]> mj.ucw.cz Git - home-hw.git/commitdiff
test-sinclair: Testing...
authorMartin Mares <mj@ucw.cz>
Thu, 13 Jul 2023 13:26:34 +0000 (15:26 +0200)
committerMartin Mares <mj@ucw.cz>
Thu, 13 Jul 2023 13:26:34 +0000 (15:26 +0200)
test-sinclair/README
test-sinclair/main.c

index a62505be9f46cdff4878f35634ee2b2cc0c7a55e..39eb505aed2e33cb64f37788b9ae162c3eef847c 100644 (file)
@@ -1,19 +1,19 @@
 Assignment of peripherals and pins
 ==================================
 
-I2C1   display
+SPI2   emulated TM1618 LED driver
 USART1 debugging
 
 
                           Blue Pill pinout
                        +--------------------+
                        | VBATT         3.3V |
-BluePill LED           | PC13           GND |  display power
-                       | PC14            5V |  display power (white side of connector)
+BluePill LED           | PC13           GND |
+                       | PC14            5V |
                        | PC15           PB9 |
-                       | PA0            PB8 |  SFH5110 output (white side of connector)
-                       | PA1            PB7 |  SDA1 display (white side of connector)
-                       | PA2            PB6 |  SCL1 display
+                       | PA0            PB8 |
+                       | PA1            PB7 |
+                       | PA2            PB6 |
                        | PA3            PB5 |
                        | PA4            PB4 |
                        | PA5            PB3 |
@@ -23,8 +23,8 @@ BluePill LED          | PC13           GND |  display power
                        | PB1           PA10 |  RXD1 - debugging console
                        | PB10           PA9 |  TXD1 - debugging console
                        | PB11           PA8 |
-                       | RESET         PB15 |
-                       | 3.3 V         PB14 |
-                       | GND           PB13 |
-                       | GND           PB12 |
+                       | RESET         PB15 |  MOSI2 - LED driver data input
+                       | 3.3 V         PB14 |  MISO2 - unused
+                       | GND           PB13 |  SCK2 - LED driver clock
+                       | GND           PB12 |  SS2 - LED driver non-inverted select
                        +--------------------+
index 7e8659b4c23c74a8bef74b2f5b07395feb57a4c9..8de64a79ffc54fa7d509e9050e4b84f0d12eef99 100644 (file)
@@ -1,7 +1,7 @@
 /*
- *     Workshop Clock
+ *     Testing Communication with Sinclair Air Conditioner
  *
- *     (c) 2020 Martin Mareš <mj@ucw.cz>
+ *     (c) 2023 Martin Mareš <mj@ucw.cz>
  */
 
 #include "util.h"
@@ -14,7 +14,9 @@
 #include <libopencm3/stm32/desig.h>
 #include <libopencm3/stm32/gpio.h>
 #include <libopencm3/stm32/usart.h>
-#include <libopencm3/stm32/i2c.h>
+#include <libopencm3/stm32/spi.h>
+#include <libopencm3/stm32/exti.h>
+#include <libopencm3/stm32/timer.h>
 #include <libopencm3/usb/dfu.h>
 #include <libopencm3/usb/usbd.h>
 
 
 static void clock_init(void)
 {
-       rcc_clock_setup_in_hse_8mhz_out_72mhz();
+       rcc_clock_setup_pll(&rcc_hse_configs[RCC_CLOCK_HSE8_72MHZ]);
 
        rcc_periph_clock_enable(RCC_GPIOA);
        rcc_periph_clock_enable(RCC_GPIOB);
        rcc_periph_clock_enable(RCC_GPIOC);
-       rcc_periph_clock_enable(RCC_I2C1);
+       rcc_periph_clock_enable(RCC_SPI2);
        rcc_periph_clock_enable(RCC_USART1);
        rcc_periph_clock_enable(RCC_USB);
+       rcc_periph_clock_enable(RCC_AFIO);
+       rcc_periph_clock_enable(RCC_TIM3);
 
        rcc_periph_reset_pulse(RST_GPIOA);
        rcc_periph_reset_pulse(RST_GPIOB);
        rcc_periph_reset_pulse(RST_GPIOC);
-       rcc_periph_reset_pulse(RST_I2C1);
+       rcc_periph_reset_pulse(RST_SPI2);
        rcc_periph_reset_pulse(RST_USART1);
        rcc_periph_reset_pulse(RST_USB);
+       rcc_periph_reset_pulse(RST_AFIO);
+       rcc_periph_reset_pulse(RST_TIM3);
 }
 
 static void gpio_init(void)
@@ -51,6 +57,13 @@ static void gpio_init(void)
        // PC13 = BluePill LED
        gpio_set_mode(GPIOC, GPIO_MODE_OUTPUT_50_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, GPIO13);
        gpio_clear(GPIOC, GPIO13);
+
+       // PB12 = SS2 (but used as GP input)
+       // PB13 = SCK2
+       // PB15 = MOSI2
+       gpio_set_mode(GPIOB, GPIO_MODE_INPUT, GPIO_CNF_INPUT_FLOAT, GPIO12);
+       gpio_set_mode(GPIOB, GPIO_MODE_INPUT, GPIO_CNF_INPUT_FLOAT, GPIO13);
+       gpio_set_mode(GPIOB, GPIO_MODE_INPUT, GPIO_CNF_INPUT_FLOAT, GPIO15);
 }
 
 static void usart_init(void)
@@ -88,6 +101,156 @@ static void delay_ms(uint ms)
                ;
 }
 
+/*** Emulated TM1618 LED Driver ***/
+
+static void tm_init(void)
+{
+       // Configure SPI2 to receive
+       spi_set_receive_only_mode(SPI2);
+       spi_enable_software_slave_management(SPI2);
+       spi_set_nss_low(SPI2);
+       spi_send_lsb_first(SPI2);
+       spi_set_clock_polarity_0(SPI2);
+       spi_set_clock_phase_1(SPI2);
+       spi_enable_rx_buffer_not_empty_interrupt(SPI2);
+       nvic_enable_irq(NVIC_SPI2_IRQ);
+       spi_enable(SPI2);
+
+#if 0
+       // Since our optocouplers are negating, we cannot let STM32 to handle slave
+       // select in hardware. Instead, we let SS trigger an interrupt, which changes
+       // SPI state accordingly.
+       nvic_set_priority(NVIC_EXTI15_10_IRQ, 0);
+       nvic_enable_irq(NVIC_EXTI15_10_IRQ);
+       exti_set_trigger(EXTI12, EXTI_TRIGGER_BOTH);
+       exti_select_source(EXTI12, GPIOB);
+       exti_enable_request(EXTI12);
+#endif
+
+#if 1
+       timer_set_prescaler(TIM3, CPU_CLOCK_MHZ-1);     // 1 tick = 1 μs
+       timer_set_mode(TIM3, TIM_CR1_CKD_CK_INT, TIM_CR1_CMS_EDGE, TIM_CR1_DIR_DOWN);
+       timer_update_on_overflow(TIM3);
+        timer_disable_preload(TIM3);
+       timer_one_shot_mode(TIM3);
+       timer_enable_irq(TIM3, TIM_DIER_UIE);
+       nvic_enable_irq(NVIC_TIM3_IRQ);
+       //timer_set_period(TIM3, 9999);
+       //timer_generate_event(TIM3, TIM_EGR_UG);
+       //timer_enable_counter(TIM3);
+#endif
+}
+
+void exti15_10_isr(void)
+{
+       // We require low latency here, so interaction with peripherals is open-coded.
+#if 0
+       if (GPIO_IDR(GPIOB) & (1 << 12))
+               SPI_CR1(SPI2) |= SPI_CR1_SSI;
+       else
+               SPI_CR1(SPI2) &= ~SPI_CR1_SSI;
+#else
+       SPI_CR1(SPI2) &= ~SPI_CR1_SSI;
+#endif
+       EXTI_PR = EXTI12;
+}
+
+static volatile byte tm_data[8];
+static volatile byte tm_overrun;
+
+static volatile byte tm_buffer[256];
+static volatile uint tm_len;
+
+static volatile uint tm_timeouts;
+
+void spi2_isr(void)
+{
+       /*
+        *  The AC unit is sending a stream of commands like this:
+        *
+        *  00 - set mode: 4 grids, 8 segments
+        *  44 - will write to display memory, no auto-increment
+        *  Cx - set memory address to x
+        *  yy - data to write, two most-significant bits are always zero
+        *  8B - display ON, duty cycle 10/16
+        *
+        *  So the only byte which can have top 2 bits both set is the Cx command.
+        *  We make use of this to synchronize the stream.
+        */
+       if (SPI_SR(SPI2) & SPI_SR_OVR)
+               tm_overrun = 1;
+       if (SPI_SR(SPI2) & SPI_SR_RXNE) {
+               byte x = SPI_DR(SPI2) ^ 0xff;
+#if 0
+               if (tm_len < ARRAY_SIZE(tm_buffer))
+                       tm_buffer[tm_len++] = x;
+#endif
+               static byte tm_address;
+               if (tm_address) {
+                       tm_data[tm_address & 7] = x;
+                       tm_address = 0;
+               } else if ((x & 0xc0) == 0xc0) {
+                       tm_address = x;
+               }
+               timer_set_period(TIM3, 999);
+               timer_generate_event(TIM3, TIM_EGR_UG);
+               timer_enable_counter(TIM3);
+       }
+}
+
+void tim3_isr(void)
+{
+       if (TIM_SR(TIM3) & TIM_SR_UIF) {
+               TIM_SR(TIM3) &= ~TIM_SR_UIF;
+               tm_timeouts++;
+               spi_set_nss_high(SPI2);
+               spi_set_nss_low(SPI2);
+       }
+}
+
+#if 0
+static void tm_test(void)
+{
+       u32 start_ticks = ms_ticks;
+       static byte tmbuf[256];
+       uint len = 0;
+
+       while (ms_ticks - start_ticks < 1000 && len < ARRAY_SIZE(tmbuf)) {
+               if (SPI_SR(SPI2) & SPI_SR_RXNE) {
+                       tmbuf[len++] = SPI_DR(SPI2) ^ 0xff;
+               }
+       }
+
+       for (uint i=0; i<len; i++) {
+               debug_printf("%02x ", tmbuf[i]);
+               if ((i % 5) == 4)
+                       debug_putc('\n');
+       }
+       debug_putc('\n');
+}
+#endif
+
+static void tm_show(void)
+{
+       debug_printf("TM:");
+       for (uint i=0; i<8; i++)
+               debug_printf(" %02x", tm_data[i]);
+       debug_printf(" o=%d t=%d", tm_overrun, tm_timeouts);
+       tm_overrun = 0;
+       debug_putc('\n');
+
+#if 0
+       static byte tm_dumped;
+       if (!tm_dumped && tm_len == ARRAY_SIZE(tm_buffer)) {
+               for (uint i=0; i < tm_len; i++)
+                       debug_printf("%02x ", tm_buffer[i]);
+               debug_putc('\n');
+               // tm_dumped = 1;
+               tm_len = 0;
+       }
+#endif
+}
+
 /*** USB ***/
 
 static usbd_device *usbd_dev;
@@ -289,6 +452,7 @@ int main(void)
 
        debug_printf("Hello, world!\n");
 
+       tm_init();
        usb_init();
 
        u32 last_blink = 0;
@@ -297,6 +461,7 @@ int main(void)
                if (ms_ticks - last_blink >= 1000) {
                        debug_led_toggle();
                        last_blink = ms_ticks;
+                       tm_show();
                }
 
                if (usb_event_pending) {