]> mj.ucw.cz Git - ga.git/commitdiff
Boruvkuv a Jarnikuv algoritmus: stylisticke korektury a odkazy na literaturu.
authorMartin Mares <mj@ucw.cz>
Wed, 24 Jan 2007 14:52:30 +0000 (15:52 +0100)
committerMartin Mares <mj@ucw.cz>
Wed, 24 Jan 2007 14:52:30 +0000 (15:52 +0100)
6-borjar/6-borjar.tex
ga.bib

index 04dbd50be4ca3da82d297e32fe7c8853bf8dcba1..475014d4582eb8b079d27009e1f2d740511a1c58 100644 (file)
@@ -15,19 +15,22 @@ line
 \s{Pozorování:}
 Pokud $F \subseteq {\rm MST}(G)$ (kde ${\rm MST}(G)$ je minimální kostra grafu~$G$), $G'$~je graf vzniklý
 z~$G$ kontrakcí podél hran z~$F$, pak kostra grafu~$G$, která vznikne z~${\rm MST}(G')$ zpìtným
-expandováním kontrahovaných vrcholù, je ${\rm MST}(G)$.
+expandováním kontrahovaných vrcholù, je ${\rm MST}(G)$. Pokud kontrakcí vzniknou
+smyèky, mù¾eme je ihned odstraòovat; pokud paralelní hrany, ponecháme z~nich v¾dy tu nejlehèí.
 To nás vede k následujícímu algoritmu:
 
 \s{Algoritmus: MST v rovinných grafech} \cite{mm:mst}
 \algo
 \:Ke ka¾dému vrcholu najdeme nejlevnìj¹í incidentní hranu -- dostaneme mno¾inu hran $F \subseteq E$.
 \:Graf kontrahujeme podle $F$ následovnì:
-\::Prohledáme do ¹íøky graf $(V(G), F)$ a pøiøadíme vrcholùm èíslo komponenty, ve které jsou.
+\::Prohledáme do ¹íøky graf $(V, F)$ a pøiøadíme ka¾dému vrcholu èíslo komponenty, v~ní¾ se nachází.
 \::Pøeèíslujeme hrany v~$G$ podle èísel komponent.
 \:Odstraníme násobné hrany:
-\::Setøídíme hrany lexikograficky pomocí pøihrádkového tøídìní (násobné hrany jsou nyní pospolu).
+\::Setøídíme hrany lexikograficky pøihrádkovým tøídìním (násobné hrany jsou nyní pospolu).
 \::Projdeme posloupnost hran a z~ka¾dého úseku multihran odstraníme v¹echny a¾ na nejlevnìj¹í hranu.
+Také odstraníme smyèky.
 \:Pokud stále máme netriviální graf, opakujeme pøedchozí kroky.
+\:Vrátíme jako MST v¹echny hrany, které se v~prùbìhu algoritmu dostaly do~$F$.
 \endalgo
 
 \s{Èasová slo¾itost:}
@@ -36,7 +39,7 @@ Ka
 Poèet vrcholù grafu klesá s~ka¾dým cyklem exponenciálnì: $n_i \leq n / 2^i$.
 Na~zaèátku ka¾dého cyklu je graf rovinný (kontrakcí hrany v~rovinném grafu se rovinnost
 zachovává) a není to multigraf, tak¾e poèet jeho hran je lineární v poètu vrcholù:
-$m_i < 3n_i$. Celkovou èasovou slo¾itost dostaneme jako souèet doby trvání
+$m_i < 3n_i$. Celkovou èasovou slo¾itost dostaneme jako souèet dob trvání
 v¹ech cyklù: $\O(\sum_i m_i) = \O(\sum_i n_i) = \O(n)$.
 
 \h{Minorovì uzavøené tøídy}
@@ -46,8 +49,7 @@ ne
 
 \s{Definice:}
 Graf $H$ je {\I minorem} grafu $G$ (znaèíme $H \preceq G$) $\equiv$ $H$ lze z $G$ získat
-mazáním vrcholù èi hran a kontrahováním hran.
-\foot{Zde myslíme kontrakci s~odstranìním násobných hran.}
+mazáním vrcholù èi hran a kontrahováním hran (s~odstranìním smyèek a násobných hran).
 
 \s{Pozorování:}
 $H \subseteq G \Rightarrow H \preceq G$.
@@ -59,8 +61,11 @@ T
 Pokud je $\cal C$ minorovì uzavøená tøída grafù, existuje koneèná mno¾ina grafù $Z$ taková,
 ¾e pro ka¾dý graf $G$ platí:
 $$G \not\in {\cal C} \iff \exists H \in Z: H \preceq G.$$
-(Èili ka¾dou minorovì uzavøenou tøídu lze charakterizovat {\I koneèným} poètem zakázaných minorù.
-To není samo sebou, dokazuje se to dosti pracnì, ale plyne z~toho spousta zajímavých dùsledkù.)
+
+Jinými slovy, ka¾dou minorovì uzavøenou tøídu lze charakterizovat {\I koneèným} poètem zakázaných minorù.
+To není samo sebou, dokazuje se to dosti obtí¾nì (a~je to jedna z~nejslavnìj¹ích kombinatorických
+vìt za~posledních mnoho let), ale plyne z~toho spousta zajímavých dùsledkù.
+Pìkné shrnutí této teorie najdete napøíklad v~Diestelove knize~\cite{diestel:gt}.
 
 \s{Pozorování:} Napøíklad pro rovinné grafy jsou tìmi zakázanými minory právì
 $K_{3,3}$ a $K_5$. To plyne z~Kuratowského vìty: jedna implikace je triviální,
@@ -82,22 +87,22 @@ dokonce pro ka
 \h{Jarníkùv algoritmus s Fibonacciho haldou}
 
 Pùvodní Jarníkùv algoritmus s~haldou má díky ní slo¾itost $\O(m\log n)$, to zlep¹íme pou¾itím
-Fibonacciho haldy $H$, do~které si budeme ukládat trojice $(v,w,w(vw))$ vrcholù $v$ sousedících
-s~dosavadní podkostrou $T$ pøes hranu $vw$, $w\in T$, která bude navíc nejlevnìj¹í mo¾ná.
-Tyto trojice bude halda udr¾ovat uspoøádané podle vah.
+Fibonacciho haldy $H$, do~které si pro ka¾dý vrchol sousedící se zatím vybudovaným stromem~$T$
+ulo¾íme nejlevnìj¹í z~hran vedoucích mezi tímto vrcholem a stromem~$T$. Tyto hrany bude halda
+udr¾ovat uspoøádané podle vah.
 
 \newcount\algcnt
 \s{Algoritmus: Jarníkùv algoritmus~\#2 (Fredman, Tarjan \cite{ft:fibonacci})}
 \algo
-\:Zaèneme libovolným vrcholem $v_0$: $T=\{v_0\}$.
-\:Do~haldy $H$ umístíme v¹echny sousedy $v_0$ spolu s pøíslu¹nými hranami.
+\:Zaèneme libovolným vrcholem $v_0$, $T\leftarrow \{v_0\}$.
+\:Do~haldy $H$ umístíme v¹echny hrany vedoucí z~$v_0$.
 \:Opakuji dokud $H\neq\emptyset$:
-\::$(v,w,w(vw))=\<DeleteMin>(H)$
-\::$T:=T\cup\{vw\}$
-\::Pro v¹echny sousedy $u\in E\backslash T$ vrcholu $v$ upravím haldu:
-\:::Pokud je $u$ v~$H$ nový, pøidáme jej spolu s~hranou $uv$
-\:::Pokud u¾ $u$ v~$H$ je a $uv$ je levnìj¹í ne¾ pùvodní nejlevnìj¹í hrana z~$u$
-do~$T$, nahradím jeho záznam v~$H$ za~$(u,v,w(uv))$ a provedu $\<DecreaseKey>(u,w(uv))$.
+\::$vw\leftarrow \<DeleteMin>(H)$, pøièem¾ $v\not\in T, w\in T$.
+\::$T\leftarrow T\cup\{vw\}$
+\::Pro v¹echny sousedy $u$ vrcholu $v$, které dosud nejsou v~$T$, upravíme haldu:
+\:::Pokud je¹tì v~$H$ není hrana incidentní s~$u$, pøidáme hranu~$uv$.
+\:::Pokud u¾ tam nìjaká taková hrana je a je-li tì¾¹í ne¾ $uv$, nahradíme ji
+hranou~$uv$ a provedeme \<DecreaseKey>.
 \global\algcnt=\itemcount
 \endalgo
 
@@ -108,7 +113,7 @@ Slo
 nanejvý¹ $n$-krát, za~\<DeleteMin> v~nìm tedy zaplatíme celkem $\O(n\log n)$, za~pøidávání
 vrcholù do~$H$ a~nalézání nejlevnìj¹ích hran zaplatíme celkem $\O(m)$ (na~ka¾dou hranu takto
 sáhneme nanejvý¹ dvakrát), za~sni¾ování vah vrcholù v~haldì rovnì¾ pouze $\O(m)$
-(nanejvý¹ $m$-krát provedu porovnání vah a \<DecreaseKey> v~$\the\algcnt.$ za~$\O(1)$).
+(nanejvý¹ $m$-krát provedu porovnání vah a \<DecreaseKey> v~kroku~\the\algcnt\ za~$\O(1)$).
 
 Toto zlep¹ení je dùle¾itìj¹í, ne¾ by se mohlo zdát, proto¾e nám pro grafy s~mnoha hranami
 (konkrétnì pro grafy s~$m=\Omega(n\log n)$) dává lineární algoritmus.
@@ -132,25 +137,25 @@ tedy nanejv
 \h{Jarníkùv algoritmus s~omezením velikosti haldy}
 
 Je¹tì vìt¹ího zrychlení dosáhneme, omezíme-li Jarníkovu algoritmu \#2 vhodnì
-velikost haldy a takto budeme bìhem jednoho Jarníkova algoritmu skládat pouze
-jednotlivé podkostøièky zastavené v rùstu pøeteèením haldy, podle kterých
-graf následnì kontrahujeme a budeme pokraèovat s mnohem men¹ím grafem.
+velikost haldy, tak¾e nám nalezne jednotlivé podkostøièky zastavené v~rùstu
+pøeteèením haldy. Podle tìchto podkostøièek graf následnì skontrahujeme
+a budeme pokraèovat s~mnohem men¹ím grafem.
 
 \s{Algoritmus: Jarníkùv algoritmus~\#4 (Fredman, Tarjan \cite{ft:fibonacci})}
 \algo
-\:Opakuji, dokud mám netriviální $G$ (s alespoò jednou hranou):
-\::$t=\vert V_G\vert$.
-\::Zvolím $k=2^{2m/t}$ podle aktuálního $t$.
-\::$T=\emptyset$
-\::Opakuji, dokud existují vrcholy mimo $T$:
-\:::Najdu vrchol $v_0$ mimo $T$.
-\:::Spustím Jarníkùv alg. \#2 pro celý graf od $v_0$. Zastavím ho, pokud:
+\:Opakujeme, dokud máme netriviální $G$ (s alespoò jednou hranou):
+\::$t\leftarrow\vert V(G)\vert$.
+\::Zvolíme $k\leftarrow 2^{2m/t}$ (velikost haldy).
+\::$T\leftarrow\emptyset$.
+\::Opakujeme, dokud existují vrcholy mimo $T$:
+\:::Najdeme vrchol $v_0$ mimo $T$.
+\:::Spustíme Jarníkùv alg. \#2 pro celý graf od $v_0$. Zastavíme ho, pokud:
 \global\algcnt=\itemcount
 \::::$\vert H\vert\geq k$ (byla pøekroèena velikost haldy) nebo
 \::::$H=\emptyset$ (do¹li sousedé) nebo
-\::::do $T$ jsem pøidal hranu oboustrannì incidentní s~hranami v~$T$ (pøipojil
-jsem novou podkostru k~nìjaké u¾ nalezené).
-\::Kontrahuji $G$ podle podkoster nalezených v~$T$.
+\::::do $T$ jsme pøidali hranu oboustrannì incidentní s~hranami v~$T$ (pøipojili
+jsme novou podkostru k~nìjaké u¾ nalezené).
+\::Kontrahujeme $G$ podle podkoster nalezených v~$T$.
 \endalgo
 
 \s{Pozorování:}
@@ -158,19 +163,19 @@ Pokud algoritmus je
 Jak to vypadá pro jednotlivá ukonèení:
 \numlist\ndotted
 \itemcount=\algcnt
-\:$\vert H\vert\geq k$ -- v¹echny hrany v~haldì jsou incidentní s~$T$, tak¾e incidentních je dost.
+\:$\vert H\vert\geq k$ -- v¹echny hrany v~haldì jsou incidentní s~$T$ a navzájem rùzné, tak¾e incidentních je dost.
 \:$H=\emptyset$ -- nemù¾e nastat, algoritmus by skonèil.
 \:Pøipojím se k~u¾ existující podkostøe -- jen ji zvìt¹ím.
 \endlist
 
 \s{Èasová slo¾itost:}
 Dùsledkem pøedchozího pozorování je, ¾e poèet podkoster v~jednom prùchodu je nanejvý¹
-$2m/k$. Pro $t'$ a $k'$ v následujícím kroku potom platí $t'\leq 2m/k$ a $k'=2^{2m/t'}\geq 2^k$,
-prùchodù bude tedy nanejvý¹ $\log^* n$\foot{$\log^* n$ je inverzní funkce k~\uv{vì¾i
+$2m/k$. Pro $t'$ a $k'$ v následujícím kroku potom platí $t'\leq 2m/k$ a $k'=2^{2m/t'}\geq 2^k$.
+Prùchodù bude tedy nanejvý¹ $\log^* n$\foot{$\log^* n$ je inverzní funkce k~\uv{vì¾i
 z~mocnin}, èili $\min\{i:\log^{(i)} n<1 \}$, kde $\log^{(i)} n$ je $i$-krát iterovaný
 logaritmus.}, proto¾e prùchod s~$k>n$ bude u¾ urèitì poslední.
-Jeden vnìj¹í prùchod trvá $\O(m+t\log k)$, zvolím-li tedy $k=2^{2m/t}$, potom bude mít
-jeden prùchod slo¾itost $\O(m)$. Celková slo¾itost bude $\O(m\log^{*}n)$.
+Pøitom jeden vnìj¹í prùchod trvá $\O(m+t\log k)$, co¾ je pro $k=2^{2m/t}$
+rovno $\O(m)$. Celkovì tedy algoritmus pobì¾í v~èase $\O(m\log^{*}n)$.
 
 I~odhad $\log^* n$ je ale pøíli¹ hrubý, proto¾e nezaèínáme s~haldou velikosti~1, nýbr¾
 $2^{2m/n}$. Mù¾eme tedy poèet prùchodù pøesnìji omezit funkcí $\beta(m,n)=\min\{i:\log^{(i)}n<m/n\}$
@@ -188,9 +193,9 @@ omezen
   pro nalezení minimální kostry v~grafech s~patøièným poètem hran a vrcholù
   \cite{pettie:optimal}.
   Jeliko¾ ka¾dý deterministický algoritmus zalo¾ený na~porovnávání vah lze popsat rozhodovacím stromem,
-  je tento algoritmus zaruèenì optimální. Jen bohu¾el nevíme, optimální stromy vypadají, tak¾e
+  je tento algoritmus zaruèenì optimální. Jen bohu¾el nevíme, jak optimální stromy vypadají, tak¾e
   je stále otevøeno, zda lze MST nalézt v~lineárním èase. Nicménì jeliko¾ tento algoritmus
-  pracuje i na~Pointer Machine, víme, ¾e pokud je lineární slo¾itosti mo¾né dosáhnout, není k~tomu
+  pracuje i na~Pointer Machine, proèe¾ víme, ¾e pokud je lineární slo¾itosti mo¾né dosáhnout, není k~tomu
   potøeba výpoèetní síla RAMu.\foot{O výpoèetních modelech viz pøí¹tí kapitola.}
 \:$\O(m)$ pro grafy s~celoèíselnými vahami (na~RAMu) \cite{fw90trans} -- uká¾eme v~jedné
   z~následujících kapitol.
diff --git a/ga.bib b/ga.bib
index cd16e4d77247466b10a1e89e6b5a03686b684fe5..d13924dea301a4fd874b4880202b9a5120db0ba7 100644 (file)
--- a/ga.bib
+++ b/ga.bib
   year={1956},
   publisher={JSTOR}
 }
+
+@book{ diestel:gt,
+  title={{Graph Theory}},
+  author={Diestel, R.},
+  year={2005},
+  publisher={Springer-Verlag Berlin and Heidelberg GmbH \& Co. K}
+}