\algin A~connected graph~$G$ with an~edge comparison oracle.
\:If $G$ has no edges, return an~empty tree.
\:$t\=\lfloor\log^{(3)} n\rfloor$. \cmt{the size of clusters}
-\:Call \<Partition> (\ref{partition}) on $G$ and $t$ with $\varepsilon=1/8$. It returns
+\:Call the partitioning procedure (\ref{partthm}) on $G$ and $t$ with $\varepsilon=1/8$. It returns
a~collection~$\C=\{C_1,\ldots,C_k\}$ of clusters and a~set~$R^\C$ of corrupted edges.
\:$F_i \= \mst(C_i)$ for all~$i$, obtained using optimal decision trees.
\:$G_A \= (G / \bigcup_i C_i) \setminus R^\C$. \cmt{the contracted graph}
optimal algorithm:
\thm
-The time complexity of the Optimal algorithm is $\O(m\alpha(m,n))$.
+The time complexity of the Optimal algorithm is $\O(m\timesalpha(m,n))$.
%--------------------------------------------------------------------------------