From: Martin Mares Date: Mon, 4 Feb 2008 18:40:29 +0000 (+0100) Subject: Added citations. X-Git-Tag: printed~243^2~1 X-Git-Url: http://mj.ucw.cz/gitweb/?a=commitdiff_plain;h=066b75979d033ae3f48c8e87dd1d9c53d44b2657;p=saga.git Added citations. --- diff --git a/adv.tex b/adv.tex index 400b8a0..e137a29 100644 --- a/adv.tex +++ b/adv.tex @@ -31,7 +31,7 @@ Let $\cal C$ be a class of graphs. We define its \df{edge density} $\varrho(\cal to be the infimum of all~$\varrho$'s such that $m(G) \le \varrho\cdot n(G)$ holds for every $G\in\cal C$. -\thmn{Density of minor-closed classes} +\thmn{Density of minor-closed classes, Mader~\cite{mader:dens}} A~minor-closed class of graphs has finite edge density if and only if it is a non-trivial class. @@ -167,6 +167,11 @@ has degree~9. \figure{hexangle.eps}{\epsfxsize}{The construction from Remark~\ref{hexa}} +\rem +The observation in~Theorem~\ref{mstmcc} was also made by Gustedt in~\cite{gustedt:parallel}, +who studied a~parallel version of the contractive Bor\o{u}vka's algorithm applied +to minor-closed classes. + %-------------------------------------------------------------------------------- \section{Using Fibonacci heaps} diff --git a/biblio.bib b/biblio.bib index e74fa09..93cbf67 100644 --- a/biblio.bib +++ b/biblio.bib @@ -639,3 +639,24 @@ inproceedings{ pettie:minirand, year={2003}, publisher={Cambridge University Press} } + +@article{ mader:dens, + title={{Homomorphieeigenschaften und mittlere Kantendichte von Graphen}}, + author={Mader, W.}, + journal={Mathematische Annalen}, + volume={174}, + number={4}, + pages={265--268}, + year={1967}, + publisher={Springer}, + note={German} +} + +@inproceedings{ gustedt:parallel, + author = "Jens Gustedt", + title = "Minimum Spanning Trees for Minor-Closed Graph Classes in Parallel", + booktitle = "Symposium on Theoretical Aspects of Computer Science", + pages = "421-431", + year = "1998", + url = "citeseer.ist.psu.edu/223918.html" +}