16060 640.56387 97.16060 646.62435 c +97.16060 652.68482 102.07531 657.59953 108.13578 657.59953 c +@c +S + +@rax %Note: Object +125.50706 635.64917 147.45742 657.59953 @E +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +136.48224 657.59953 m +142.54271 657.59953 147.45742 652.68482 147.45742 646.62435 c +147.45742 640.56387 142.54271 635.64917 136.48224 635.64917 c +130.42176 635.64917 125.50706 640.56387 125.50706 646.62435 c +125.50706 652.68482 130.42176 657.59953 136.48224 657.59953 c +@c +S + +@rax %Note: Object +153.85351 635.64917 175.80387 657.59953 @E +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +164.82869 657.59953 m +170.88917 657.59953 175.80387 652.68482 175.80387 646.62435 c +175.80387 640.56387 170.88917 635.64917 164.82869 635.64917 c +158.76822 635.64917 153.85351 640.56387 153.85351 646.62435 c +153.85351 652.68482 158.76822 657.59953 164.82869 657.59953 c +@c +S + +@rax %Note: Object +182.19997 635.64917 204.15033 657.59953 @E +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +193.17515 657.59953 m +199.23562 657.59953 204.15033 652.68482 204.15033 646.62435 c +204.15033 640.56387 199.23562 635.64917 193.17515 635.64917 c +187.11468 635.64917 182.19997 640.56387 182.19997 646.62435 c +182.19997 652.68482 187.11468 657.59953 193.17515 657.59953 c +@c +S + +@rax %Note: Object +210.54643 635.64917 232.49679 657.59953 @E +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +221.52161 657.59953 m +227.58208 657.59953 232.49679 652.68482 232.49679 646.62435 c +232.49679 640.56387 227.58208 635.64917 221.52161 635.64917 c +215.46113 635.64917 210.54643 640.56387 210.54643 646.62435 c +210.54643 652.68482 215.46113 657.59953 221.52161 657.59953 c +@c +S + +@rax %Note: Object +238.89288 635.64917 260.84324 657.59953 @E +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +249.86806 657.59953 m +255.92854 657.59953 260.84324 652.68482 260.84324 646.62435 c +260.84324 640.56387 255.92854 635.64917 249.86806 635.64917 c +243.80759 635.64917 238.89288 640.56387 238.89288 646.62435 c +238.89288 652.68482 243.80759 657.59953 249.86806 657.59953 c +@c +S + +@rax %Note: Object +267.23934 635.64917 289.18970 657.59953 @E +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +278.21452 657.59953 m +284.27499 657.59953 289.18970 652.68482 289.18970 646.62435 c +289.18970 640.56387 284.27499 635.64917 278.21452 635.64917 c +272.15405 635.64917 267.23934 640.56387 267.23934 646.62435 c +267.23934 652.68482 272.15405 657.59953 278.21452 657.59953 c +@c +S + +@rax %Note: Object +295.58580 635.64917 317.53616 657.59953 @E +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +306.56098 657.59953 m +312.62145 657.59953 317.53616 652.68482 317.53616 646.62435 c +317.53616 640.56387 312.62145 635.64917 306.56098 635.64917 c +300.50050 635.64917 295.58580 640.56387 295.58580 646.62435 c +295.58580 652.68482 300.50050 657.59953 306.56098 657.59953 c +@c +S + +@rax %Note: Object +323.93225 635.64917 345.88261 657.59953 @E +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +334.90743 657.59953 m +340.96791 657.59953 345.88261 652.68482 345.88261 646.62435 c +345.88261 640.56387 340.96791 635.64917 334.90743 635.64917 c +328.84696 635.64917 323.93225 640.56387 323.93225 646.62435 c +323.93225 652.68482 328.84696 657.59953 334.90743 657.59953 c +@c +S + +@rax %Note: Object +352.27871 635.64917 374.22907 657.59953 @E +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +363.25389 657.59953 m +369.31436 657.59953 374.22907 652.68482 374.22907 646.62435 c +374.22907 640.56387 369.31436 635.64917 363.25389 635.64917 c +357.19342 635.64917 352.27871 640.56387 352.27871 646.62435 c +352.27871 652.68482 357.19342 657.59953 363.25389 657.59953 c +@c +S + +@rax %Note: Object +374.22907 703.31726 415.78583 703.40031 @E +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +374.22907 703.31726 m +411.39439 703.40031 L +415.78583 703.40031 L +S + +@rax 418.39370 700.81030 486.87222 711.73219 @E +[0.00028346 0.00000000 0.00000000 0.00028346 415.78581156 703.40028923] @tm + 0 O 0 @g +0.00 0.00 0.00 1.00 k +e +/_R1559757542333-TimesNewRomanPSMT-NormalItalic 42333.00000 z +10583 0 (Medi\341ny p) @t +/_R1559757542333-TimesNewRomanPSMT-NormalItalic-1 42333.00000 z +190437 0 (\041) @t +/_R1559757542333-TimesNewRomanPSMT-NormalItalic 42333.00000 z +209226 0 (tic) @t +T +@rax %Note: Object +227.78220 623.64359 235.81077 694.30195 @E +0 J 0 j [] 0 d 0 R 0 @G +0.00 0.00 0.00 1.00 K +0 0.21600 0.21600 0.00000 @w +/$fm 0 def +227.78220 694.30195 m +235.73707 684.60236 L +235.81077 623.64359 L +S + +@rax 238.49461 621.05357 306.70299 631.97546 @E +[0.00028346 0.00000000 0.00000000 0.00028346 235.81076303 623.64356774] @tm + 0 O 0 @g +0.00 0.00 0.00 1.00 k +e +/_R1559757542333-TimesNewRomanPSMT-NormalItalic 42333.00000 z +10583 0 (Hledan\375 pivot) @t +T +@rax %Note: Object +-47.51036 634.60120 66.66690 772.19943 @E +/$fm 0 def +-47.51036 772.19943 m +66.66690 772.19943 L +66.66690 634.60120 L +-47.51036 634.60120 L +-47.51036 772.19943 L +@c +N + +%%PageTrailer +@rs +@rs +%%Trailer +@EndSysCorelDict +end +%%DocumentSuppliedResources: procset wCorel12Dict 12.0 0 +%%+ font TimesNewRomanPSMT-NormalItalic +%%EOF