loss of generality we can assume that $C=T_1[u_1v_1]\,v_1u_2\,T_2[u_2v_2]\,v_2u_3\,T_3[u_3v_3]\, \ldots \,T_k[u_kv_k]\,v_ku_1$.
Each component $T_i$ has chosen its lightest incident edge~$e_i$ as either the edge $v_iu_{i+1}$
or $v_{i-1}u_i$ (indexing cyclically). Assume that $e_1=v_1u_2$ (otherwise we reverse the orientation
loss of generality we can assume that $C=T_1[u_1v_1]\,v_1u_2\,T_2[u_2v_2]\,v_2u_3\,T_3[u_3v_3]\, \ldots \,T_k[u_kv_k]\,v_ku_1$.
Each component $T_i$ has chosen its lightest incident edge~$e_i$ as either the edge $v_iu_{i+1}$
or $v_{i-1}u_i$ (indexing cyclically). Assume that $e_1=v_1u_2$ (otherwise we reverse the orientation