From: Martin Mares Date: Sat, 13 Sep 2008 15:07:38 +0000 (+0200) Subject: Pruned Notation. X-Git-Url: http://mj.ucw.cz/gitweb/?a=commitdiff_plain;h=9027348fe99704d56521490406d6a0ff1dc067c8;p=saga.git Pruned Notation. --- diff --git a/notation.tex b/notation.tex index e02cccf..c515b49 100644 --- a/notation.tex +++ b/notation.tex @@ -17,14 +17,11 @@ \n{${\cal D}(G)$}{optimal MSF decision tree for a~graph~$G$ \[decdef]} \n{$D(G)$}{depth of ${\cal D}(G)$ \[decdef]} \n{$D(m,n)$}{decision tree complexity of MSF for $m$~edges and $n$~vertices \[decdef]} -\n{$D_n$}{$n\times n$ matrix with 0's on the main diagonal and 1's elsewhere \[hatrank]} \n{$\deg_G(v)$}{degree of vertex~$v$ in graph~$G$; we omit $G$ if it is clear from context} \n{$E(G)$}{set of edges of a graph~$G$} \n{$E$}{$E(G)$ when the graph~$G$ is clear from context} \n{${\E}X$}{expected value of a~random variable~$X$} \n{$K_k$}{complete graph on~$k$ vertices} -\n{$L(\pi,A)$}{lexicographic ranking function for permutations on a~set~$A\subseteq{\bb N}$ \[brackets]} -\n{$L^{-1}(i,A)$}{lexicographic unranking function, the inverse of~$L$ \[brackets]} \n{$\log n$}{binary logarithm of the number~$n$} \n{$\log^* n$}{iterated logarithm: $\log^*n := \min\{i \mid \log^{(i)}n \le 1\}$; the inverse of~$2\tower n$} \n{$\(x)$}{position of the lowest bit set in~$x$ \[lsbmsb]} @@ -35,23 +32,13 @@ \n{$\mst(G)$}{the unique minimum spanning tree of a graph~$G$ \[mstnota]} \n{$m(G)$}{number of edges of a graph~$G$, that is $\vert E(G)\vert$} \n{$m$}{$m(G)$ when the graph~$G$ is clear from context} -\n{$\bb N$}{set of all non-negative integers} -\n{${\bb N}^+$}{set of all positive integers} -\n{$N_0(M)$}{number of permutations satisfying the restrictions~$M$ \[restnota]} \n{$n(G)$}{number of vertices of a graph~$G$, that is $\vert V(G)\vert$} \n{$n$}{$n(G)$ when the graph~$G$ is clear from context} \n{$\bnot$}{bitwise negation: $(\bnot x)[i]=1-x[i]$} -\n{$\O(g)$}{asymptotic~$O$: $f=\O(g)$ iff $\exists c>0: f(n)\le g(n)$ for all~$n\ge n_0$} \n{$\widetilde\O(g)$}{$f=\widetilde\O(g)$ iff $f=\O(g\cdot\log^{\O(1)} g)$} \n{$\bor$}{bitwise disjunction: $(x\bor y)[i]=1$ iff $x[i]=1 \lor y[i]=1$} -\n{${\cal P}_A$}{set of all permutations on a~set~$A$ \[restnota]} -\n{${\cal P}_{A,M}$}{set of all permutations on~$A$ satisfying the restrictions~$M$ \[restnota]} -\n{$\per M$}{permanent of a~square matrix~$M$} \n{$\poly(n)$}{$f=\poly(n)$ iff $f=\O(n^c)$ for some $c$} \n{${\rm Pr}[\varphi]$}{probability that a predicate~$\varphi$ is true} -\n{$\bb R$}{set of all real numbers} -\n{$R_{C,\prec}(x)$}{rank of~$x$ in a~set~$C$ ordered by~$\prec$ \[rankdef]} -\n{$R^{-1}_{C,\prec}(i)$}{unrank of~$i$: the $i$-th smallest element of a~set~$C$ ordered by~$\prec$ \[rankdef]} \n{$V(G)$}{set of vertices of a graph~$G$} \n{$V$}{$V(G)$ when the graph~$G$ is clear from context} \n{$W$}{word size of the RAM \[wordsize]} @@ -63,12 +50,9 @@ \n{$\beta(m,n)$}{$\beta(m,n) := \min\{i \mid \log^{(i)}n \le m/n \}$ \[itjarthm]} \n{$\delta_G(U)$}{the cut separating $U\subset V(G)$ from $V(G)\setminus U$ \[deltanota]} \n{$\delta_G(v)$}{edges of a one-vertex cut, i.e., $\delta_G(\{v\})$ \[deltanota]} -\n{$\Theta(g)$}{asymptotic~$\Theta$: $f=\Theta(g)$ iff $f=\O(g)$ and $f=\Omega(g)$} \n{$\lambda_i(n)$}{inverse of the $i$-th row of the Ackermann's function \[ackerinv]} \n{$\varrho({\cal C})$}{edge density of a graph class~$\cal C$ \[density]} -\n{$\Omega(g)$}{asymptotic~$\Omega$: $f=\Omega(g)$ iff $\exists c>0: f(n)\ge g(n)$ for all~$n\ge n_0$} -%%\n{$x := y$}{$x$ is defined as~$y$} \n{$T[u,v]$}{the path in a tree~$T$ joining vertices $u$ and $v$ \[heavy]} \n{$T[e]$}{the path in a tree~$T$ joining the endpoints of an~edge~$e$ \[heavy]} \n{$A\symdiff B$}{symetric difference of sets: $(A\setminus B) \cup (B\setminus A)$} @@ -87,16 +71,12 @@ \n{$\(x)_b$}{$\(x)$ zero-padded to exactly $b$ bits \[bitnota]} \n{$x[i]$}{when $x\in{\bb N}$: the value of the $i$-th bit of~$x$ \[bitnota]} \n{$x[B]$}{when $x\in{\bb N}$: the values of the bits at positions in the set~$B$ \[qhnota]} -\n{$\pi[i]$}{when $\pi$ is a~sequence: the $i$-th element of~$\pi$, starting with $\pi[1]$ \[brackets]} -\n{$\pi[i\ldots j]$}{the subsequence $\pi[i], \pi[i+1], \ldots, \pi[j]$} \n{$\sigma^k$}{the string~$\sigma$ repeated $k$~times \[bitnota]} \n{$\0$, $\1$}{bits in a~bit string \[bitnota]} \n{$\equiv$}{congruence modulo a~given number} \n{$\bf x$}{vector with elements $x_1,\ldots,x_d$; $x$ is its bitwise encoding \[vecnota]} \n{$x \shl n$}{bitwise shift of~$x$ by $n$~positions to the left: $x\shl n = x\cdot 2^n$} \n{$x \shr n$}{bitwise shift of~$x$ by $n$~positions to the right: $x\shr n = \lfloor x/2^n \rfloor$} -\n{$[n]$}{the set $\{1,2,\ldots,n\}$ \[pranksect]} -\n{$n^{\underline k}$}{$k$-th falling factorial power: $n\cdot(n-1)\cdot\ldots\cdot(n-k+1)$ \[kpranksect]} \n{$H\minorof G$}{$H$ is a~minor of~$G$ \[minordef]} \n{$G\crpt R$}{graph~$G$ with edges in~$R$ corrupted \[corrnota]} \n{$R^C$}{$R^C = R\cap \delta(C)$ \[corrnota]}