$\beta(m,n) \le \beta(1,n) = \log^* n$.
\qed
+\cor
+When we use the Iterated Jarn\'\i{}k's algorithm on graphs with edge density
+at least~$\log^{(k)} n$ for some $k\in{\bb N}^+$, it runs in time~$\O(km)$.
+
+\proof
+If $m/n \ge \log^{(k)} n$, then $\beta(m,n)\le k$.
+\qed
+\FIXME{Reference to Q-Heaps.}
\def\[#1]{[\ref{#1}]}
\n{$\bb R$}{the set of all real numbers}
\n{$\bb N$}{the set of all natural numbers, including 0}
+\n{${\bb N}^+$}{the set of all positive integers}
\n{$T[u,v]$}{the path in a tree~$T$ joining vertices $u$ and $v$ \[heavy]}
\n{$T[e]$}{the path in a tree~$T$ joining the endpoints of an~edge~$e$ \[heavy]}
\n{$A\symdiff B$}{symetric difference of sets: $(A\setminus B) \cup (B\setminus A)$}