\def\label#1{{\sl (#1)\/}\enspace}
-\def\thmn{\thm\label}
-\def\lemman{\lemma\label}
-\def\defnn{\defn\label}
+\def\thmn#1{\thm\label{#1}\hfil\break}
+\def\lemman#1{\lemma\label{#1}\hfil\break}
+\def\defnn#1{\defn\label{#1}\hfil\break}
\def\algn{\alg\label}
-\def\notan{\nota\label}
+\def\notan#1{\nota\label{#1}\hfil\break}
\def\proof{\noindent {\sl Proof.}\enspace}
\def\proofsketch{\noindent {\sl Proof sketch.}\enspace}
Then apply the previous lemma.
\qed
-\thmn{\cite{mm:mst}}\id{planarbor}%
+\thmn{Contractive Bor\o{u}vka on planar graphs, \cite{mm:mst}}\id{planarbor}%
When the input graph is planar, the Contractive Bor\o{u}vka's algorithm runs in
time $\O(n)$.