\n{$H\minorof G$}{$H$ is a~minor of~$G$ \[minordef]}
\n{$G\crpt R$}{graph~$G$ with edges in~$R$ corrupted \[corrnota]}
\n{$R^C$}{$R^C = R\cap \delta(C)$ \[corrnota]}
-\n{$M^{i,j}$}{the matrix $M$ with $i$-th row and $j$-th column deleted \[restnota]}
}
indexed in a~way that $x_1 < \ldots < x_n$,
\:$g_i = \<MSB>(x_i \bxor x_{i+1})$ --- the position of the most significant bit in which $x_i$ and~$x_{i+1}$ differ,
\:$R_X(x)$ --- the rank of~$x$ in~$X$, that is the number of elements of~$X$ which are less than~$x$
-(where $x$~itself need not be an~element of~$X$).\foot{We will dedicate the whole Chapter~\ref{rankchap} to the
-study of various ranks.}
+(where $x$~itself need not be an~element of~$X$).
\endlist
\defn