lemma all other (red) edges are outside~$T_{min}$, so the blue edges are exactly~$T_{min}$.
\qed
+\para
+The Red lemma actually works in both directions and it can be used to characterize
+all non-MST edges, which will turn out to be useful in the latter chapters.
+
+\corn{Cycle rule}\id{cyclerule}%
+An~edge~$e$ is not contained in the MST iff it is the heaviest on some cycle.
+
+\proof
+The implication from the right to the left is the Red lemma. In the other
+direction, when~$e$ is not contained in~$T_{min}$, it is $T_{min}$-heavy (by
+Theorem \ref{mstthm}), so it is the heaviest edge on the cycle $T_{min}[e]+e$.
+\qed
+
%--------------------------------------------------------------------------------
\section{Classical algorithms}