From: Martin Mares Date: Fri, 22 Feb 2008 17:02:08 +0000 (+0100) Subject: Names of theorems are typeset on a separate line. X-Git-Tag: printed~230 X-Git-Url: http://mj.ucw.cz/gitweb/?a=commitdiff_plain;h=a33791d3f489cf8216516baafa246713b736a204;p=saga.git Names of theorems are typeset on a separate line. --- diff --git a/macros.tex b/macros.tex index c10500e..aab43d9 100644 --- a/macros.tex +++ b/macros.tex @@ -346,11 +346,11 @@ \def\label#1{{\sl (#1)\/}\enspace} -\def\thmn{\thm\label} -\def\lemman{\lemma\label} -\def\defnn{\defn\label} +\def\thmn#1{\thm\label{#1}\hfil\break} +\def\lemman#1{\lemma\label{#1}\hfil\break} +\def\defnn#1{\defn\label{#1}\hfil\break} \def\algn{\alg\label} -\def\notan{\nota\label} +\def\notan#1{\nota\label{#1}\hfil\break} \def\proof{\noindent {\sl Proof.}\enspace} \def\proofsketch{\noindent {\sl Proof sketch.}\enspace} diff --git a/mst.tex b/mst.tex index 6f0dea7..549a7ab 100644 --- a/mst.tex +++ b/mst.tex @@ -550,7 +550,7 @@ As in the original Bor\o{u}vka's algorithm, the number of iterations is $\O(\log Then apply the previous lemma. \qed -\thmn{\cite{mm:mst}}\id{planarbor}% +\thmn{Contractive Bor\o{u}vka on planar graphs, \cite{mm:mst}}\id{planarbor}% When the input graph is planar, the Contractive Bor\o{u}vka's algorithm runs in time $\O(n)$.