\prednaska{2}{Rozdìl a panuj}{(zapsali J. Záloha a P. Ba¹ista)}
-\s{O èem bude dne¹ní pøedná¹ka?} Pøevá¾nì o metodì Rozdìl a panuj (\>{\sl Divide et Impera})
+\s{O èem bude dne¹ní pøedná¹ka?} Pøevá¾nì o metodì Rozdìl a panuj (\>{\sl Divide et Impera}).
\noindent
-Pro porovnávání algoritmù si musíme zavést nìjaké kritérium. Vìt¹inou se zajímáme o èas a pamìt, které spotøebují pro svùj bìh. Proto, abychom v¹ak mohli takto algoritmy porovnávat bez ohledu na prostøedí, stroj a podobné vìci, zavádíme takzvanou $O$ notaci.
+Pro porovnávání algoritmù si musíme zavést nìjaké kritérium. Vìt¹inou se zajímáme o èas a pamì», které spotøebují pro svùj bìh. Proto, abychom mohli takto algoritmy porovnávat bez ohledu na prostøedí, poèítaè a podobné vìci, zavádíme takzvanou $\O${ }notaci.
\s{Definice:} Pøedpokládejme, ¾e funkce, které porovnávame jsou dle následujícího pøedpisu:
-$f:{N} \rightarrow {R}^{+}$
+$f:M \rightarrow \bb{R}^{+}$, kde $M \subset \bb{N}$.
\noindent
-Potom øekneme, ¾e$ f(n) $ je $ O(g(n))$ právì tehdy kdy¾ existuje nìjaké $c>0: \forall ^{*} n \in {N}: f(n) \leq c.g(n)$
+Potom øekneme, ¾e $f(n)$ je $\O(g(n))$ právì tehdy kdy¾: $\exists$ $c>0, c \in \bb{R}:$ $\forall ^{*} n \in \bb{N}:$ $f(n) \leq c \cdot g(n)$.
-\>{\sl Poznámka:} $ \forall ^{*} n$ znamená $\exists n_{0}: \forall n \geq n_{0} :$. Nebo je¹tì jinak: výrok platí pro v¹echna $n$ a¾ na koneèný poèet vyjímek. Tato definice tedy øíká, ¾e funkci $f(n)$ je mo¾né ohranièit shora nìjakým reálným násobkem funkce $g(n)$ pro $\forall n \in N$. Èasto zapisujeme $f(n)=O(g(n))$ - jedná se o za¾itou vìc, ale uvìdomme si v¹ak, ¾e tento zápis neoznaèuje rovnost! (proto¾e platí napøíklad $\log{n}=O(n)$ ale neplatí $n=O(\log{n})$ To znamená, ¾e neplatí symetrie, odtud vyplývá, ¾e nemù¾e jít o rovnost). Ale: "Je to èuòaèina." Formálnì jde o nìjakou mno¾inu nebo tøídu funkcí $f(n)$, pro které platí, ¾e se dají shora ohranièit kladným reálným násobkem funkce $g(n)$. A potom pí¹eme $f \in O(g)$.
+\>{\sl Poznámka:} $ \forall ^{*} n \in \bb{N}$ $\Longleftrightarrow \exists$ $n_{0} \in \bb{N}:$ $\forall n \geq n_{0}, n \in \bb{N}$. Tedy $ \forall ^{*} n \in \bb{N}$ znamená, ¾e výrok platí pro v¹echna $n \in \bb{N}$ a¾ na koneèný poèet vyjímek. $\O$ notace tedy vyjadøuje, ¾e funkce $f(n)$ je men¹í nejvý¹e rovná nìjakému reálnému násobku funkce $g(n)$ pro $\forall ^{*} n \in \bb{N}$. Tento fakt se zapisuje takto: $f(n)=\O(g(n))$. Zde se jedná o za¾itou vìc, ale~je nutné si uvìdomit, ¾e tento zápis neoznaèuje rovnost! Je to proto, ¾e napøíklad platí: $\log{n}=\O(n)$, ale neplatí $n=\O(\log{n})$. To znamená, ¾e neplatí symetrie, a tudí¾ nemù¾e jít o rovnost ve smyslu ekvivalnece. \uv{Je to èuòaèina.} Formálnì tuto skuteènost poipsujeme, ¾e jde o nìjakou mno¾inu nebo tøídu funkcí $f(n)$, pro které platí, ¾e se dají shora ohranièit kladným reálným násobkem funkce $g(n)$. A potom zapisujeme $f \in \O(g)$. Napøíklad:
-napøíklad:
+$2{,}5n^{2} \in \O(n^{2})$
-$$
-2,5n^{2} \dots O(n^{2})
-$$
-$$
-2,5n^{2}+30n \dots O(n^{2})
-$$
+$2{,}5n^{2}+30n \in \O(n^{2})$.
-Platí:
+\noindent
+Pro dvì tøídy funkcí $\O(f)$ a $\O(g)$ platí:
$$
-O(f)+O(g)=O(f+g)
+\O(f)+\O(g) \in \O(f+g)
$$
-proto¾e:
-
-$$
-f^{\prime} \leq c.f
-$$
-$$
-g^{\prime} \leq d.g
-$$
+\noindent
+proto¾e pro v¹echny funkce $f^{\prime} \in \O(f)$ a $g^{\prime} \in \O(g)$ platí:
$$
-f^{\prime} + g^{\prime} \leq c.f+d.g \leq (c+d).(f+g)
+\eqalign{
+f^{\prime} &\leq c\cdot f \cr
+g^{\prime} &\leq d\cdot g \cr
+f^{\prime}+g^{\prime} \leq c\cdot f+d\cdot g &\leq (c+d)\cdot (f+g)
+}
$$
+
\noindent
-A zde vidíme, ¾e $(c+d)$ se schová do $O$. Naprosto stejnì se doká¾e odobný vztah také pro násobení:
+A zde vidíme, ¾e $(c+d)$ se schová do $\O$. Naprosto stejnì se uká¾e obdobný vztah pro násobení:
$$
-O(f).O(g)=O(f.g)
+\O(f).\O(g)=\O(f.g)
$$
+\noindent
Rovnì¾ platí:
$$
-O(f+g)=O(max(f,g))
+\O(f+g)=\O(\max(f,g))
$$
\noindent
-nebot libovolný $n$-násobek funkce s exponentem $k$ je v¾dy asymmptoticky men¹í ne¾ $n$ násobek funkce s exponentem $l>k$.
+nebo» libovolný kladný $c_1$-násobek funkce s exponentem $k$ je v¾dy asymptoticky men¹í ne¾ $c_2$-násobek funkce s~exponentem $l>k$.
To nám umo¾nuje zanedbávat pomaleji rostoucí èleny:
$$
-O(n^{2})+O(n)=O(n^{2}+n)=O(n^{2})
+\O(n^{2})+\O(n)=\O(n^{2}+n)=\O(n^{2})
$$
\noindent
-$O$ notace v¹ak popisuje nejhor¹í pøípad. U nìkterých algoritmù nejhor¹í, nejlep¹í a tudí¾ i prùmìrný pøípad splývají. Je ale mnoho algoritmù, které se v tìchto parametrech diametrálnì li¹í, proto zavádíme dal¹í notace.
-
+$\O$ notace popisuje horní odhad asymptotického chování algoritmù. Mnohdy v¹ak potøebujeme také urèit jeho spodní hranici, popøípadì je odhadnout obì. U nìkterých algoritmù sice splývají, ale u nìkterých ne, tak¾e zavádíme dal¹í notace:
\s{Definice:}
\itemize\ibull
-\:$f(n)$ je $\Omega(g(n)) \Longleftrightarrow \exists c>0: \forall ^{*} n \in {N}: f(n) \geq c.g(n)$
-$\Omega$ notace øíká, ¾e algoritmus se v¾dy chová stejnì èi lépe ne¾ nìjaký $c$-násobek funkce $g$.
-\:$f(n)$ je $\Theta(g(n)) \Longleftrightarrow f(n)$ je $O(g(n)) \wedge f(n) $ je $ \Omega(g(n))$
+\:$f(n) \in \Omega(g(n)) \Longleftrightarrow \exists$ $c>0:$ $\exists$ $g(n): \forall ^{*} n \in {\bb N}: f(n) \geq c\cdot g(n)$
+
+$\Omega$ notace øíká, ¾e hodnota funkce $f$ je v¾dy stejná nebo vy¹¹í ne¾ nìjaký $c$-násobek funkce $g$, a tedy $g \in \O(f)$.
+\:$f(n) \in \Theta(g(n)) \Longleftrightarrow f(n) \in O(g(n)) \wedge f(n) \in \Omega(g(n))$
nebo:
-$f(n)$ je $\Theta(g(n)) \Longleftrightarrow \exists c_{1},c_{2}: c_{1}.g(n) \leq f(n) \leq c_{2}.g(n)$
-existují-li nezáporné konstanty $c_{1},c_{2}$ takové, ¾e se funkce $f(n)$ dá ohranicit $c_{1}$ a $c_{2}$ násobky funkce $g(n)$
+$f(n) \in \Theta(g(n)) \Longleftrightarrow \exists$ $c_{1},c_{2} > 0:\exists$ $g(n) : c_{1}\cdot g(n) \leq f(n) \leq c_{2}\cdot g(n)$ To znamená, ¾e existují nezáporné reálne konstanty $c_{1},c_{2}$ takové, ¾e se funkce $f(n)$ dá ohranièit $c_{1}$ a $c_{2}$ násobky funkce $g(n)$.
\endlist
\noindent
-$\Theta$ notace tedy vyjadøuje, ¾e nejlep¹í a nejhor¹í pøípad chování algoritmu jsou stejné tøídy, li¹í se nanejvý¹ multiplikativní konstantou.
+$\Theta$ notace tedy vyjadøuje, ¾e chování algoritmu je shora i zespoda odhadnuto nìjakými kladnými rálnymi násobky funkce $g$. Proto je zøejmé, ¾e se v¾dy bude asymptoticky chovat stejnì.
\s{Porovnání rùstu funkcí:} (aneb jak moc máme algoritmy rádi podle jejich chování od nejlep¹ích k nejhor¹ím)
\itemize\ibull
\: $\Theta(1) \ldots$ funkce zespoda i shora ohranièené konstantami
\: $\Theta(\log{( \log{n} )})$
-\: $\Theta(\log{n})$
-\: $\Theta(n^{\varepsilon}), \varepsilon \in (0,1)$
-\: $\Theta(n)$
-\: $\Theta(n^{2})$
+\: $\Theta(\log{n}) \ldots$logaritmická
+\: $\Theta(n^{\varepsilon}), \varepsilon \in (0,1) \ldots$ sublineární
+\: $\Theta(n) \ldots$ lineární
+\: $\Theta(n^{2}) \ldots$ kvadratická
$\vdots$
-\: $\Theta(n^{k}), k \in {N}$
+\: $\Theta(n^{k}), k \in {\bb N} \ldots$ polynomiální
$\vdots$
-\: $\Theta(2^{n})$
-\: $\Theta(3^{n})$
+\: $\Theta(2^{n}) \ldots$ exponenciální pøi základu $2$
+\: $\Theta(3^{n}) \ldots$ exponenciální pøi základu $3$
$\vdots$
-\: $\Theta(k^{n}), k \in {R}^{+}, k > 1$
+\: $\Theta(k^{n}), k \in \bb{R}^{+},$ $k > 1 \ldots$ exponenciální pøi základu $k$
$\vdots$
-\: $\Theta(n!)$
+\: $\Theta(n!) \ldots$ faktoriálová
$\vdots$
\: $\Theta(n^{n})$
+
+$\vdots$
\endlist
-\>{\sl Poznámka:} Pøi logaritmech a odhadech slo¾itosti se dá v¾dy hovoøit o logaritmu s libovolným základem, proto¾e platí:
+\>{\sl Poznámka:} Pøi logaritmech a odhadech slo¾itosti se dá v¾dy hovoøit o logaritmu s~libovolným základem, proto¾e~platí:
$$
-\log_k{n}={{\log_c{n}}\over{\log_c{k}}}={{1}\over{\log_c{k}}}.\log_c{n}
+\log_k{n}={{\log_c{n}}\over{\log_c{k}}}={{1}\over{\log_c{k}}}\cdot \log_c{n}
$$
kde ${1}\over{\log_c{k}}$ je jen konstanta, tak¾e ji mù¾eme zanedbat.
\>{\sl Pøíklady:}
-\s{Eukleidùv algoritmus:} Pokd jej pustím na 2 èísla o $n$ bitech, potom poèet iterací bude $O(n)$, ka¾dá iterace trvá $O(n^{2})$ krokù. Tak¾e celkovì má tento algoritmus èasovou slo¾itost: $O(n^{3})$
+\s{Eukleidùv algoritmus:} Pokud jej pustíme na $2$ èísla o $n$ bitech, poèet iterací bude $\O(n)$, ka¾dá iterace trvá $\O(n^{2})$ krokù. Tak¾e celkovì má tento algoritmus èasovou slo¾itost $\O(n^{3})$.
-\s{Rozdìl a panuj:} A nyní pøestaòme chodit okolo horké ka¹e a øekòeme si, co to ono vý¹e zmiòované ``rozdìl a panuj'' znamená. Mìjme nìjaký problém, který má tu vlastnost, ¾e kdy¾ jej rozdìlím na nìjaké podproblémy, které mají stejný charakter a ty vyøe¹ím, tak slo¾ením jejich øe¹ení získám øe¹ení pùvodního problému. Ten po¾adavek na stejný charakter je podstatný, nebot nám umo¾ní se podívat na tyto podproblémy pod stejným úhlem a opìt je rozdìlit na ``podpodproblémy'' a tak dále, a¾ se dostanu na úroveò, kterou je mo¾né vyøe¹it triviálnì, popøípadì jiným ménì nároèným zpùsobem, teï je provedeno rozdìlení. Po jejich vyøe¹ení se zaènu vynoøovat z logické rekurze a na jednotlivých hladinách skládám øe¹ení, a¾ se octnu na hladinì pùvodního problému, tu slo¾ím a u¾ mohu panovat.
+\s{Rozdìl a panuj:} A nyní pøestaòme chodit kolem horké ka¹e a øekòeme si, co to ono vý¹e zmiòované \uv {rozdìl a panuj} znamená. Mìjme nìjaký problém, který má tu vlastnost, ¾e kdy¾ jej rozdìlíme na nìjaké podproblémy, které mají stejný charakter a ty vyøe¹íme, tak slo¾ením jejich øe¹ení získáme øe¹ení pùvodního problému. Po¾adavek na stejný charakter podproblémù je podstatný, nebo» nám umo¾ní se podívat na tyto podproblémy pod stejným úhlem a opìt je rozdìlit na \uv {podpodproblémy} a tak dále, a¾ se dostaneme na úroveò, kterou je mo¾né vyøe¹it triviálnì, popøípadì jiným, ménì nároèným, zpùsobem. (V této chvíli je dokonèena èást rozdìlování.) Po jejich vyøe¹ení se zaèneme vynoøovat z rekurze a na jednotlivých hladinách skládat øe¹ení, a¾ se ocitneme na hladinì pùvodního problému. Po~posledním slo¾ení je pùvodní úloha vyøe¹ena.
-\s{Odboèka:} \>{\sl (Mergesort)} Pøi prùbìhu algoritmu mergesort nejprve rozdìlujeme vstup na dvì ``stejnì'' (v hor¹ím pøípadì a¾ na jednotku) velká pole. To nám zabere na ka¾dé hladinì konstantní práci:
-$T(1) \dots O(1)$.
+\s{Odboèka:} \>{\sl (Mergesort)} Pøi prùbìhu algoritmu mergesort nejprve rozdìlujeme vstup na dvì \uv{stejnì} (v hor¹ím pøípadì a¾ na jednotku) velké èásti. To nám zabere na ka¾dé hladinì konstantní práci $\O(1)$.
\noindent
-Kdy¾ se v¹ak vynoøujeme z logické rekurze, musíme na ka¾dé hladinì strávit linárnì èasu sluèováním:
-$T(n)=2.T({{n}\over{2}})+O(n)$
-
-\s{Strom volání: }
+Kdy¾ se v¹ak vynoøujeme z rekurze, musíme na ka¾dé hladinì strávit linárnì èasu sluèováním:
-\figure{figure1.eps}{Strom volání}{2in}
+$T(n)=2 \cdot T({{n}/{2}})+\O(n)$.
\noindent
-Souèet práce pøes jednu hladinu stromu je $O(n)$. A jedodu¹e odvodíme, ¾e celkový poèet hladin je $O(\log{n})$, tudí¾ jsme si ukázali slo¾itost $O(n\log(n))$.
+Souèet práce pøes jednu hladinu stromu je $\O(n)$. Víme, ¾e celkový poèet hladin je $\O(\log{n})$, a tudí¾ jsme ukázali, ¾e~èasová slo¾itost algoritmu je $\O(n \cdot \log n)$.
-\s{Rychlej¹í algoritmus pro násobení:} \>{\sl (rychlej¹í ne¾ $O(n^{2})$)} Pokud násobíme dvì èísla zpùsobem, který nás uèili na základní ¹kole, dostaneme se na èasovou slo¾itost $O(n^2)$. Proto¾e se jedná o dost èastou operaci, zamyslíme se, jestli by ne¹la zjednodu¹it. Nasmìrujme na¹e úvahy na postup ``rozdìl a panuj''. Rozdìlíme ka¾dého èinitele na dvì stejnì dlouhé èásti a pro jednoduchost pøedpokládejme, ¾e dìlení probìhne v¾dy bez zbytku:
+\s{Rychlej¹í algoritmus pro násobení:} \>{\sl (rychlej¹í ne¾ $\O(n^{2})$)} Pokud násobíme dvì èísla $X$ a $Y$ zpùsobem, který nás uèili na základní ¹kole, dostaneme se na èasovou slo¾itost $\O(n^2)$. Proto¾e se jedná o dost èastou operaci, zamysleme se, jestli by ne¹la zrychlit. Nasmìrujme na¹e úvahy na postup \uv{rozdìl a panuj}. Rozdìlíme ka¾dého èinitele na dvì stejnì dlouhé èásti a pro jednoduchost pøedpokládejme, ¾e toto roz¹tìpení èinitele probìhne v¾dy bez zbytku:
$$
-X=A.10^{{n}\over{2}}+B
+X=A \cdot 10^{{n}/2}+B
$$
$$
-Y=C.10^{{n}\over{2}}+D
+Y=C \cdot10^{{n}/{2}}+D
$$
\noindent
-Potom získáme výsledek pùvodního výrazu jako:
+Zde $A, B, C, D$ jsou u¾ jen $n/2$ ciferná èísla. Potom získáme pùvodní souèin $X \cdot Y$ jako:
\noindent
-$X.Y=(A.10^{{n}\over{2}}+B).(C.10^{{n}\over{2}}+D)=A.C.10^{n}+A.D.10^{{n}\over{2}}+B.C.10^{{n}\over{2}}+B.D=A.C.10^{n}+(A.D+B.C).10^{{n}\over{2}}+B.D$
+$X \cdot Y=(A\cdot 10^{{n}/{2}}+B)\cdot (C\cdot 10^{{n}/{2}}+D)=A\cdot C\cdot 10^{n}+A\cdot D\cdot 10^{{n}/{2}}+B\cdot C\cdot 10^{{n}/{2}}+B\cdot D=A\cdot C\cdot 10^{n}+(A\cdot D+B\cdot C)\cdot 10^{{n}/{2}}+B\cdot D$
\noindent
-Nyní, jak vidíme, staèí spoèítat souèin ètyø ${n}\over{2}$ ciferných císel. Spoèítejme, jak se tím zmìní celková èasová slo¾itost:
+Nyní, jak vidíme, staèí spoèítat souèin ètyø ${n}/{2}$ ciferných císel. Uva¾me, jak se tím zmìní celková èasová slo¾itost:
\noindent
-$T(n)=4.T({{n}\over{2}})+O(n)=4.T({{n}\over{2}})+c.n=4.(4.T({{n}\over{4}})+c.{{n}\over{2}})+c.n=4^{2}.T({{n}\over{4}})+2.c.n+c.n=4^{2}.T({{n}\over{4}})+3.c.n=4^{2}.(4.T({{n}\over{8}})+c.{{n}\over{4}})+3.c.n=4^{3}.T({{n}\over{8}})+4.c.n+3.c.n=4^{3}.T({{n}\over{8}})+7.c.n=\ldots$
+$T(n)=4\cdot T({{n}/{2}})+O(n)=4\cdot T({{n}/{2}})+c\cdot n=4\cdot (4\cdot T({{n}/{4}})+c\cdot {{n}/{2}})+c\cdot n=4^{2}\cdot T({{n}\over{4}})+2\cdot c\cdot n+c\cdot n=4^{2}\cdot T({{n}/{4}})+3\cdot c\cdot n=4^{2}\cdot (4\cdot T({{n}/{8}})+c\cdot {{n}/{4}})+3\cdot c\cdot n=4^{3}\cdot T({{n}/{8}})+4\cdot c\cdot n+3\cdot c\cdot n=4^{3}\cdot T({{n}/{8}})+7\cdot c\cdot n=\ldots$
\noindent
takto bychom mohli pokraèovat dále, a¾ bychom se dostali na:
$$
-T(n)=4^{4}.T({{n}\over{16}})+15.c.n
+T(n)=4^{4}\cdot T\left({{n}\over{16}}\right)+15\cdot c\cdot n
$$
$$
-T(n)=4^{5}.T({{n}\over{32}})+31.c.n
+T(n)=4^{5}\cdot T\left({{n}\over{32}}\right)+31\cdot c\cdot n
$$
$$
\vdots
$$
Odtud mù¾eme vypozorovat, ¾e se vztah pro $T(n)$ vyvíjí zøejmì podle vzorce:
$$
-T(n)=4^{k}.T({{n}\over{2^{k}}})+2^{k-1}.c.n+2^{k-2}.c.n+2^{k-3}.c.n+2^{k-4}.c.n+\ldots+2^{0}.c.n
-$$
-$$
-T(n)=4^{k}.T({{n}\over{2^{k}}})+(2^{k}-1).c.n
+T(n)=4^{k}\cdot T\left({{n}\over{2^{k}}}\right)+2^{k-1}\cdot c\cdot n+2^{k-2}\cdot c\cdot n+2^{k-3}\cdot c\cdot n+2^{k-4}\cdot c\cdot n+\ldots+2^{0}\cdot c\cdot n,
$$
-kde k je poèet vìtvení a n je velikost úlohy. Kdy¾ uvá¾íme, ¾e se strom volaní v¾dy vìtví pravidelnì na dva podstromy, tak platí: $k \approx \log{n}$. Kdy¾ dosadíme:
$$
-T(n)=4^{\log{n}}.T({{n}\over{2^{\log{n}}}})+(2^{\log{n}}-1).c.n
+T(n)=4^{k}\cdot T\left({{n}\over{2^{k}}}\right)+(2^{k}-1)\cdot c\cdot n
$$
+kde $k$ je poèet vìtvení a $n$ je velikost úlohy. Kdy¾ uvá¾íme, ¾e se strom volaní v¾dy vìtví pravidelnì na dva podstromy, tak platí: $k =\left\lceil \log{n} \right\rceil$. Dosadíme:
$$
-T(n)=2^{\log{n}}.2^{\log{n}}.T({{n}\over{2^{\log{n}}}})+(2^{\log{n}}-1).c.n
+\eqalign{
+T(n)&=4^{\log{n}}\cdot T\left({{n}\over{2^{\log{n}}}}\right)+\left(2^{\log{n}}-1\right)\cdot c\cdot n\cr
+T(n)&=2^{\log{n}}\cdot 2^{\log{n}}\cdot T\left({{n}\over{2^{\log{n}}}}\right)+\left(2^{\log{n}}-1\right)\cdot c\cdot n\cr
+T(n)&=n\cdot n\cdot T\left({{n}\over{n}}\right)+(n-1)\cdot c\cdot n\cr
+T(n)&=n^{2}\cdot T(1)+(n-1)\cdot n\cdot c\cr
+T(n)&=n^{2}\cdot T(1)+(n^{2}-n) \cdot c\cr
+T(n)&=n^{2}\cdot T(1)+n^{2} \cdot c-n \cdot c\cr
+T(n)&=n^{2}\cdot (T(1)+c)-c \cdot n\cr
+}
$$
-$$
-T(n)=n.n.T({{n}\over{n}})+(n-1).c.n
-$$
-$$
-T(n)=n^{2}.T(1)+(n-1).n.c
-$$
-$$
-T(n) \doteq n^{2}.(T(1)+c)
-$$
-Pokud $T(1)$ a $c$ jsou konstanty, mù¾eme psát: $T(n)$ je $O(n^{2})$. Tak¾e jsme si pøíli¹ nepomohli, proto¾e i klasický algoritmus na násobení má kvadratickou èasovou slo¾itost. Podívejme se v¹ak, jako vypadá tabulka vìtvení pro daný algoritmus:
+Pokud $T(1)$ a $c$ jsou konstanty, mù¾eme psát: $T(n) \in \O(n^{2})$. Tak¾e jsme si pøíli¹ nepomohli, proto¾e i klasický algoritmus na násobení má kvadratickou èasovou slo¾itost. Podívejme se v¹ak, jak vypadá tabulka vìtvení pro daný algoritmus:
\medskip
\vbox{\halign{# \quad \vrule \quad & # \quad \vrule \quad & #\cr
poèet vìtvení & poèet úloh & velikost podúlohy\cr
\noalign{\medskip\hrule\bigskip}
-0 & $4^{0}$ & ${n}\over{2^{0}}$\cr
-1 & $4^{1}$ & ${n}\over{2^{1}}$\cr
-2& $4^{2}$ & ${n}\over{2^{2}}$\cr
-3 & $4^{3}$ & ${n}\over{2^{3}}$\cr
+0 & $4^{0}$ & ${n}/{2^{0}}$\cr
+1 & $4^{1}$ & ${n}/{2^{1}}$\cr
+2 & $4^{2}$ & ${n}/{2^{2}}$\cr
+3 & $4^{3}$ & ${n}/{2^{3}}$\cr
\vdots & \vdots & \vdots\cr
-k & $4^{k}$ & ${n}\over{2^{k}}$\cr}}
+k & $4^{k}$ & ${n}/{2^{k}}$\cr}}
\medskip
\noindent
-Naskýtá se otázka, jestli bychom nemohli, kdy¾ se pozornì zamyslíme, èasovou nároènost zlep¹it. Existuje nìkolik mo¾ností:
-- zlep¹it èlen $O(n) \ldots c.n$, to znamená zlep¹it èas spojování podúloh $\rightarrow$ to v¹ak rychleji nejde (pokud ètenáø nevìøí, mù¾e si dokázat)
-- sní¾it poèet vìtvení $\rightarrow$ nech» se algoritmus nevìtví na $4$ vìtve, ale na ménì. To, ale jak dále uvidíme u¾ mo¾né je\vdots Staèí si uvìdomit, ¾e vlastnì potøebujeme spoèítat:
+Naskýtá se otázka, jestli bychom nemohli, èasovou slo¾itost zlep¹it. Existuje nìkolik mo¾ností:
+
+\itemize\ibull
+\: zlep¹it èlen $c \cdot n$, to znamená zlep¹it èas spojování podúloh. Toto v¹ak rychleji nejde (pokud ètenáø nevìøí, mù¾e si to dokázat).
+\: sní¾it poèet vìtvení. Nech» se tedy algoritmus nevìtví na $4$ vìtve, ale na ménì. To, ale jak dále uvidíme u¾ mo¾né je.
+\endlist
+
+\noindent
+Staèí si uvìdomit, ¾e vlastnì potøebujeme spoèítat:
$$
-X.Y=A.C.10^{n}+(A.D+B.C).10^{{n}\over{2}}+B.D
+X\cdot Y=A\cdot C\cdot 10^{n}+(A\cdot D+B\cdot C)\cdot 10^{{n}\over{2}}+B\cdot D
$$
-Pøièem¾ ale nepotøebujeme znát souèiny $A.D$ ani $B.C$ samostatnì, nebo» nám staèí zjistit èlen $A.D+B.C$. Jako kdybychom poèítali $A.C$, $B.D$ a potom $(A+B).(C+D)=A.C+A.D+B.C+B.D$, tak odèítáním $(A.D+B.C)$ od $A.C+A.D+B.C+B.D$ dostaneme hledaný prostøední èlen: $A.D+B.C$, který potøebujeme, abychom spoèetli $X.Y$. Nyní nám ji¾ staèí jen tøi násobení, jedno sèítání a jedno odèítání navíc.Otázka je, zda-li to bude výhodné. Sèítání i odèítání nám zaberou nanejvý¹e lineární èas, tak¾e to skuteènì je výhodná úprava. Jak se tím zmìní výsledný èas? Podívejme se opìt na tabulku vìtvení:
+Pøitom ale nepotøebujeme znát souèiny $A\cdot D$ ani $B\cdot C$ samostatnì, nebo» nám staèí zjistit èlen $A\cdot D+B\cdot C$. Kdybychom poèítali $A\cdot C$, $B\cdot D$ a potom $(A+B)\cdot (C+D)=A\cdot C+A\cdot D+B\cdot C+B\cdot D$, tak odèítáním $(A\cdot C+B\cdot D)$ od $A\cdot C+A\cdot D+B\cdot C+B\cdot D$ dostaneme hledaný prostøední èlen: $A\cdot D+B\cdot C$. Nyní nám ji¾ staèí jen tøi násobení, ale potøebujeme tøi sèítání a jedno odèítání navíc. Otázka je, zda-li to bude výhodné. Sèítání i~odèítání nám zaberou nanejvý¹e lineární èas, tak¾e to skuteènì je výhodná úprava. Jak se tím zmìní výsledný èas? Podívejme se opìt na tabulku vìtvení:
\medskip
\vbox{\halign{# \quad \vrule \quad & # \quad \vrule \quad & #\cr
poèet vìtvení & poèet úloh & velikost podúlohy\cr
\noalign{\medskip\hrule\bigskip}
-0 & $3^{0}$ & ${n}\over{2^{0}}$\cr
-1 & $3^{1}$ & ${n}\over{2^{1}}$\cr
-2& $3^{2}$ & ${n}\over{2^{2}}$\cr
-3 & $3^{3}$ & ${n}\over{2^{3}}$\cr
+0 & $3^{0}$ & ${n}/{2^{0}}$\cr
+1 & $3^{1}$ & ${n}/{2^{1}}$\cr
+2& $3^{2}$ & ${n}/{2^{2}}$\cr
+3 & $3^{3}$ & ${n}/{2^{3}}$\cr
\vdots & \vdots & \vdots\cr
-k & $3^{k}$ & ${n}\over{2^{k}}$\cr}}
+k & $3^{k}$ & ${n}/{2^{k}}$\cr}}
\medskip
\noindent
-Spoèítejme si práci,která se musí udìlat na jedné hladinì. Pøedpokládejme, ¾e $k \approx \log{n}$. Dostávame:
-$$\sum_{k=0}^{n}3^{k}.{{n}\over{2^{k}}}=\sum_{k=0}^{n} \left( {{3}\over{2}} \right) ^{k}.n=n.\sum_{k=0}^{n} \left( {{3}\over{2}} \right) ^{k}=n.{{ \left( {{3}\over{2}} \right) ^{k+1}-1}\over{{{3}\over{2}}-1}}=
+Spoèítejme si práci, která se musí udìlat na jedné hladinì. Pøedpokládejme, ¾e $k= \lceil \log_2{n} \rceil$. Dostávame:
+$$\sum_{i=0}^{k}3^{i}\cdot {{n}\over{2^{i}}}=\sum_{i=0}^{k} \left( {{3}\over{2}} \right) ^{i}\cdot n=n\cdot \sum_{i=0}^{k} \left( {{3}\over{2}} \right) ^{i}=n\cdot {{ \left( {{3}\over{2}} \right) ^{k+1}-1}\over{{{3}\over{2}}-1}}=
$$
$$
-=n{{ \left( {3}\over{2} \right) ^{\log{n}+1}-1}\over{{{1}\over{2}}}}=2.n. \left[ \left( {{3}\over{2}} \right) ^{\log{n}+1}-1 \right] \approx O \left( n. \left( {{3}\over{2}} \right) ^{\log{n}} \right) =
+=n\cdot {{ \left( {3}\over{2} \right) ^{k+1}-1}\over{{{1}\over{2}}}}=2\cdot n\cdot \left[ \left( {{3}\over{2}} \right) ^{k+1}-1 \right] = \O \left( n\cdot \left( {{3}\over{2}} \right) ^{\log_2{n}} \right) =
$$
$$
-=O \left( n.{{3^{\log{n}}}\over{2^{\log{n}}}} \right)=O \left( n.{{3^{\log{n}}}\over{n}} \right)=O \left( 3^{\log_2{n}} \right)=O \left( (2^{\log_2{3}})^{\log_2{n}} \right)=
+=\O \left( n\cdot {{3^{\log_2{n}}}\over{2^{\log_2{n}}}} \right)=\O \left( n\cdot {{3^{\log_2{n}}}\over{n}} \right)=\O \left( 3^{\log_2{n}} \right)=\O \left( (2^{\log_2{3}})^{\log_2{n}} \right)=
$$
$$
-=O \left( 2^{\log_2{n}.\log_2{3}} \right)=O \left( (2^{\log_2{n}})^{\log_2{3}} \right)=O \left( n^{\log_2{3}} \right) \doteq O \left( n^{1,585} \right)
+=\O \left( 2^{\log_2{n}.\log_2{3}} \right)=\O \left( (2^{\log_2{n}})^{\log_2{3}} \right)=\O \left( n^{\log_2{3}} \right) =\O \left( n^{1{,}585} \right)
$$
-Z toho vyplývá, ¾e jsme na¹li algoritmus s èasovou slo¾itostí men¹í ne¾ $O(n^{2})$. "Rozumné" implementace tohoto algoritmu jsou v¹ak trochu modifikované, a to tak, ¾e se rekuzivnì nevolají a¾ na jednociferná èísla, ale asi na 50 ciferná, a ty u¾ násobí standardním zpùsobem, nebo» re¾ie algoritmu není nulová a takto se dosahuje nejlep¹ích výsledkù.
+Z toho vyplývá, ¾e jsme na¹li algoritmus s èasovou slo¾itostí men¹í ne¾ $\O(n^{2})$. \uv{Rozumné} implementace tohoto algoritmu jsou v¹ak trochu modifikované. A to tak, ¾e rekuzivnì ne¹tìpí èinitele a¾ na jednociferná èísla, ale konèí asi na 50 ciferných, a ty se u¾ vynásobí standardním zpùsobem, nebo» re¾ie rekurzivního algoritmu není nulová a~takto se dosahuje nejlep¹ích výsledkù.
\noindent
-Pro násobení èísel existuje je¹tì efektívnìj¹í algoritmus, který má èasovou slo¾itost $O(n.\log{n})$, av¹ak tento u¾ vyu¾ívá rùzné pokroèilé techniky jako diskrétní Fourierova transformáce a podobnì, tak¾e jej zde nebudeme rozebírat.
+Pro násobení èísel existuje je¹tì efektívnìj¹í algoritmus, který má èasovou slo¾itost $\O(n.\log{n})$, av¹ak tento u¾ vyu¾ívá rùzné pokroèilé techniky jako diskrétní Fourierova transformace a podobnì, tak¾e jej zde nebudeme rozebírat.
-\s{Vìta:} \>{\sl (Master Theorem)}
+Na¹e pozorování se nyní pokusíme shrnout ve vìtì Master Theorem, èesky tì¾ nazývané (ne náhodou) \uv{Kuchaøková vìta}:
-\noindent
-Pokud $T(1)=O(1)$ a $T(n)=a.T(\lceil {{n}\over{b}} \rceil)+O(n^d)$, kde $a \geq 1$, $b>1$ a $d \geq 0$, potom $T(n)$ je:
-\halign{#&#\cr
-$O(n^d)$ & kdy¾ $a<b^d$\cr
-$O(n^d.\log{n})$ & kdy¾ $a=b^d$\cr
-$O(n^{\log_a{b}})$ & kdy¾ $a>b^d$\cr}
+\s{Vìta:} \>{\sl (Master Theorem)} Pøedpokládejme, ¾e $T(1) \in \O(1)$ a $T(n)=a\cdot T(\lceil {{n}\over{b}} \rceil)+\O(n^d)$, kde $a \geq 1$, $b>1$ a $d \geq 0$. Potom $T(n)$ je:
+
+\smallskip
+\halign{#&#&#\cr
+\indent & $\O(n^d)$ & kdy¾ $a<b^d$\cr
+& $\O(n^d\cdot \log{n})$ & kdy¾ $a=b^d$\cr
+& $\O(n^{\log_a{b}})$ & kdy¾ $a>b^d$\cr}
-\proof \>{\sl 1. pøípad: }Pøedpokládejme nejdøíve, ¾e $n=b^x, x \in {N}$, aby platilo $\lceil {{n}\over{b}} \rceil = {n}\over{b}$. Uká¾eme si "dùkaz stromem":
+\proof \>{\sl 1. pøípad: }Pøedpokládejme nejdøíve, ¾e $n=b^m, m \in \bb{N}$, aby platilo $\lceil {{n}\over{b}} \rceil = {{n}\over{b}}$. Uká¾eme si \uv{dùkaz stromem}:
-\figure{figure2.eps}{Dùkaz stromem}{4in}
+\figure{figure.eps}{}{4in}
\noindent
Jak vidíme, strom sa v¾dy vìtví na stejný poèet vìtví - oznaème si jejich poèet $a$ a sestavme si tabulku vìtvení:
\vbox{\halign{# \quad \vrule \quad & # \quad \vrule \quad & #\cr
poèet vìtvení & velikost podúlohy & èas potøebný na vyøe¹ení v¹ech podúloh\cr
\noalign{\medskip\hrule\bigskip}
-$1$ & $n$ & $O(n^d)$\cr
-$a$ & ${n}\over{b^1}$ & $O(({{n}\over{b^1}})^d).a^1$\cr
-$a^2$ & ${n}\over{b^2}$ & $O(({{n}\over{b^2}})^d).a^2$\cr
-$a^3$ & ${n}\over{b^3}$ & $O(({{n}\over{b^3}})^d).a^3$\cr
+$1$ & $n$ & $\O(n^d)$\cr
+$a$ & ${n}\over{b^1}$ & $\O(({{n}\over{b^1}})^d).a^1$\cr
+$a^2$ & ${n}\over{b^2}$ & $\O(({{n}\over{b^2}})^d).a^2$\cr
+$a^3$ & ${n}\over{b^3}$ & $\O(({{n}\over{b^3}})^d).a^3$\cr
\vdots & \vdots & \vdots\cr
-$a^k$ & ${n}\over{b^k}$ & $O(({{n}\over{b^k}})^d).a^k$\cr}}
+$a^k$ & ${n}\over{b^k}$ & $\O(({{n}\over{b^k}})^d).a^k$\cr}}
\medskip
\noindent
Zkoumejme èas potøebný na vyøe¹ení v¹ech podúloh na jedné hladinì:
$$
-O \left( \left( {{n}\over{b^k}} \right) ^d \right) .a^k=O \left( a^k.n^d \left( {{1}\over{b^k}} \right) ^d \right)=O \left( a^k.n^d \left( {{1}\over{b^d}} \right) ^k \right)=O \left( n^d \left( {{a}\over{b^d}} \right) ^k \right)
+\O \left( \left( {{n}\over{b^k}} \right) ^d \right) \cdot a^k=\O \left( a^k\cdot n^d \left( {{1}\over{b^k}} \right) ^d \right)=\O \left( a^k.n^d \left( {{1}\over{b^d}} \right) ^k \right)=\O \left( n^d \left( {{a}\over{b^d}} \right) ^k \right)
$$
Celkem je tedy èas potøebný na vyøe¹ení v¹ech podúloh na v¹ech hladinách (to znamená celé úlohy):
$$
-T(n)=\sum_{k=0}^{\log_b{n}}O \left( n^d \left( {{a}\over{b^d}} \right) ^k \right)=O \left( n^d \sum_{k=0}^{\log_b{n}} \left( {{a}\over{b^d}} \right) ^k \right)
+T(n)=\sum_{k=0}^{\log_b{n}}\O \left( n^d \left( {{a}\over{b^d}} \right) ^k \right)=\O \left( n^d \sum_{k=0}^{\log_b{n}} \left( {{a}\over{b^d}} \right) ^k \right)
$$
-V¹imnìme si výrazu ${a}\over{b^d}$. Na jeho hodnotì závisí hodnota výsledné sumy, proto¾e se vlastnì jedná o kvocient geometrické posloupnosti. Proto rozli¹me následující pøípady:
+V¹imnìme si èlenu ${a}\over{b^d}$. Na jeho hodnotì závisí hodnota výsledné sumy, proto¾e se vlastnì jedná o kvocient geometrické øady. Proto rozli¹me následující pøípady:
+
+\>{\I 1.} ${{a}\over{b^d}}<1$ --- jinými slovy, práce na jednotlivých hladinách exponenciálnì ubývá a souèet sumy se dá omezit nìjakou konstantou, která se schová do $\O$, a tak mù¾eme psát $T(n) \in \O(n^d)$.
+
+\>{\I 2.} ${{a}\over{b^d}}=1$ --- práce na jednotlivých hladinách je stejnì, to znamená, ¾e ¾e souèet sumy je právì $\log_b(n)$ a tedy: $T(n) \in \O(n^d \cdot \log_b(n))$.
-\>{\I 1} ${a}\over{b^d}<1$ jinými slovy, práce na jednotlivých hladinách exponenciálnì ubývá a souèet sumy se dá omezit nìjakou konstantou, která se schvá do $O$, a tak mù¾eme psát $T(n)=O(n^d)$.
+\>{\I 3.} ${{a}\over{b^d}}>1$ --- to znamená, ¾e práce na jednotlivých hladinách pøibývá, a potom musíme psát: $T(n) \in \O(n^d.({{a}\over{b^d}})^{\log_b{n}})$.
-\>{\I 2} ${a}\over{b^d}=1$ práce na jednotlivých hladinách je stejnì, to znamená, ¾e ¾e souèet sumy je právì $\log(n)$ a to nás opravòuje psát: $T(n)=O(n^d \cdot \log(n))$.
+\noindent
+To sice vypadá jako slo¾itý výraz, ale mù¾eme jej dále upravit:
-\>{\I 3} ${a}\over{b^d}>1$ to znamená, ¾e práce na jednotlivých hladinách pøibývá a potom musíme psát:$ T(n)=O(n^d.({{a}\over{b^d}})^{\log_b{n}})$ To sice vypadá jako slo¾itý výraz, ale mù¾eme je dále upravit:
-$O(n^d.({{a}\over{b^d}})^{\log_b{n}})=O(n^d.a^{\log_b{n}}({{1}\over{b^d}})^{\log_b{n}})=O((b^{\log_b{a}})^{\log_b{n}}.n^d.{{1}\over{(b^d)^{\log_b{n}}}})=O((b^{\log_b{n}})^{\log_b{a}}.n^d.{{1}\over{(b^{\log_b{n}})^d}})=O(n^{\log_b{a}}.n^d.{{1}\over{n^d}})=O(n^{\log_b{a}})$
+$$
+\O\left(n^d.\left({{a}\over{b^d}}\right)^{\log_b{n}}\right)=\O\left(n^d.a^{\log_b{n}}\left({{1}\over{b^d}}\right)^{\log_b{n}}\right)=\O\left(\left(b^{\log_b{a}}\right)^{\log_b{n}}.n^d.{{1}\over{\left(b^d\right)^{\log_b{n}}}}\right)=
+$$
+$$
+=\O\left(\left(b^{\log_b{n}}\right)^{\log_b{a}}.n^d.{{1}\over{\left(b^{\log_b{n}}\right)^d}}\right)=\O\left(n^{\log_b{a}}.n^d.{{1}\over{n^d}}\right)=\O\left(n^{\log_b{a}}\right)
+$$
\noindent
-A nyní vidíme, ¾e vìta je správná a zároveò rozdìlení pøípadù je naprosto oprávnìné.
+A nyní vidíme, ¾e vìta v tomto pøípadì platí a ¾e rozdìlení pøípadù je naprosto oprávnìné.
-\>{\sl 2. pøípad: }Vratme se k mo¾nosti $n \neq b^x, x \in {N}$. Potom ale platí: $b^k<n<b^{k+1} \ldots$ v tomto pøípadì zaokrouhleme $n$ a poèítejme s $n'=b^{k+1}$. Pokud platí $b^{k+1}=b.b^k<b.n$, je odtud hned vidìt, ¾e platí $n'<b.n$ a odtud vyplývá, ¾e vstup se nám zvìt¹í pøinejhor¹ím konstanta-krát, co je z asymtotického hlediska, které nás zajímá nejvíce nezajímavé, a tak tuto konstantu "schováme" do $O$ a máme algoritmus stejné slo¾itosti.
+\>{\sl 2. pøípad: }Vra»me se k mo¾nosti $n \neq b^m, m \in \bb{N}$. Potom ale platí: $b^l<n<b^{l+1}$ pro nìjaké $l \in \bb{N}$. V tomto pøípadì zaokrouhleme $n$ a~poèítejme s $n^{\prime}=b^{l+1}$. Potom platí $n^{\prime}=b^{l+1}=b\cdot b^l<b\cdot n$, a odtud je hned vidìt, ¾e $n^{\prime}<b\cdot n$, a odtud vyplývá, ¾e vstup se nám zvìt¹í pøinejhor¹ím $konstanta$-krát, co¾ je z asymtotického hlediska, které nás zajímá nejvíce, nedùle¾ité, a tak tuto konstantu \uv{schováme} do $\O$ a máme algoritmus stejné slo¾itosti. Vidíme tedy, ¾e vìta platí i v tomto pøípadì.
\qed
\noindent
-Porovnejme si nìkteré známé algoritmy a jejich èasovou slo¾itost pomocí \>{\sl Master Theorem}:
+Porovnejme si nìkteré známé algoritmy a jejich èasovou slo¾itost pomocí \>{\sl Master Theoremu}:
\medskip
\vbox{\halign{# \quad \vrule \quad & # \quad \vrule \quad & # \quad \vrule \quad & # \quad \vrule \quad & #\cr
-algoritmus & a & b & d & èasová slo¾itost\cr
+algoritmus & $a$ & $b$ & $d$ & èasová slo¾itost\cr
\noalign{\medskip\hrule\bigskip}
-Mergesort & 2 & 2 & 1 & $O(n.\log{n})$\cr
-Násobení I. & 4 & 2 & 1 & $O(n^2)$\cr
-Násobení II. & 3 & 2 & 1 & $O(n^{\log_2{3}})$\cr
-Binární vyhledávání & 1 & 2 & 0 & $O(\log{n})$\cr}}
+Mergesort & 2 & 2 & 1 & $\O(n\log{n})$\cr
+Násobení I. & 4 & 2 & 1 & $\O(n^2)$\cr
+Násobení II. & 3 & 2 & 1 & $\O(n^{\log_2{3}})$\cr
+Binární vyhledávání & 1 & 2 & 0 & $\O(\log{n})$\cr}}
\medskip
-\s{Domácí úkol nakonec: } Vymyslete algoritmus, který by z $n$ zadaných bodù v rovinì (prostoru) na¹el takové dva, které jsou od sebe nejménì vzdálené (zde existuje takový algoritmus s èasovou slo¾itostí $O(n.\log{n})$).
+\s{Domácí úkol nakonec:} Vymyslete algoritmus, který by z $n$ zadaných bodù v rovinì (prostoru) na¹el takové dva, které~jsou od sebe nejménì vzdálené (zde existuje takový algoritmus s èasovou slo¾itostí $\O(n \cdot \log{n})$).
\bye
--- /dev/null
+%!PS-Adobe-3.0 EPSF-3.0
+%%Creator: inkscape 0.44.1
+%%Pages: 1
+%%Orientation: Portrait
+%%BoundingBox: 27 464 573 613
+%%HiResBoundingBox: 28 464 572.35582 612.76731
+%%DocumentMedia: plain 596 842 0 () ()
+%%EndComments
+%%Page: 1 1
+0 842 translate
+0.8 -0.8 scale
+gsave [1 0 0 1 0 0] concat
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+57.071816 471.79319 moveto
+57.071816 471.79319 57.071816 471.79319 51.678862 441.44443 curveto
+35.5 471.79319 35.5 471.79319 35.5 471.79319 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+51.678862 441.44443 moveto
+67.857723 471.79319 67.857723 471.79319 67.857723 471.79319 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+51.678862 441.44443 moveto
+46.285908 471.79319 46.285908 471.79319 46.285908 471.79319 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+100.14804 471.79319 moveto
+100.14804 471.79319 100.14804 471.79319 94.755082 441.44443 curveto
+78.57622 471.79319 78.57622 471.79319 78.57622 471.79319 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+94.755082 441.44443 moveto
+110.93394 471.79319 110.93394 471.79319 110.93394 471.79319 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+94.755082 441.44443 moveto
+89.362128 471.79319 89.362128 471.79319 89.362128 471.79319 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+143.35908 471.7932 moveto
+143.35908 471.7932 143.35908 471.7932 137.96612 441.44444 curveto
+121.78726 471.7932 121.78726 471.7932 121.78726 471.7932 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+137.96612 441.44444 moveto
+154.14499 471.7932 154.14499 471.7932 154.14499 471.7932 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+137.96612 441.44444 moveto
+132.57317 471.7932 132.57317 471.7932 132.57317 471.7932 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+186.4353 471.7932 moveto
+186.4353 471.7932 186.4353 471.7932 181.04234 441.44444 curveto
+164.86348 471.7932 164.86348 471.7932 164.86348 471.7932 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+181.04234 441.44444 moveto
+197.22121 471.7932 197.22121 471.7932 197.22121 471.7932 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+181.04234 441.44444 moveto
+175.64939 471.7932 175.64939 471.7932 175.64939 471.7932 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+51.678862 441.44443 moveto
+116.39431 380.74691 116.39431 380.74691 116.39431 380.74691 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+116.39431 380.74691 moveto
+94.822493 441.44443 94.822493 441.44443 94.822493 441.44443 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+137.96612 441.44443 moveto
+116.39431 380.74691 116.39431 380.74691 116.39431 380.74691 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+181.10976 441.44443 moveto
+116.39431 380.74691 116.39431 380.74691 116.39431 380.74691 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+229.64634 471.86216 moveto
+229.64634 471.86216 229.64634 471.86216 224.25339 441.5134 curveto
+208.07452 471.86216 208.07452 471.86216 208.07452 471.86216 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+224.25339 441.5134 moveto
+240.43225 471.86216 240.43225 471.86216 240.43225 471.86216 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+224.25339 441.5134 moveto
+218.86043 471.86216 218.86043 471.86216 218.86043 471.86216 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+272.72256 471.86216 moveto
+272.72256 471.86216 272.72256 471.86216 267.32961 441.5134 curveto
+251.15074 471.86216 251.15074 471.86216 251.15074 471.86216 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+267.32961 441.5134 moveto
+283.50847 471.86216 283.50847 471.86216 283.50847 471.86216 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+267.32961 441.5134 moveto
+261.93665 471.86216 261.93665 471.86216 261.93665 471.86216 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+315.9336 471.86217 moveto
+315.9336 471.86217 315.9336 471.86217 310.54065 441.51341 curveto
+294.36179 471.86217 294.36179 471.86217 294.36179 471.86217 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+310.54065 441.51341 moveto
+326.71951 471.86217 326.71951 471.86217 326.71951 471.86217 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+310.54065 441.51341 moveto
+305.14769 471.86217 305.14769 471.86217 305.14769 471.86217 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+359.00982 471.86217 moveto
+359.00982 471.86217 359.00982 471.86217 353.61687 441.51341 curveto
+337.43801 471.86217 337.43801 471.86217 337.43801 471.86217 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+353.61687 441.51341 moveto
+369.79573 471.86217 369.79573 471.86217 369.79573 471.86217 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+353.61687 441.51341 moveto
+348.22391 471.86217 348.22391 471.86217 348.22391 471.86217 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+224.25339 441.5134 moveto
+288.96883 380.81588 288.96883 380.81588 288.96883 380.81588 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+288.96883 380.81588 moveto
+267.39702 441.5134 267.39702 441.5134 267.39702 441.5134 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+310.54065 441.5134 moveto
+288.96883 380.81588 288.96883 380.81588 288.96883 380.81588 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+353.68428 441.5134 moveto
+288.96883 380.81588 288.96883 380.81588 288.96883 380.81588 curveto
+stroke
+gsave [0.116128 0 0 0.118818 160.207 407.8093] concat
+gsave
+1 1 1 setrgbcolor
+newpath
+225.71429 283.07648 moveto
+225.71429 308.31076 205.23429 328.79076 180 328.79076 curveto
+154.76571 328.79076 134.28571 308.31076 134.28571 283.07648 curveto
+134.28571 257.84219 154.76571 237.36219 180 237.36219 curveto
+205.23429 237.36219 225.71429 257.84219 225.71429 283.07648 curveto
+closepath
+fill
+grestore
+0 0 0 setrgbcolor
+[] 0 setdash
+10.641412 setlinewidth
+1 setlinejoin
+2 setlinecap
+newpath
+225.71429 283.07648 moveto
+225.71429 308.31076 205.23429 328.79076 180 328.79076 curveto
+154.76571 328.79076 134.28571 308.31076 134.28571 283.07648 curveto
+134.28571 257.84219 154.76571 237.36219 180 237.36219 curveto
+205.23429 237.36219 225.71429 257.84219 225.71429 283.07648 curveto
+closepath
+stroke
+grestore
+gsave [0.116128 0 0 0.118818 117.0633 407.8093] concat
+gsave
+1 1 1 setrgbcolor
+newpath
+225.71429 283.07648 moveto
+225.71429 308.31076 205.23429 328.79076 180 328.79076 curveto
+154.76571 328.79076 134.28571 308.31076 134.28571 283.07648 curveto
+134.28571 257.84219 154.76571 237.36219 180 237.36219 curveto
+205.23429 237.36219 225.71429 257.84219 225.71429 283.07648 curveto
+closepath
+fill
+grestore
+0 0 0 setrgbcolor
+[] 0 setdash
+10.641412 setlinewidth
+1 setlinejoin
+2 setlinecap
+newpath
+225.71429 283.07648 moveto
+225.71429 308.31076 205.23429 328.79076 180 328.79076 curveto
+154.76571 328.79076 134.28571 308.31076 134.28571 283.07648 curveto
+134.28571 257.84219 154.76571 237.36219 180 237.36219 curveto
+205.23429 237.36219 225.71429 257.84219 225.71429 283.07648 curveto
+closepath
+stroke
+grestore
+gsave [0.116128 0 0 0.118818 73.91958 407.8093] concat
+gsave
+1 1 1 setrgbcolor
+newpath
+225.71429 283.07648 moveto
+225.71429 308.31076 205.23429 328.79076 180 328.79076 curveto
+154.76571 328.79076 134.28571 308.31076 134.28571 283.07648 curveto
+134.28571 257.84219 154.76571 237.36219 180 237.36219 curveto
+205.23429 237.36219 225.71429 257.84219 225.71429 283.07648 curveto
+closepath
+fill
+grestore
+0 0 0 setrgbcolor
+[] 0 setdash
+10.641412 setlinewidth
+1 setlinejoin
+2 setlinecap
+newpath
+225.71429 283.07648 moveto
+225.71429 308.31076 205.23429 328.79076 180 328.79076 curveto
+154.76571 328.79076 134.28571 308.31076 134.28571 283.07648 curveto
+134.28571 257.84219 154.76571 237.36219 180 237.36219 curveto
+205.23429 237.36219 225.71429 257.84219 225.71429 283.07648 curveto
+closepath
+stroke
+grestore
+gsave [0.116128 0 0 0.118818 30.7759 407.8093] concat
+gsave
+1 1 1 setrgbcolor
+newpath
+225.71429 283.07648 moveto
+225.71429 308.31076 205.23429 328.79076 180 328.79076 curveto
+154.76571 328.79076 134.28571 308.31076 134.28571 283.07648 curveto
+134.28571 257.84219 154.76571 237.36219 180 237.36219 curveto
+205.23429 237.36219 225.71429 257.84219 225.71429 283.07648 curveto
+closepath
+fill
+grestore
+0 0 0 setrgbcolor
+[] 0 setdash
+10.641412 setlinewidth
+1 setlinejoin
+2 setlinecap
+newpath
+225.71429 283.07648 moveto
+225.71429 308.31076 205.23429 328.79076 180 328.79076 curveto
+154.76571 328.79076 134.28571 308.31076 134.28571 283.07648 curveto
+134.28571 257.84219 154.76571 237.36219 180 237.36219 curveto
+205.23429 237.36219 225.71429 257.84219 225.71429 283.07648 curveto
+closepath
+stroke
+grestore
+gsave [0.116128 0 0 0.118818 203.3507 407.8093] concat
+gsave
+1 1 1 setrgbcolor
+newpath
+225.71429 283.07648 moveto
+225.71429 308.31076 205.23429 328.79076 180 328.79076 curveto
+154.76571 328.79076 134.28571 308.31076 134.28571 283.07648 curveto
+134.28571 257.84219 154.76571 237.36219 180 237.36219 curveto
+205.23429 237.36219 225.71429 257.84219 225.71429 283.07648 curveto
+closepath
+fill
+grestore
+0 0 0 setrgbcolor
+[] 0 setdash
+10.641412 setlinewidth
+1 setlinejoin
+2 setlinecap
+newpath
+225.71429 283.07648 moveto
+225.71429 308.31076 205.23429 328.79076 180 328.79076 curveto
+154.76571 328.79076 134.28571 308.31076 134.28571 283.07648 curveto
+134.28571 257.84219 154.76571 237.36219 180 237.36219 curveto
+205.23429 237.36219 225.71429 257.84219 225.71429 283.07648 curveto
+closepath
+stroke
+grestore
+gsave [0.116128 0 0 0.118818 246.4944 407.8093] concat
+gsave
+1 1 1 setrgbcolor
+newpath
+225.71429 283.07648 moveto
+225.71429 308.31076 205.23429 328.79076 180 328.79076 curveto
+154.76571 328.79076 134.28571 308.31076 134.28571 283.07648 curveto
+134.28571 257.84219 154.76571 237.36219 180 237.36219 curveto
+205.23429 237.36219 225.71429 257.84219 225.71429 283.07648 curveto
+closepath
+fill
+grestore
+0 0 0 setrgbcolor
+[] 0 setdash
+10.641412 setlinewidth
+1 setlinejoin
+2 setlinecap
+newpath
+225.71429 283.07648 moveto
+225.71429 308.31076 205.23429 328.79076 180 328.79076 curveto
+154.76571 328.79076 134.28571 308.31076 134.28571 283.07648 curveto
+134.28571 257.84219 154.76571 237.36219 180 237.36219 curveto
+205.23429 237.36219 225.71429 257.84219 225.71429 283.07648 curveto
+closepath
+stroke
+grestore
+gsave [0.116128 0 0 0.118818 289.6381 407.8093] concat
+gsave
+1 1 1 setrgbcolor
+newpath
+225.71429 283.07648 moveto
+225.71429 308.31076 205.23429 328.79076 180 328.79076 curveto
+154.76571 328.79076 134.28571 308.31076 134.28571 283.07648 curveto
+134.28571 257.84219 154.76571 237.36219 180 237.36219 curveto
+205.23429 237.36219 225.71429 257.84219 225.71429 283.07648 curveto
+closepath
+fill
+grestore
+0 0 0 setrgbcolor
+[] 0 setdash
+10.641412 setlinewidth
+1 setlinejoin
+2 setlinecap
+newpath
+225.71429 283.07648 moveto
+225.71429 308.31076 205.23429 328.79076 180 328.79076 curveto
+154.76571 328.79076 134.28571 308.31076 134.28571 283.07648 curveto
+134.28571 257.84219 154.76571 237.36219 180 237.36219 curveto
+205.23429 237.36219 225.71429 257.84219 225.71429 283.07648 curveto
+closepath
+stroke
+grestore
+gsave [0.116128 0 0 0.118818 332.7817 407.8093] concat
+gsave
+1 1 1 setrgbcolor
+newpath
+225.71429 283.07648 moveto
+225.71429 308.31076 205.23429 328.79076 180 328.79076 curveto
+154.76571 328.79076 134.28571 308.31076 134.28571 283.07648 curveto
+134.28571 257.84219 154.76571 237.36219 180 237.36219 curveto
+205.23429 237.36219 225.71429 257.84219 225.71429 283.07648 curveto
+closepath
+fill
+grestore
+0 0 0 setrgbcolor
+[] 0 setdash
+10.641412 setlinewidth
+1 setlinejoin
+2 setlinecap
+newpath
+225.71429 283.07648 moveto
+225.71429 308.31076 205.23429 328.79076 180 328.79076 curveto
+154.76571 328.79076 134.28571 308.31076 134.28571 283.07648 curveto
+134.28571 257.84219 154.76571 237.36219 180 237.36219 curveto
+205.23429 237.36219 225.71429 257.84219 225.71429 283.07648 curveto
+closepath
+stroke
+grestore
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000012 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+116.46172 380.67792 moveto
+375.18876 298.0465 375.18876 298.0465 375.18876 298.0465 curveto
+stroke
+gsave [0.175113 0 0 0.179172 84.87404 330.0275] concat
+gsave
+1 1 1 setrgbcolor
+newpath
+225.71429 283.07648 moveto
+225.71429 308.31076 205.23429 328.79076 180 328.79076 curveto
+154.76571 328.79076 134.28571 308.31076 134.28571 283.07648 curveto
+134.28571 257.84219 154.76571 237.36219 180 237.36219 curveto
+205.23429 237.36219 225.71429 257.84219 225.71429 283.07648 curveto
+closepath
+fill
+grestore
+0 0 0 setrgbcolor
+[] 0 setdash
+7.0569406 setlinewidth
+1 setlinejoin
+2 setlinecap
+newpath
+225.71429 283.07648 moveto
+225.71429 308.31076 205.23429 328.79076 180 328.79076 curveto
+154.76571 328.79076 134.28571 308.31076 134.28571 283.07648 curveto
+134.28571 257.84219 154.76571 237.36219 180 237.36219 curveto
+205.23429 237.36219 225.71429 257.84219 225.71429 283.07648 curveto
+closepath
+stroke
+grestore
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000012 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+289.03626 380.67792 moveto
+375.1886 298.04652 375.1886 298.04652 375.1886 298.04652 curveto
+stroke
+gsave [0.175113 0 0 0.179172 257.4488 330.0275] concat
+gsave
+1 1 1 setrgbcolor
+newpath
+225.71429 283.07648 moveto
+225.71429 308.31076 205.23429 328.79076 180 328.79076 curveto
+154.76571 328.79076 134.28571 308.31076 134.28571 283.07648 curveto
+134.28571 257.84219 154.76571 237.36219 180 237.36219 curveto
+205.23429 237.36219 225.71429 257.84219 225.71429 283.07648 curveto
+closepath
+fill
+grestore
+0 0 0 setrgbcolor
+[] 0 setdash
+7.0569406 setlinewidth
+1 setlinejoin
+2 setlinecap
+newpath
+225.71429 283.07648 moveto
+225.71429 308.31076 205.23429 328.79076 180 328.79076 curveto
+154.76571 328.79076 134.28571 308.31076 134.28571 283.07648 curveto
+134.28571 257.84219 154.76571 237.36219 180 237.36219 curveto
+205.23429 237.36219 225.71429 257.84219 225.71429 283.07648 curveto
+closepath
+stroke
+grestore
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+402.22086 471.79322 moveto
+402.22086 471.79322 402.22086 471.79322 396.82791 441.44445 curveto
+380.64905 471.79322 380.64905 471.79322 380.64905 471.79322 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+396.82791 441.44445 moveto
+413.00677 471.79322 413.00677 471.79322 413.00677 471.79322 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+396.82791 441.44445 moveto
+391.43496 471.79322 391.43496 471.79322 391.43496 471.79322 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+445.29708 471.79322 moveto
+445.29708 471.79322 445.29708 471.79322 439.90413 441.44445 curveto
+423.72527 471.79322 423.72527 471.79322 423.72527 471.79322 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+439.90413 441.44445 moveto
+456.083 471.79322 456.083 471.79322 456.083 471.79322 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+439.90413 441.44445 moveto
+434.51118 471.79322 434.51118 471.79322 434.51118 471.79322 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+488.50812 471.79322 moveto
+488.50812 471.79322 488.50812 471.79322 483.11516 441.44445 curveto
+466.93631 471.79322 466.93631 471.79322 466.93631 471.79322 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+483.11516 441.44445 moveto
+499.29404 471.79322 499.29404 471.79322 499.29404 471.79322 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+483.11516 441.44445 moveto
+477.72224 471.79322 477.72224 471.79322 477.72224 471.79322 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+531.58435 471.79322 moveto
+531.58435 471.79322 531.58435 471.79322 526.19138 441.44445 curveto
+510.01254 471.79322 510.01254 471.79322 510.01254 471.79322 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+526.19138 441.44445 moveto
+542.37027 471.79322 542.37027 471.79322 542.37027 471.79322 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+526.19138 441.44445 moveto
+520.79842 471.79322 520.79842 471.79322 520.79842 471.79322 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+396.82791 441.44445 moveto
+461.54335 380.74692 461.54335 380.74692 461.54335 380.74692 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+461.54335 380.74692 moveto
+439.97154 441.44445 439.97154 441.44445 439.97154 441.44445 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+483.11516 441.44445 moveto
+461.54335 380.74692 461.54335 380.74692 461.54335 380.74692 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+526.25881 441.44445 moveto
+461.54335 380.74692 461.54335 380.74692 461.54335 380.74692 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+574.79539 471.86218 moveto
+574.79539 471.86218 574.79539 471.86218 569.40243 441.51342 curveto
+553.22358 471.86218 553.22358 471.86218 553.22358 471.86218 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+569.40243 441.51342 moveto
+585.58131 471.86218 585.58131 471.86218 585.58131 471.86218 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+569.40243 441.51342 moveto
+564.00946 471.86218 564.00946 471.86218 564.00946 471.86218 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+617.87162 471.86218 moveto
+617.87162 471.86218 617.87162 471.86218 612.47865 441.51342 curveto
+596.29981 471.86218 596.29981 471.86218 596.29981 471.86218 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+612.47865 441.51342 moveto
+628.6575 471.86218 628.6575 471.86218 628.6575 471.86218 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+612.47865 441.51342 moveto
+607.08569 471.86218 607.08569 471.86218 607.08569 471.86218 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+661.08266 471.86218 moveto
+661.08266 471.86218 661.08266 471.86218 655.6897 441.51342 curveto
+639.51085 471.86218 639.51085 471.86218 639.51085 471.86218 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+655.6897 441.51342 moveto
+671.86854 471.86218 671.86854 471.86218 671.86854 471.86218 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+655.6897 441.51342 moveto
+650.29674 471.86218 650.29674 471.86218 650.29674 471.86218 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+704.15889 471.86218 moveto
+704.15889 471.86218 704.15889 471.86218 698.76593 441.51342 curveto
+682.58704 471.86218 682.58704 471.86218 682.58704 471.86218 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+698.76593 441.51342 moveto
+714.94477 471.86218 714.94477 471.86218 714.94477 471.86218 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+698.76593 441.51342 moveto
+693.37296 471.86218 693.37296 471.86218 693.37296 471.86218 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+569.40243 441.51342 moveto
+634.11789 380.81589 634.11789 380.81589 634.11789 380.81589 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+634.11789 380.81589 moveto
+612.54608 441.51342 612.54608 441.51342 612.54608 441.51342 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+655.6897 441.51342 moveto
+634.11789 380.81589 634.11789 380.81589 634.11789 380.81589 curveto
+stroke
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+698.83331 441.51342 moveto
+634.11789 380.81589 634.11789 380.81589 634.11789 380.81589 curveto
+stroke
+gsave [0.116128 0 0 0.118818 505.3563 407.8093] concat
+gsave
+1 1 1 setrgbcolor
+newpath
+225.71429 283.07648 moveto
+225.71429 308.31076 205.23429 328.79076 180 328.79076 curveto
+154.76571 328.79076 134.28571 308.31076 134.28571 283.07648 curveto
+134.28571 257.84219 154.76571 237.36219 180 237.36219 curveto
+205.23429 237.36219 225.71429 257.84219 225.71429 283.07648 curveto
+closepath
+fill
+grestore
+0 0 0 setrgbcolor
+[] 0 setdash
+10.641412 setlinewidth
+1 setlinejoin
+2 setlinecap
+newpath
+225.71429 283.07648 moveto
+225.71429 308.31076 205.23429 328.79076 180 328.79076 curveto
+154.76571 328.79076 134.28571 308.31076 134.28571 283.07648 curveto
+134.28571 257.84219 154.76571 237.36219 180 237.36219 curveto
+205.23429 237.36219 225.71429 257.84219 225.71429 283.07648 curveto
+closepath
+stroke
+grestore
+gsave [0.116128 0 0 0.118818 462.2126 407.8093] concat
+gsave
+1 1 1 setrgbcolor
+newpath
+225.71429 283.07648 moveto
+225.71429 308.31076 205.23429 328.79076 180 328.79076 curveto
+154.76571 328.79076 134.28571 308.31076 134.28571 283.07648 curveto
+134.28571 257.84219 154.76571 237.36219 180 237.36219 curveto
+205.23429 237.36219 225.71429 257.84219 225.71429 283.07648 curveto
+closepath
+fill
+grestore
+0 0 0 setrgbcolor
+[] 0 setdash
+10.641412 setlinewidth
+1 setlinejoin
+2 setlinecap
+newpath
+225.71429 283.07648 moveto
+225.71429 308.31076 205.23429 328.79076 180 328.79076 curveto
+154.76571 328.79076 134.28571 308.31076 134.28571 283.07648 curveto
+134.28571 257.84219 154.76571 237.36219 180 237.36219 curveto
+205.23429 237.36219 225.71429 257.84219 225.71429 283.07648 curveto
+closepath
+stroke
+grestore
+gsave [0.116128 0 0 0.118818 419.0691 407.8093] concat
+gsave
+1 1 1 setrgbcolor
+newpath
+225.71429 283.07648 moveto
+225.71429 308.31076 205.23429 328.79076 180 328.79076 curveto
+154.76571 328.79076 134.28571 308.31076 134.28571 283.07648 curveto
+134.28571 257.84219 154.76571 237.36219 180 237.36219 curveto
+205.23429 237.36219 225.71429 257.84219 225.71429 283.07648 curveto
+closepath
+fill
+grestore
+0 0 0 setrgbcolor
+[] 0 setdash
+10.641412 setlinewidth
+1 setlinejoin
+2 setlinecap
+newpath
+225.71429 283.07648 moveto
+225.71429 308.31076 205.23429 328.79076 180 328.79076 curveto
+154.76571 328.79076 134.28571 308.31076 134.28571 283.07648 curveto
+134.28571 257.84219 154.76571 237.36219 180 237.36219 curveto
+205.23429 237.36219 225.71429 257.84219 225.71429 283.07648 curveto
+closepath
+stroke
+grestore
+gsave [0.116128 0 0 0.118818 375.9254 407.8093] concat
+gsave
+1 1 1 setrgbcolor
+newpath
+225.71429 283.07648 moveto
+225.71429 308.31076 205.23429 328.79076 180 328.79076 curveto
+154.76571 328.79076 134.28571 308.31076 134.28571 283.07648 curveto
+134.28571 257.84219 154.76571 237.36219 180 237.36219 curveto
+205.23429 237.36219 225.71429 257.84219 225.71429 283.07648 curveto
+closepath
+fill
+grestore
+0 0 0 setrgbcolor
+[] 0 setdash
+10.641412 setlinewidth
+1 setlinejoin
+2 setlinecap
+newpath
+225.71429 283.07648 moveto
+225.71429 308.31076 205.23429 328.79076 180 328.79076 curveto
+154.76571 328.79076 134.28571 308.31076 134.28571 283.07648 curveto
+134.28571 257.84219 154.76571 237.36219 180 237.36219 curveto
+205.23429 237.36219 225.71429 257.84219 225.71429 283.07648 curveto
+closepath
+stroke
+grestore
+gsave [0.116128 0 0 0.118818 548.5 407.8093] concat
+gsave
+1 1 1 setrgbcolor
+newpath
+225.71429 283.07648 moveto
+225.71429 308.31076 205.23429 328.79076 180 328.79076 curveto
+154.76571 328.79076 134.28571 308.31076 134.28571 283.07648 curveto
+134.28571 257.84219 154.76571 237.36219 180 237.36219 curveto
+205.23429 237.36219 225.71429 257.84219 225.71429 283.07648 curveto
+closepath
+fill
+grestore
+0 0 0 setrgbcolor
+[] 0 setdash
+10.641412 setlinewidth
+1 setlinejoin
+2 setlinecap
+newpath
+225.71429 283.07648 moveto
+225.71429 308.31076 205.23429 328.79076 180 328.79076 curveto
+154.76571 328.79076 134.28571 308.31076 134.28571 283.07648 curveto
+134.28571 257.84219 154.76571 237.36219 180 237.36219 curveto
+205.23429 237.36219 225.71429 257.84219 225.71429 283.07648 curveto
+closepath
+stroke
+grestore
+gsave [0.116128 0 0 0.118818 591.6436 407.8093] concat
+gsave
+1 1 1 setrgbcolor
+newpath
+225.71429 283.07648 moveto
+225.71429 308.31076 205.23429 328.79076 180 328.79076 curveto
+154.76571 328.79076 134.28571 308.31076 134.28571 283.07648 curveto
+134.28571 257.84219 154.76571 237.36219 180 237.36219 curveto
+205.23429 237.36219 225.71429 257.84219 225.71429 283.07648 curveto
+closepath
+fill
+grestore
+0 0 0 setrgbcolor
+[] 0 setdash
+10.641412 setlinewidth
+1 setlinejoin
+2 setlinecap
+newpath
+225.71429 283.07648 moveto
+225.71429 308.31076 205.23429 328.79076 180 328.79076 curveto
+154.76571 328.79076 134.28571 308.31076 134.28571 283.07648 curveto
+134.28571 257.84219 154.76571 237.36219 180 237.36219 curveto
+205.23429 237.36219 225.71429 257.84219 225.71429 283.07648 curveto
+closepath
+stroke
+grestore
+gsave [0.116128 0 0 0.118818 634.7873 407.8093] concat
+gsave
+1 1 1 setrgbcolor
+newpath
+225.71429 283.07648 moveto
+225.71429 308.31076 205.23429 328.79076 180 328.79076 curveto
+154.76571 328.79076 134.28571 308.31076 134.28571 283.07648 curveto
+134.28571 257.84219 154.76571 237.36219 180 237.36219 curveto
+205.23429 237.36219 225.71429 257.84219 225.71429 283.07648 curveto
+closepath
+fill
+grestore
+0 0 0 setrgbcolor
+[] 0 setdash
+10.641412 setlinewidth
+1 setlinejoin
+2 setlinecap
+newpath
+225.71429 283.07648 moveto
+225.71429 308.31076 205.23429 328.79076 180 328.79076 curveto
+154.76571 328.79076 134.28571 308.31076 134.28571 283.07648 curveto
+134.28571 257.84219 154.76571 237.36219 180 237.36219 curveto
+205.23429 237.36219 225.71429 257.84219 225.71429 283.07648 curveto
+closepath
+stroke
+grestore
+gsave [0.116128 0 0 0.118818 677.9314 407.8093] concat
+gsave
+1 1 1 setrgbcolor
+newpath
+225.71429 283.07648 moveto
+225.71429 308.31076 205.23429 328.79076 180 328.79076 curveto
+154.76571 328.79076 134.28571 308.31076 134.28571 283.07648 curveto
+134.28571 257.84219 154.76571 237.36219 180 237.36219 curveto
+205.23429 237.36219 225.71429 257.84219 225.71429 283.07648 curveto
+closepath
+fill
+grestore
+0 0 0 setrgbcolor
+[] 0 setdash
+10.641412 setlinewidth
+1 setlinejoin
+2 setlinecap
+newpath
+225.71429 283.07648 moveto
+225.71429 308.31076 205.23429 328.79076 180 328.79076 curveto
+154.76571 328.79076 134.28571 308.31076 134.28571 283.07648 curveto
+134.28571 257.84219 154.76571 237.36219 180 237.36219 curveto
+205.23429 237.36219 225.71429 257.84219 225.71429 283.07648 curveto
+closepath
+stroke
+grestore
+0 0 0 setrgbcolor
+[] 0 setdash
+1.0000007 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+461.61069 380.67794 moveto
+377.49776 297.84515 375.32356 298.04655 375.32356 298.04655 curveto
+stroke
+gsave [0.175113 0 0 0.179172 430.0235 330.0275] concat
+gsave
+1 1 1 setrgbcolor
+newpath
+225.71429 283.07648 moveto
+225.71429 308.31076 205.23429 328.79076 180 328.79076 curveto
+154.76571 328.79076 134.28571 308.31076 134.28571 283.07648 curveto
+134.28571 257.84219 154.76571 237.36219 180 237.36219 curveto
+205.23429 237.36219 225.71429 257.84219 225.71429 283.07648 curveto
+closepath
+fill
+grestore
+0 0 0 setrgbcolor
+[] 0 setdash
+7.0569406 setlinewidth
+1 setlinejoin
+2 setlinecap
+newpath
+225.71429 283.07648 moveto
+225.71429 308.31076 205.23429 328.79076 180 328.79076 curveto
+154.76571 328.79076 134.28571 308.31076 134.28571 283.07648 curveto
+134.28571 257.84219 154.76571 237.36219 180 237.36219 curveto
+205.23429 237.36219 225.71429 257.84219 225.71429 283.07648 curveto
+closepath
+stroke
+grestore
+0 0 0 setrgbcolor
+[] 0 setdash
+0.99999988 setlinewidth
+0 setlinejoin
+0 setlinecap
+newpath
+628.88005 380.67796 moveto
+376.69528 298.6412 375.32354 298.04655 375.32354 298.04655 curveto
+stroke
+gsave [0.175113 0 0 0.179172 602.5983 330.0275] concat
+gsave
+1 1 1 setrgbcolor
+newpath
+225.71429 283.07648 moveto
+225.71429 308.31076 205.23429 328.79076 180 328.79076 curveto
+154.76571 328.79076 134.28571 308.31076 134.28571 283.07648 curveto
+134.28571 257.84219 154.76571 237.36219 180 237.36219 curveto
+205.23429 237.36219 225.71429 257.84219 225.71429 283.07648 curveto
+closepath
+fill
+grestore
+0 0 0 setrgbcolor
+[] 0 setdash
+7.0569406 setlinewidth
+1 setlinejoin
+2 setlinecap
+newpath
+225.71429 283.07648 moveto
+225.71429 308.31076 205.23429 328.79076 180 328.79076 curveto
+154.76571 328.79076 134.28571 308.31076 134.28571 283.07648 curveto
+134.28571 257.84219 154.76571 237.36219 180 237.36219 curveto
+205.23429 237.36219 225.71429 257.84219 225.71429 283.07648 curveto
+closepath
+stroke
+grestore
+gsave [0.234099 0 0 0.239524 333.1188 230.1741] concat
+gsave
+1 1 1 setrgbcolor
+newpath
+225.71429 283.07648 moveto
+225.71429 308.31076 205.23429 328.79076 180 328.79076 curveto
+154.76571 328.79076 134.28571 308.31076 134.28571 283.07648 curveto
+134.28571 257.84219 154.76571 237.36219 180 237.36219 curveto
+205.23429 237.36219 225.71429 257.84219 225.71429 283.07648 curveto
+closepath
+fill
+grestore
+0 0 0 setrgbcolor
+[] 0 setdash
+5.2788105 setlinewidth
+1 setlinejoin
+2 setlinecap
+newpath
+225.71429 283.07648 moveto
+225.71429 308.31076 205.23429 328.79076 180 328.79076 curveto
+154.76571 328.79076 134.28571 308.31076 134.28571 283.07648 curveto
+134.28571 257.84219 154.76571 237.36219 180 237.36219 curveto
+205.23429 237.36219 225.71429 257.84219 225.71429 283.07648 curveto
+closepath
+stroke
+grestore
+grestore
+showpage
+%%EOF
+++ /dev/null
-%!PS-Adobe-3.0 EPSF-3.0
-%%Creator: inkscape 0.44.1
-%%Pages: 1
-%%Orientation: Portrait
-%%BoundingBox: -248 -109 876 872
-%%HiResBoundingBox: -248.81635 -109.5562 875.90534 871.0076
-%%DocumentMedia: plain 596 842 0 () ()
-%%EndComments
-%%Page: 1 1
-0 842 translate
-0.8 -0.8 scale
-gsave [1 0 0 1 0 0] concat
-gsave [1 0 0 1 908.1641 -12.97378] concat
-0 0 0 setrgbcolor
-[] 0 setdash
-3 setlinewidth
-1 setlinejoin
-2 setlinecap
-newpath
--457.14284 59.505039 moveto
--457.14284 104.45361 -493.62284 140.93361 -538.57141 140.93361 curveto
--583.51998 140.93361 -619.99998 104.45361 -619.99998 59.505039 curveto
--619.99998 14.556467 -583.51998 -21.923534 -538.57141 -21.923534 curveto
--493.62284 -21.923534 -457.14284 14.556467 -457.14284 59.505039 curveto
-closepath
-stroke
-grestore
-gsave [0.874906 0 0 0.87344 1191.699 354.3683] concat
-0 0 0 setrgbcolor
-[] 0 setdash
-3.4318151 setlinewidth
-1 setlinejoin
-2 setlinecap
-newpath
--457.14284 59.505039 moveto
--457.14284 104.45361 -493.62284 140.93361 -538.57141 140.93361 curveto
--583.51998 140.93361 -619.99998 104.45361 -619.99998 59.505039 curveto
--619.99998 14.556467 -583.51998 -21.923534 -538.57141 -21.923534 curveto
--493.62284 -21.923534 -457.14284 14.556467 -457.14284 59.505039 curveto
-closepath
-stroke
-grestore
-gsave [0.874906 0 0 0.87344 507.0091 378.2228] concat
-0 0 0 setrgbcolor
-[] 0 setdash
-3.4318151 setlinewidth
-1 setlinejoin
-2 setlinecap
-newpath
--457.14284 59.505039 moveto
--457.14284 104.45361 -493.62284 140.93361 -538.57141 140.93361 curveto
--583.51998 140.93361 -619.99998 104.45361 -619.99998 59.505039 curveto
--619.99998 14.556467 -583.51998 -21.923534 -538.57141 -21.923534 curveto
--493.62284 -21.923534 -457.14284 14.556467 -457.14284 59.505039 curveto
-closepath
-stroke
-grestore
-gsave [0.731389 0 0 0.728143 1014.198 710.9212] concat
-0 0 0 setrgbcolor
-[] 0 setdash
-4.1109161 setlinewidth
-1 setlinejoin
-2 setlinecap
-newpath
--457.14284 59.505039 moveto
--457.14284 104.45361 -493.62284 140.93361 -538.57141 140.93361 curveto
--583.51998 140.93361 -619.99998 104.45361 -619.99998 59.505039 curveto
--619.99998 14.556467 -583.51998 -21.923534 -538.57141 -21.923534 curveto
--493.62284 -21.923534 -457.14284 14.556467 -457.14284 59.505039 curveto
-closepath
-stroke
-grestore
-gsave [0.639617 0 0 0.634621 87.04209 1086.516] concat
-0 0 0 setrgbcolor
-[] 0 setdash
-4.7087326 setlinewidth
-1 setlinejoin
-2 setlinecap
-newpath
--457.14284 59.505039 moveto
--457.14284 104.45361 -493.62284 140.93361 -538.57141 140.93361 curveto
--583.51998 140.93361 -619.99998 104.45361 -619.99998 59.505039 curveto
--619.99998 14.556467 -583.51998 -21.923534 -538.57141 -21.923534 curveto
--493.62284 -21.923534 -457.14284 14.556467 -457.14284 59.505039 curveto
-closepath
-stroke
-grestore
-gsave [0.639617 0 0 0.634621 867.8961 1098.368] concat
-0 0 0 setrgbcolor
-[] 0 setdash
-4.7087326 setlinewidth
-1 setlinejoin
-2 setlinecap
-newpath
--457.14284 59.505039 moveto
--457.14284 104.45361 -493.62284 140.93361 -538.57141 140.93361 curveto
--583.51998 140.93361 -619.99998 104.45361 -619.99998 59.505039 curveto
--619.99998 14.556467 -583.51998 -21.923534 -538.57141 -21.923534 curveto
--493.62284 -21.923534 -457.14284 14.556467 -457.14284 59.505039 curveto
-closepath
-stroke
-grestore
-gsave [0.731389 0 0 0.728143 603.8051 718.0061] concat
-0 0 0 setrgbcolor
-[] 0 setdash
-4.1109161 setlinewidth
-1 setlinejoin
-2 setlinecap
-newpath
--457.14284 59.505039 moveto
--457.14284 104.45361 -493.62284 140.93361 -538.57141 140.93361 curveto
--583.51998 140.93361 -619.99998 104.45361 -619.99998 59.505039 curveto
--619.99998 14.556467 -583.51998 -21.923534 -538.57141 -21.923534 curveto
--493.62284 -21.923534 -457.14284 14.556467 -457.14284 59.505039 curveto
-closepath
-stroke
-grestore
-gsave [0.731389 0 0 0.728143 1301.237 701.4743] concat
-0 0 0 setrgbcolor
-[] 0 setdash
-4.1109161 setlinewidth
-1 setlinejoin
-2 setlinecap
-newpath
--457.14284 59.505039 moveto
--457.14284 104.45361 -493.62284 140.93361 -538.57141 140.93361 curveto
--583.51998 140.93361 -619.99998 104.45361 -619.99998 59.505039 curveto
--619.99998 14.556467 -583.51998 -21.923534 -538.57141 -21.923534 curveto
--493.62284 -21.923534 -457.14284 14.556467 -457.14284 59.505039 curveto
-closepath
-stroke
-grestore
-gsave [0.731389 0 0 0.728143 240.8561 739.2613] concat
-0 0 0 setrgbcolor
-[] 0 setdash
-4.1109161 setlinewidth
-1 setlinejoin
-2 setlinecap
-newpath
--457.14284 59.505039 moveto
--457.14284 104.45361 -493.62284 140.93361 -538.57141 140.93361 curveto
--583.51998 140.93361 -619.99998 104.45361 -619.99998 59.505039 curveto
--619.99998 14.556467 -583.51998 -21.923534 -538.57141 -21.923534 curveto
--493.62284 -21.923534 -457.14284 14.556467 -457.14284 59.505039 curveto
-closepath
-stroke
-grestore
-gsave [0.639617 0 0 0.634621 659.9141 1086.828] concat
-0 0 0 setrgbcolor
-[] 0 setdash
-4.7087326 setlinewidth
-1 setlinejoin
-2 setlinecap
-newpath
--457.14284 59.505039 moveto
--457.14284 104.45361 -493.62284 140.93361 -538.57141 140.93361 curveto
--583.51998 140.93361 -619.99998 104.45361 -619.99998 59.505039 curveto
--619.99998 14.556467 -583.51998 -21.923534 -538.57141 -21.923534 curveto
--493.62284 -21.923534 -457.14284 14.556467 -457.14284 59.505039 curveto
-closepath
-stroke
-grestore
-gsave [0.639617 0 0 0.634621 453.7441 1086.828] concat
-0 0 0 setrgbcolor
-[] 0 setdash
-4.7087326 setlinewidth
-1 setlinejoin
-2 setlinecap
-newpath
--457.14284 59.505039 moveto
--457.14284 104.45361 -493.62284 140.93361 -538.57141 140.93361 curveto
--583.51998 140.93361 -619.99998 104.45361 -619.99998 59.505039 curveto
--619.99998 14.556467 -583.51998 -21.923534 -538.57141 -21.923534 curveto
--493.62284 -21.923534 -457.14284 14.556467 -457.14284 59.505039 curveto
-closepath
-stroke
-grestore
-gsave [0.639617 0 0 0.634621 304.3751 1086.828] concat
-0 0 0 setrgbcolor
-[] 0 setdash
-4.7087326 setlinewidth
-1 setlinejoin
-2 setlinecap
-newpath
--457.14284 59.505039 moveto
--457.14284 104.45361 -493.62284 140.93361 -538.57141 140.93361 curveto
--583.51998 140.93361 -619.99998 104.45361 -619.99998 59.505039 curveto
--619.99998 14.556467 -583.51998 -21.923534 -538.57141 -21.923534 curveto
--493.62284 -21.923534 -457.14284 14.556467 -457.14284 59.505039 curveto
-closepath
-stroke
-grestore
-gsave [0.639617 0 0 0.634621 1228.112 1089.198] concat
-0 0 0 setrgbcolor
-[] 0 setdash
-4.7087326 setlinewidth
-1 setlinejoin
-2 setlinecap
-newpath
--457.14284 59.505039 moveto
--457.14284 104.45361 -493.62284 140.93361 -538.57141 140.93361 curveto
--583.51998 140.93361 -619.99998 104.45361 -619.99998 59.505039 curveto
--619.99998 14.556467 -583.51998 -21.923534 -538.57141 -21.923534 curveto
--493.62284 -21.923534 -457.14284 14.556467 -457.14284 59.505039 curveto
-closepath
-stroke
-grestore
-gsave [0.639617 0 0 0.634621 1070.445 1093.315] concat
-0 0 0 setrgbcolor
-[] 0 setdash
-4.7087326 setlinewidth
-1 setlinejoin
-2 setlinecap
-newpath
--457.14284 59.505039 moveto
--457.14284 104.45361 -493.62284 140.93361 -538.57141 140.93361 curveto
--583.51998 140.93361 -619.99998 104.45361 -619.99998 59.505039 curveto
--619.99998 14.556467 -583.51998 -21.923534 -538.57141 -21.923534 curveto
--493.62284 -21.923534 -457.14284 14.556467 -457.14284 59.505039 curveto
-closepath
-stroke
-grestore
-gsave [0.639617 0 0 0.634621 1385.778 1080.964] concat
-0 0 0 setrgbcolor
-[] 0 setdash
-4.7087326 setlinewidth
-1 setlinejoin
-2 setlinecap
-newpath
--457.14284 59.505039 moveto
--457.14284 104.45361 -493.62284 140.93361 -538.57141 140.93361 curveto
--583.51998 140.93361 -619.99998 104.45361 -619.99998 59.505039 curveto
--619.99998 14.556467 -583.51998 -21.923534 -538.57141 -21.923534 curveto
--493.62284 -21.923534 -457.14284 14.556467 -457.14284 59.505039 curveto
-closepath
-stroke
-grestore
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-297.44616 129.45983 moveto
-98.989471 357.57517 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-450.46905 129.45983 moveto
-649.67508 333.72067 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
--3.1106382 502.8186 moveto
--120.47064 721.80116 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-73.989438 502.8186 moveto
-177.94142 700.54596 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-699.58258 478.9641 moveto
-637.80151 693.46106 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-760.5873 478.9641 moveto
-873.77625 684.01416 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
--171.6203 843.37779 moveto
--241.19346 1071.1087 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
--132.97399 843.37779 moveto
--57.663661 1071.4207 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-193.05934 822.12259 moveto
-123.99479 1071.4207 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-227.56035 822.12259 moveto
-299.9874 1071.4207 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-604.87196 815.03769 moveto
-536.90499 1082.9607 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-637.33945 815.03769 moveto
-711.05518 1077.9077 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-903.56206 805.59079 moveto
-886.92988 1073.7907 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-929.11055 805.59079 moveto
-1022.2491 1065.5567 lineto
-stroke
-grestore
-showpage
-%%EOF
+++ /dev/null
-%!PS-Adobe-3.0 EPSF-3.0
-%%Creator: inkscape 0.44.1
-%%Pages: 1
-%%Orientation: Portrait
-%%BoundingBox: -1066 -808 1886 1310
-%%HiResBoundingBox: -1066.2102 -808.40663 1885.0231 1309.6885
-%%DocumentMedia: plain 596 842 0 () ()
-%%EndComments
-%%Page: 1 1
-0 842 translate
-0.8 -0.8 scale
-gsave [1 0 0 1 0 0] concat
-gsave [0.338263 0 0 0.338263 -788.415 263.3811] concat
-0 0 0 setrgbcolor
-[] 0 setdash
-10 setlinewidth
-0 setlinejoin
-2 setlinecap
-newpath
-545.71428 398.07648 moveto
-545.71428 514.78505 450.99428 609.50505 334.28571 609.50505 curveto
-217.57713 609.50505 122.85713 514.78505 122.85713 398.07648 curveto
-122.85713 281.3679 217.57713 186.6479 334.28571 186.6479 curveto
-450.99428 186.6479 545.71428 281.3679 545.71428 398.07648 curveto
-closepath
-stroke
-grestore
-gsave [0.338263 0 0 0.338263 75.57971 261.903] concat
-0 0 0 setrgbcolor
-[] 0 setdash
-10 setlinewidth
-0 setlinejoin
-2 setlinecap
-newpath
-545.71428 398.07648 moveto
-545.71428 514.78505 450.99428 609.50505 334.28571 609.50505 curveto
-217.57713 609.50505 122.85713 514.78505 122.85713 398.07648 curveto
-122.85713 281.3679 217.57713 186.6479 334.28571 186.6479 curveto
-450.99428 186.6479 545.71428 281.3679 545.71428 398.07648 curveto
-closepath
-stroke
-grestore
-gsave [0.251871 0 0 0.251871 -611.8357 970.4724] concat
-0 0 0 setrgbcolor
-[] 0 setdash
-10 setlinewidth
-0 setlinejoin
-2 setlinecap
-newpath
-545.71428 398.07648 moveto
-545.71428 514.78505 450.99428 609.50505 334.28571 609.50505 curveto
-217.57713 609.50505 122.85713 514.78505 122.85713 398.07648 curveto
-122.85713 281.3679 217.57713 186.6479 334.28571 186.6479 curveto
-450.99428 186.6479 545.71428 281.3679 545.71428 398.07648 curveto
-closepath
-stroke
-grestore
-gsave [0.251871 0 0 0.251871 -799.6925 978.9312] concat
-0 0 0 setrgbcolor
-[] 0 setdash
-10 setlinewidth
-0 setlinejoin
-2 setlinecap
-newpath
-545.71428 398.07648 moveto
-545.71428 514.78505 450.99428 609.50505 334.28571 609.50505 curveto
-217.57713 609.50505 122.85713 514.78505 122.85713 398.07648 curveto
-122.85713 281.3679 217.57713 186.6479 334.28571 186.6479 curveto
-450.99428 186.6479 545.71428 281.3679 545.71428 398.07648 curveto
-closepath
-stroke
-grestore
-gsave [0.251871 0 0 0.251871 -1249.658 984.4112] concat
-0 0 0 setrgbcolor
-[] 0 setdash
-10 setlinewidth
-0 setlinejoin
-2 setlinecap
-newpath
-545.71428 398.07648 moveto
-545.71428 514.78505 450.99428 609.50505 334.28571 609.50505 curveto
-217.57713 609.50505 122.85713 514.78505 122.85713 398.07648 curveto
-122.85713 281.3679 217.57713 186.6479 334.28571 186.6479 curveto
-450.99428 186.6479 545.71428 281.3679 545.71428 398.07648 curveto
-closepath
-stroke
-grestore
-gsave [0.338263 0 0 0.338263 806.7104 258.4159] concat
-0 0 0 setrgbcolor
-[] 0 setdash
-10 setlinewidth
-0 setlinejoin
-2 setlinecap
-newpath
-545.71428 398.07648 moveto
-545.71428 514.78505 450.99428 609.50505 334.28571 609.50505 curveto
-217.57713 609.50505 122.85713 514.78505 122.85713 398.07648 curveto
-122.85713 281.3679 217.57713 186.6479 334.28571 186.6479 curveto
-450.99428 186.6479 545.71428 281.3679 545.71428 398.07648 curveto
-closepath
-stroke
-grestore
-gsave [0.251871 0 0 0.251871 -967.5788 972.8998] concat
-0 0 0 setrgbcolor
-[] 0 setdash
-10 setlinewidth
-0 setlinejoin
-2 setlinecap
-newpath
-545.71428 398.07648 moveto
-545.71428 514.78505 450.99428 609.50505 334.28571 609.50505 curveto
-217.57713 609.50505 122.85713 514.78505 122.85713 398.07648 curveto
-122.85713 281.3679 217.57713 186.6479 334.28571 186.6479 curveto
-450.99428 186.6479 545.71428 281.3679 545.71428 398.07648 curveto
-closepath
-stroke
-grestore
-gsave [0.39934 0 0 0.39934 331.6575 -657.2877] concat
-0 0 0 setrgbcolor
-[] 0 setdash
-10 setlinewidth
-0 setlinejoin
-2 setlinecap
-newpath
-545.71428 398.07648 moveto
-545.71428 514.78505 450.99428 609.50505 334.28571 609.50505 curveto
-217.57713 609.50505 122.85713 514.78505 122.85713 398.07648 curveto
-122.85713 281.3679 217.57713 186.6479 334.28571 186.6479 curveto
-450.99428 186.6479 545.71428 281.3679 545.71428 398.07648 curveto
-closepath
-stroke
-grestore
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-438.44686 -411.89125 moveto
-211.2762 323.34776 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-882.44771 319.86066 moveto
-509.23232 -411.89125 lineto
-stroke
-gsave [0.338263 0 0 0.338263 1632.914 295.1559] concat
-0 0 0 setrgbcolor
-[] 0 setdash
-10 setlinewidth
-0 setlinejoin
-2 setlinecap
-newpath
-545.71428 398.07648 moveto
-545.71428 514.78505 450.99428 609.50505 334.28571 609.50505 curveto
-217.57713 609.50505 122.85713 514.78505 122.85713 398.07648 curveto
-122.85713 281.3679 217.57713 186.6479 334.28571 186.6479 curveto
-450.99428 186.6479 545.71428 281.3679 545.71428 398.07648 curveto
-closepath
-stroke
-grestore
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-551.57974 -435.69138 moveto
-1672.7807 376.76069 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-378.72257 -430.39223 moveto
--602.12874 340.49721 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
--727.59559 471.24542 moveto
--1126.5505 1030.163 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
--697.8984 471.24542 moveto
--866.58381 1018.6516 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
--679.65453 471.24542 moveto
--712.28192 1024.683 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
--659.26441 471.24542 moveto
--539.60762 1016.2242 lineto
-stroke
-gsave [0.251871 0 0 0.251871 277.7847 993.6972] concat
-0 0 0 setrgbcolor
-[] 0 setdash
-10 setlinewidth
-0 setlinejoin
-2 setlinecap
-newpath
-545.71428 398.07648 moveto
-545.71428 514.78505 450.99428 609.50505 334.28571 609.50505 curveto
-217.57713 609.50505 122.85713 514.78505 122.85713 398.07648 curveto
-122.85713 281.3679 217.57713 186.6479 334.28571 186.6479 curveto
-450.99428 186.6479 545.71428 281.3679 545.71428 398.07648 curveto
-closepath
-stroke
-grestore
-gsave [0.251871 0 0 0.251871 83.27105 996.1249] concat
-0 0 0 setrgbcolor
-[] 0 setdash
-10 setlinewidth
-0 setlinejoin
-2 setlinecap
-newpath
-545.71428 398.07648 moveto
-545.71428 514.78505 450.99428 609.50505 334.28571 609.50505 curveto
-217.57713 609.50505 122.85713 514.78505 122.85713 398.07648 curveto
-122.85713 281.3679 217.57713 186.6479 334.28571 186.6479 curveto
-450.99428 186.6479 545.71428 281.3679 545.71428 398.07648 curveto
-closepath
-stroke
-grestore
-gsave [0.251871 0 0 0.251871 -285.1594 992.5203] concat
-0 0 0 setrgbcolor
-[] 0 setdash
-10 setlinewidth
-0 setlinejoin
-2 setlinecap
-newpath
-545.71428 398.07648 moveto
-545.71428 514.78505 450.99428 609.50505 334.28571 609.50505 curveto
-217.57713 609.50505 122.85713 514.78505 122.85713 398.07648 curveto
-122.85713 281.3679 217.57713 186.6479 334.28571 186.6479 curveto
-450.99428 186.6479 545.71428 281.3679 545.71428 398.07648 curveto
-closepath
-stroke
-grestore
-gsave [0.251871 0 0 0.251871 -95.50096 990.0931] concat
-0 0 0 setrgbcolor
-[] 0 setdash
-10 setlinewidth
-0 setlinejoin
-2 setlinecap
-newpath
-545.71428 398.07648 moveto
-545.71428 514.78505 450.99428 609.50505 334.28571 609.50505 curveto
-217.57713 609.50505 122.85713 514.78505 122.85713 398.07648 curveto
-122.85713 281.3679 217.57713 186.6479 334.28571 186.6479 curveto
-450.99428 186.6479 545.71428 281.3679 545.71428 398.07648 curveto
-closepath
-stroke
-grestore
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-147.68692 469.76732 moveto
--170.45676 1038.2721 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-167.55637 469.76732 moveto
-4.4068681 1035.8449 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-186.43968 469.76732 moveto
-169.11835 1041.8767 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-206.85099 469.76732 moveto
-348.43371 1039.449 lineto
-stroke
-gsave [0.251871 0 0 0.251871 1213.956 1009.323] concat
-0 0 0 setrgbcolor
-[] 0 setdash
-10 setlinewidth
-0 setlinejoin
-2 setlinecap
-newpath
-545.71428 398.07648 moveto
-545.71428 514.78505 450.99428 609.50505 334.28571 609.50505 curveto
-217.57713 609.50505 122.85713 514.78505 122.85713 398.07648 curveto
-122.85713 281.3679 217.57713 186.6479 334.28571 186.6479 curveto
-450.99428 186.6479 545.71428 281.3679 545.71428 398.07648 curveto
-closepath
-stroke
-grestore
-gsave [0.251871 0 0 0.251871 1017.641 1000.864] concat
-0 0 0 setrgbcolor
-[] 0 setdash
-10 setlinewidth
-0 setlinejoin
-2 setlinecap
-newpath
-545.71428 398.07648 moveto
-545.71428 514.78505 450.99428 609.50505 334.28571 609.50505 curveto
-217.57713 609.50505 122.85713 514.78505 122.85713 398.07648 curveto
-122.85713 281.3679 217.57713 186.6479 334.28571 186.6479 curveto
-450.99428 186.6479 545.71428 281.3679 545.71428 398.07648 curveto
-closepath
-stroke
-grestore
-gsave [0.251871 0 0 0.251871 609.9691 989.4269] concat
-0 0 0 setrgbcolor
-[] 0 setdash
-10 setlinewidth
-0 setlinejoin
-2 setlinecap
-newpath
-545.71428 398.07648 moveto
-545.71428 514.78505 450.99428 609.50505 334.28571 609.50505 curveto
-217.57713 609.50505 122.85713 514.78505 122.85713 398.07648 curveto
-122.85713 281.3679 217.57713 186.6479 334.28571 186.6479 curveto
-450.99428 186.6479 545.71428 281.3679 545.71428 398.07648 curveto
-closepath
-stroke
-grestore
-gsave [0.251871 0 0 0.251871 815.9196 999.0622] concat
-0 0 0 setrgbcolor
-[] 0 setdash
-10 setlinewidth
-0 setlinejoin
-2 setlinecap
-newpath
-545.71428 398.07648 moveto
-545.71428 514.78505 450.99428 609.50505 334.28571 609.50505 curveto
-217.57713 609.50505 122.85713 514.78505 122.85713 398.07648 curveto
-122.85713 281.3679 217.57713 186.6479 334.28571 186.6479 curveto
-450.99428 186.6479 545.71428 281.3679 545.71428 398.07648 curveto
-closepath
-stroke
-grestore
-gsave [0.251871 0 0 0.251871 2076.638 1015.63] concat
-0 0 0 setrgbcolor
-[] 0 setdash
-10 setlinewidth
-0 setlinejoin
-2 setlinecap
-newpath
-545.71428 398.07648 moveto
-545.71428 514.78505 450.99428 609.50505 334.28571 609.50505 curveto
-217.57713 609.50505 122.85713 514.78505 122.85713 398.07648 curveto
-122.85713 281.3679 217.57713 186.6479 334.28571 186.6479 curveto
-450.99428 186.6479 545.71428 281.3679 545.71428 398.07648 curveto
-closepath
-stroke
-grestore
-gsave [0.251871 0 0 0.251871 1865.207 1013.828] concat
-0 0 0 setrgbcolor
-[] 0 setdash
-10 setlinewidth
-0 setlinejoin
-2 setlinecap
-newpath
-545.71428 398.07648 moveto
-545.71428 514.78505 450.99428 609.50505 334.28571 609.50505 curveto
-217.57713 609.50505 122.85713 514.78505 122.85713 398.07648 curveto
-122.85713 281.3679 217.57713 186.6479 334.28571 186.6479 curveto
-450.99428 186.6479 545.71428 281.3679 545.71428 398.07648 curveto
-closepath
-stroke
-grestore
-gsave [0.251871 0 0 0.251871 1446.024 1014.453] concat
-0 0 0 setrgbcolor
-[] 0 setdash
-10 setlinewidth
-0 setlinejoin
-2 setlinecap
-newpath
-545.71428 398.07648 moveto
-545.71428 514.78505 450.99428 609.50505 334.28571 609.50505 curveto
-217.57713 609.50505 122.85713 514.78505 122.85713 398.07648 curveto
-122.85713 281.3679 217.57713 186.6479 334.28571 186.6479 curveto
-450.99428 186.6479 545.71428 281.3679 545.71428 398.07648 curveto
-closepath
-stroke
-grestore
-gsave [0.251871 0 0 0.251871 1677.976 1020.486] concat
-0 0 0 setrgbcolor
-[] 0 setdash
-10 setlinewidth
-0 setlinejoin
-2 setlinecap
-newpath
-545.71428 398.07648 moveto
-545.71428 514.78505 450.99428 609.50505 334.28571 609.50505 curveto
-217.57713 609.50505 122.85713 514.78505 122.85713 398.07648 curveto
-122.85713 281.3679 217.57713 186.6479 334.28571 186.6479 curveto
-450.99428 186.6479 545.71428 281.3679 545.71428 398.07648 curveto
-closepath
-stroke
-grestore
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-896.07575 466.28022 moveto
-711.82131 1035.1787 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-917.74787 466.28022 moveto
-901.63473 1044.814 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-938.61009 466.28022 moveto
-1087.8221 1046.6158 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-958.44628 466.28022 moveto
-1269.3671 1055.0748 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-1722.9268 503.02022 moveto
-1547.3941 1060.2048 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-1747.7051 503.02022 moveto
-1760.8962 1066.2378 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-1767.7532 503.02022 moveto
-1933.1993 1059.5798 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-1790.2572 503.02022 moveto
-2127.8738 1061.3818 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
--1189.2535 1139.1872 moveto
--1332.2627 1466.8439 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
--1180.043 1139.1872 moveto
--1268.8216 1471.0733 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
--1169.4333 1139.1872 moveto
--1192.6923 1458.3851 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
--1159.8783 1139.1872 moveto
--1125.0219 1479.5321 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
--905.95674 1127.6758 moveto
--1044.6632 1462.6145 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
--895.89279 1127.6758 moveto
--972.76329 1462.6145 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
--884.64484 1127.6758 moveto
--892.40458 1462.6145 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
--872.11053 1127.6758 moveto
--799.35766 1479.5321 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
--723.12526 1133.7072 moveto
--769.75182 1466.8439 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
--713.58847 1133.7072 moveto
--702.08133 1462.6145 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
--703.62802 1133.7072 moveto
--630.18143 1471.0733 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
--694.88217 1133.7072 moveto
--562.51094 1483.7616 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
--528.35591 1125.2484 moveto
--532.9051 1471.0733 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
--527.63883 1016.2242 moveto
--527.63883 1016.2242 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
--519.23036 1125.2484 moveto
--465.23461 1475.3027 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
--510.85761 1125.2484 moveto
--401.79353 1479.5321 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
--503.15772 1125.2484 moveto
--338.35245 1492.2204 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
--216.32266 1147.2963 moveto
--308.74661 1475.3027 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
--207.96189 1147.2963 moveto
--249.53493 1471.0733 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
--200.02841 1147.2963 moveto
--194.55266 1466.8439 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
--192.49452 1147.2963 moveto
--139.57038 1487.991 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
--22.879672 1144.8691 moveto
--93.046923 1475.3027 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
--15.598208 1144.8691 moveto
--42.294056 1483.7616 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
--7.5547776 1144.8691 moveto
-16.917622 1500.6792 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-0.87349092 1144.8691 moveto
-80.358706 1500.6792 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-160.05204 1150.9009 moveto
-114.19395 1487.991 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-168.88321 1150.9009 moveto
-177.63503 1487.991 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-178.30313 1150.9009 moveto
-245.30552 1487.991 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-186.34171 1150.9009 moveto
-304.5172 1492.2204 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-358.08567 1148.4732 moveto
-334.12304 1483.7616 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-366.36619 1148.4732 moveto
-393.33472 1483.7616 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-374.18769 1148.4732 moveto
-448.31699 1479.5321 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-382.48236 1148.4732 moveto
-511.75808 1492.2204 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-677.53067 1144.2029 moveto
-575.19916 1479.5321 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-685.31495 1144.2029 moveto
-630.18143 1483.7616 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-692.93391 1144.2029 moveto
-685.16371 1487.991 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-702.28159 1144.2029 moveto
-752.8342 1483.7616 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-885.50766 1153.8382 moveto
-799.35766 1475.3027 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-895.52564 1153.8382 moveto
-867.02815 1492.2204 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-905.38789 1153.8382 moveto
-938.92804 1500.6792 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-915.73073 1153.8382 moveto
-1006.5985 1471.0733 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-1091.5435 1155.64 moveto
-1031.975 1471.0733 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-1100.2684 1155.64 moveto
-1091.1866 1471.0733 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-1111.7688 1155.64 moveto
-1171.5453 1483.7616 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-1120.5996 1155.64 moveto
-1234.9864 1487.991 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-1292.7089 1164.099 moveto
-1260.3629 1487.991 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-1301.7673 1164.099 moveto
-1323.8039 1496.4498 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-1310.7067 1164.099 moveto
-1387.245 1496.4498 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-1318.8241 1164.099 moveto
-1446.4567 1500.6792 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-1522.5717 1169.229 moveto
-1476.0626 1500.6792 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-1530.9425 1169.229 moveto
-1535.2742 1496.4498 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-1536.8356 1169.229 moveto
-1577.5683 1504.9086 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-1547.063 1169.229 moveto
-1649.4682 1500.6792 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-1751.4636 1175.262 moveto
-1687.5328 1500.6792 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-1760.5661 1175.262 moveto
-1750.9739 1500.6792 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-1768.768 1175.262 moveto
-1810.1856 1517.5968 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-1776.9015 1175.262 moveto
-1869.3973 1517.5968 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-1943.6776 1168.604 moveto
-1907.4619 1513.3674 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-1952.9165 1168.604 moveto
-1975.1324 1513.3674 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-1962.8755 1168.604 moveto
-2047.0323 1509.138 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-1971.7352 1168.604 moveto
-2114.7028 1517.5968 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-2157.3338 1170.406 moveto
-2135.8498 1504.9086 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-2165.5289 1170.406 moveto
-2195.0615 1513.3674 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-2174.7955 1170.406 moveto
-2266.9614 1530.285 lineto
-stroke
-0 0 0 setrgbcolor
-[] 0 setdash
-1 setlinewidth
-0 setlinejoin
-0 setlinecap
-newpath
-2186.2202 1170.406 moveto
-2355.7789 1534.5144 lineto
-stroke
-gsave [0.08115751 0 0 0.08115751 506.7197 1520.494] concat
-gsave
-0 0 0 setrgbcolor
-newpath
-786.66943 2097.0254 moveto
-786.66943 2267.4535 636.03493 2405.772 450.4317 2405.772 curveto
-264.82847 2405.772 114.19397 2267.4535 114.19397 2097.0254 curveto
-114.19397 1926.5973 264.82847 1788.2788 450.4317 1788.2788 curveto
-636.03493 1788.2788 786.66943 1926.5973 786.66943 2097.0254 curveto
-closepath
-fill
-grestore
-grestore
-gsave [0.08115751 0 0 0.08115751 517.4962 1867.624] concat
-gsave
-0 0 0 setrgbcolor
-newpath
-786.66943 2097.0254 moveto
-786.66943 2267.4535 636.03493 2405.772 450.4317 2405.772 curveto
-264.82847 2405.772 114.19397 2267.4535 114.19397 2097.0254 curveto
-114.19397 1926.5973 264.82847 1788.2788 450.4317 1788.2788 curveto
-636.03493 1788.2788 786.66943 1926.5973 786.66943 2097.0254 curveto
-closepath
-fill
-grestore
-grestore
-gsave [0.08115751 0 0 0.08115751 509.0374 1698.448] concat
-gsave
-0 0 0 setrgbcolor
-newpath
-786.66943 2097.0254 moveto
-786.66943 2267.4535 636.03493 2405.772 450.4317 2405.772 curveto
-264.82847 2405.772 114.19397 2267.4535 114.19397 2097.0254 curveto
-114.19397 1926.5973 264.82847 1788.2788 450.4317 1788.2788 curveto
-636.03493 1788.2788 786.66943 1926.5973 786.66943 2097.0254 curveto
-closepath
-fill
-grestore
-grestore
-grestore
-showpage
-%%EOF