to be the infimum of all~$\varrho$'s such that $m(G) \le \varrho\cdot n(G)$
holds for every $G\in\cal C$.
-\thmn{Density of minor-closed classes}
+\thmn{Density of minor-closed classes, Mader~\cite{mader:dens}}
A~minor-closed class of graphs has finite edge density if and only if it is
a non-trivial class.
\figure{hexangle.eps}{\epsfxsize}{The construction from Remark~\ref{hexa}}
+\rem
+The observation in~Theorem~\ref{mstmcc} was also made by Gustedt in~\cite{gustedt:parallel},
+who studied a~parallel version of the contractive Bor\o{u}vka's algorithm applied
+to minor-closed classes.
+
%--------------------------------------------------------------------------------
\section{Using Fibonacci heaps}
year={2003},
publisher={Cambridge University Press}
}
+
+@article{ mader:dens,
+ title={{Homomorphieeigenschaften und mittlere Kantendichte von Graphen}},
+ author={Mader, W.},
+ journal={Mathematische Annalen},
+ volume={174},
+ number={4},
+ pages={265--268},
+ year={1967},
+ publisher={Springer},
+ note={German}
+}
+
+@inproceedings{ gustedt:parallel,
+ author = "Jens Gustedt",
+ title = "Minimum Spanning Trees for Minor-Closed Graph Classes in Parallel",
+ booktitle = "Symposium on Theoretical Aspects of Computer Science",
+ pages = "421-431",
+ year = "1998",
+ url = "citeseer.ist.psu.edu/223918.html"
+}