\n{MSF}{minimum spanning forest \[mstdef]}
\n{$\mst(G)$}{the unique minimum spanning tree of a graph~$G$ \[mstnota]}
\n{$\msf(G)$}{the unique minimum spanning forest of a graph~$G$ \[mstnota]}
-\n{$X \choose k$}{a set of all $k$-element subsets of a set~$X$}
+\n{$X \choose k$}{the set of all $k$-element subsets of a set~$X$}
\n{$G/e$}{multigraph contraction \[contract]}
\n{$G.e$}{simple graph contraction \[simpcont]}
\n{$G/X$, $G.X$}{contraction by a~set $X$ of vertices or edges \[setcont]}
\n{$D_n$}{the $n\times n$ matrix with $D[i,i]=0$ for all~$i$ and ones elsewhere else \[hatrank]}
\n{$\per M$}{the permanent of a~square matrix~$M$}
\n{$G\crpt R$}{graph~$G$ with edges in~$R$ corrupted \[corrnota]}
-\n{$R_C$}{$R_C = R\cup \delta(C)$ \[corrnota]}
+\n{$R^C$}{$R^C = R\cap \delta(C)$ \[corrnota]}
\n{${\cal D}(G)$}{The optimal MSF decision tree for a~graph~$G$ \[decdef]}
\n{$D(G)$}{The depth of ${\cal D}(G)$ \[decdef]}
\n{$D(m,n)$}{Decision tree complexity of MSF \[decdef]}