X-Git-Url: http://mj.ucw.cz/gitweb/?a=blobdiff_plain;f=images%2Fsig-init.c;h=37ee502ae358052dee8626fea15abc3fb1ea3444;hb=1bc3bb66e47ec02003658fb3040aef0ffd7b7540;hp=091d7d6ce850a70516b115069f4b5a8aab49b1b6;hpb=32a626b1e7d24c528b5c863d79713c3f3f62a068;p=libucw.git diff --git a/images/sig-init.c b/images/sig-init.c index 091d7d6c..37ee502a 100644 --- a/images/sig-init.c +++ b/images/sig-init.c @@ -7,364 +7,318 @@ * of the GNU Lesser General Public License. */ -#define LOCAL_DEBUG +#undef LOCAL_DEBUG -#include "sherlock/sherlock.h" -#include "lib/math.h" -#include "lib/fastbuf.h" -#include "images/images.h" -#include "images/color.h" -#include "images/signature.h" -#include - -static double image_sig_inertia_scale[3] = { 3, 1, 0.3 }; - -struct block { - u32 l, u, v; /* average Luv coefficients */ - u32 lh, hl, hh; /* energies in Daubechies wavelet bands */ - u32 x, y; /* block position */ - struct block *next; -}; +#include +#include +#include +#include +#include +#include +#include +#include -struct region { - u32 l, u, v; - u32 lh, hl, hh; - u32 sum_l, sum_u, sum_v; - u32 sum_lh, sum_hl, sum_hh; - u32 count; - u64 w_sum; - struct block *blocks; -}; - -static inline uns -dist(uns a, uns b) -{ - int d = a - b; - return d * d; -} +#include +#include -/* FIXME: SLOW! */ -static uns -compute_k_means(struct block *blocks, uns blocks_count, struct region *regions, uns regions_count) +int +image_sig_init(struct image_context *ctx, struct image_sig_data *data, struct image *image) { - ASSERT(regions_count <= blocks_count); - struct block *mean[IMAGE_REG_MAX], *b, *blocks_end = blocks + blocks_count; - struct region *r, *regions_end = regions + regions_count; - - /* Select means_count random blocks as initial regions pivots */ - if (regions_count <= blocks_count - regions_count) + ASSERT((image->flags & IMAGE_PIXEL_FORMAT) == COLOR_SPACE_RGB); + data->image = image; + data->flags = 0; + data->cols = (image->cols + 3) >> 2; + data->rows = (image->rows + 3) >> 2; + data->full_cols = image->cols >> 2; + data->full_rows = image->rows >> 2; + data->blocks_count = data->cols * data->rows; + if (data->blocks_count >= 0x10000) { - for (b = blocks; b != blocks_end; b++) - b->next = NULL; - for (uns i = 0; i < regions_count; ) - { - uns j = random_max(blocks_count); - b = blocks + j; - if (!b->next) - b->next = mean[i++] = b; - } - } - else - { - uns j = blocks_count; - for (uns i = regions_count; i; j--) - if (random_max(j) <= i) - mean[--i] = blocks + j - 1; - } - r = regions; - for (uns i = 0; i < regions_count; i++, r++) - { - b = mean[i]; - r->l = b->l; - r->u = b->u; - r->v = b->v; - r->lh = b->lh; - r->hl = b->hl; - r->hh = b->hh; + IMAGE_ERROR(ctx, IMAGE_ERROR_INVALID_DIMENSIONS, "Image too large for implemented signature algorithm."); + return 0; } + data->blocks = xmalloc(data->blocks_count * sizeof(struct image_sig_block)); + data->area = image->cols * image->rows; + DBG("Computing signature for image of %ux%u pixels (%ux%u blocks)", + image->cols, image->rows, data->cols, data->rows); + return 1; +} - /* Convergation cycle */ - for (uns conv_i = 4; ; conv_i--) +void +image_sig_preprocess(struct image_sig_data *data) +{ + struct image *image = data->image; + struct image_sig_block *block = data->blocks; + uint sum[IMAGE_VEC_F]; + bzero(sum, sizeof(sum)); + + /* Every block of 4x4 pixels */ + byte *row_start = image->pixels; + for (uint block_y = 0; block_y < data->rows; block_y++, row_start += image->row_size * 4) { - for (r = regions; r != regions_end; r++) - { - r->sum_l = r->sum_u = r->sum_v = r->sum_lh = r->sum_hl = r->sum_hh = r->count = 0; - r->blocks = NULL; - } - - /* Find nearest regions and accumulate averages */ - for (b = blocks; b != blocks_end; b++) + byte *p = row_start; + for (uint block_x = 0; block_x < data->cols; block_x++, p += 12, block++) { - uns best_d = ~0U; - struct region *best_r = NULL; - for (r = regions; r != regions_end; r++) + int t[16], s[16], *tp = t; + block->x = block_x; + block->y = block_y; + + /* Convert pixels to Luv color space and compute average coefficients */ + uint l_sum = 0, u_sum = 0, v_sum = 0; + byte *p2 = p; + if (block_x < data->full_cols && block_y < data->full_rows) { - uns d = - dist(r->l, b->l) + - dist(r->u, b->u) + - dist(r->v, b->v) + - dist(r->lh, b->lh) + - dist(r->hl, b->hl) + - dist(r->hh, b->hh); - if (d < best_d) + for (uint y = 0; y < 4; y++, p2 += image->row_size - 12) + for (uint x = 0; x < 4; x++, p2 += 3) + { + byte luv[3]; + srgb_to_luv_pixel(luv, p2); + l_sum += *tp++ = luv[0] / 4; + u_sum += luv[1]; + v_sum += luv[2]; + } + block->area = 16; + sum[0] += l_sum; + sum[1] += u_sum; + sum[2] += v_sum; + block->v[0] = (l_sum >> 4); + block->v[1] = (u_sum >> 4); + block->v[2] = (v_sum >> 4); + } + /* Incomplete square near the edge */ + else + { + uint x, y; + uint square_cols = (block_x < data->full_cols) ? 4 : image->cols & 3; + uint square_rows = (block_y < data->full_rows) ? 4 : image->rows & 3; + for (y = 0; y < square_rows; y++, p2 += image->row_size) { - best_d = d; - best_r = r; - } + byte *p3 = p2; + for (x = 0; x < square_cols; x++, p3 += 3) + { + byte luv[3]; + srgb_to_luv_pixel(luv, p3); + l_sum += *tp++ = luv[0] / 4; + u_sum += luv[1]; + v_sum += luv[2]; + } + for (; x < 4; x++) + { + *tp = tp[-(int)square_cols]; + tp++; + } + } + for (; y < 4; y++) + for (x = 0; x < 4; x++) + { + *tp = tp[-(int)square_rows * 4]; + tp++; + } + block->area = square_cols * square_rows; + uint inv = 0x10000 / block->area; + sum[0] += l_sum; + sum[1] += u_sum; + sum[2] += v_sum; + block->v[0] = (l_sum * inv) >> 16; + block->v[1] = (u_sum * inv) >> 16; + block->v[2] = (v_sum * inv) >> 16; } - best_r->sum_l += b->l; - best_r->sum_u += b->u; - best_r->sum_v += b->v; - best_r->sum_lh += b->lh; - best_r->sum_hl += b->hl; - best_r->sum_hh += b->hh; - best_r->count++; - b->next = best_r->blocks; - best_r->blocks = b; - } - - /* Compute new averages */ - for (r = regions; r != regions_end; r++) - if (r->count) - { - r->l = r->sum_l / r->count; - r->u = r->sum_u / r->count; - r->v = r->sum_v / r->count; - r->lh = r->sum_lh / r->count; - r->hl = r->sum_hl / r->count; - r->hh = r->sum_hh / r->count; - } - - if (!conv_i) - break; // FIXME: convergation criteria - } - - /* Remove empty regions */ - struct region *r2 = regions; - for (r = regions; r != regions_end; r++) - if (r->count) - *r2++ = *r; - return r2 - regions; -} -int -compute_image_signature(struct image_thread *thread, struct image_signature *sig, struct image *image) -{ - uns cols = image->cols; - uns rows = image->rows; - - /* FIXME: deal with smaller images */ - if (cols < 4 || cols < 4) - { - image_thread_err_format(thread, IMAGE_ERR_INVALID_DIMENSIONS, "Image too small... %ux%u", cols, rows); - return 0; - } - - uns w = cols >> 2; - uns h = rows >> 2; - DBG("Computing signature for image %dx%d... %dx%d blocks", cols, rows, w, h); - uns blocks_count = w * h; - struct block *blocks = xmalloc(blocks_count * sizeof(struct block)), *block = blocks; /* FIXME: use mempool */ - - /* Every block of 4x4 pixels (FIXME: deal with smaller blocks near the edges) */ - byte *p = image->pixels; - for (uns block_y = 0; block_y < h; block_y++, p += 3 * ((cols & 3) + cols * 3)) - for (uns block_x = 0; block_x < w; block_x++, p -= 3 * (4 * cols - 4), block++) - { - block->x = block_x; - block->y = block_y; - - int t[16], s[16], *tp = t; + /* Apply Daubechies wavelet transformation */ + +# define DAUB_0 31651 /* (1 + sqrt 3) / (4 * sqrt 2) * 0x10000 */ +# define DAUB_1 54822 /* (3 + sqrt 3) / (4 * sqrt 2) * 0x10000 */ +# define DAUB_2 14689 /* (3 - sqrt 3) / (4 * sqrt 2) * 0x10000 */ +# define DAUB_3 -8481 /* (1 - sqrt 3) / (4 * sqrt 2) * 0x10000 */ + + /* ... to the rows */ + uint i; + for (i = 0; i < 16; i += 4) + { + s[i + 0] = (DAUB_0 * t[i + 2] + DAUB_1 * t[i + 3] + DAUB_2 * t[i + 0] + DAUB_3 * t[i + 1]) / 0x10000; + s[i + 1] = (DAUB_0 * t[i + 0] + DAUB_1 * t[i + 1] + DAUB_2 * t[i + 2] + DAUB_3 * t[i + 3]) / 0x10000; + s[i + 2] = (DAUB_3 * t[i + 2] - DAUB_2 * t[i + 3] + DAUB_1 * t[i + 0] - DAUB_0 * t[i + 1]) / 0x10000; + s[i + 3] = (DAUB_3 * t[i + 0] - DAUB_2 * t[i + 1] + DAUB_1 * t[i + 2] - DAUB_0 * t[i + 3]) / 0x10000; + } - /* Convert pixels to Luv color space and compute average coefficients - * FIXME: - * - could be MUCH faster with precomputed tables and integer arithmetic... - * I will propably use interpolation in 3-dim array */ - uns l_sum = 0; - uns u_sum = 0; - uns v_sum = 0; - for (uns y = 0; y < 4; y++, p += 3 * (cols - 4)) - for (uns x = 0; x < 4; x++, p += 3) + /* ... and to the columns... skip LL band */ + for (i = 0; i < 2; i++) { - byte luv[3]; - srgb_to_luv_pixel(luv, p); - l_sum += *tp++ = luv[0]; - u_sum += luv[1]; - v_sum += luv[2]; + t[i + 8] = (DAUB_3 * s[i + 8] - DAUB_2 * s[i +12] + DAUB_1 * s[i + 0] - DAUB_0 * s[i + 4]) / 0x10000; + t[i +12] = (DAUB_3 * s[i + 0] - DAUB_2 * s[i + 4] + DAUB_1 * s[i + 8] - DAUB_0 * s[i +12]) / 0x10000; + } + for (; i < 4; i++) + { + t[i + 0] = (DAUB_0 * s[i + 8] + DAUB_1 * s[i +12] + DAUB_2 * s[i + 0] + DAUB_3 * s[i + 4]) / 0x10000; + t[i + 4] = (DAUB_0 * s[i + 0] + DAUB_1 * s[i + 4] + DAUB_2 * s[i + 8] + DAUB_3 * s[i +12]) / 0x10000; + t[i + 8] = (DAUB_3 * s[i + 8] - DAUB_2 * s[i +12] + DAUB_1 * s[i + 0] - DAUB_0 * s[i + 4]) / 0x10000; + t[i +12] = (DAUB_3 * s[i + 0] - DAUB_2 * s[i + 4] + DAUB_1 * s[i + 8] - DAUB_0 * s[i +12]) / 0x10000; } - block->l = (l_sum >> 4); - block->u = (u_sum >> 4); - block->v = (v_sum >> 4); - - /* Apply Daubechies wavelet transformation - * FIXME: - * - MMX/SSE instructions or tables could be faster - * - maybe it would be better to compute Luv and wavelet separately because of processor cache or MMX/SSE - * - eliminate slow square roots - * - what about Haar transformation? */ - -#define DAUB_0 31651 /* (1 + sqrt 3) / (4 * sqrt 2) */ -#define DAUB_1 54822 /* (3 + sqrt 3) / (4 * sqrt 2) */ -#define DAUB_2 14689 /* (3 - sqrt 3) / (4 * sqrt 2) */ -#define DAUB_3 -8481 /* (1 - sqrt 3) / (4 * sqrt 2) */ - - /* ... to the rows */ - uns i; - for (i = 0; i < 16; i += 4) - { - s[i + 0] = (DAUB_0 * t[i + 2] + DAUB_1 * t[i + 3] + DAUB_2 * t[i + 0] + DAUB_3 * t[i + 1]) / 0x10000; - s[i + 1] = (DAUB_0 * t[i + 0] + DAUB_1 * t[i + 1] + DAUB_2 * t[i + 2] + DAUB_3 * t[i + 3]) / 0x10000; - s[i + 2] = (DAUB_3 * t[i + 2] - DAUB_2 * t[i + 3] + DAUB_1 * t[i + 0] - DAUB_0 * t[i + 1]) / 0x10000; - s[i + 3] = (DAUB_3 * t[i + 0] - DAUB_2 * t[i + 1] + DAUB_1 * t[i + 2] - DAUB_0 * t[i + 3]) / 0x10000; - } - - /* ... and to the columns... skip LL band */ - for (i = 0; i < 2; i++) - { - t[i + 8] = (DAUB_3 * s[i + 8] - DAUB_2 * s[i +12] + DAUB_1 * s[i + 0] - DAUB_0 * s[i + 4]) / 0x1000; - t[i +12] = (DAUB_3 * s[i + 0] - DAUB_2 * s[i + 4] + DAUB_1 * s[i + 8] - DAUB_0 * s[i +12]) / 0x1000; - } - for (; i < 4; i++) - { - t[i + 0] = (DAUB_0 * s[i + 8] + DAUB_1 * s[i +12] + DAUB_2 * s[i + 0] + DAUB_3 * s[i + 4]) / 0x1000; - t[i + 4] = (DAUB_0 * s[i + 0] + DAUB_1 * s[i + 4] + DAUB_2 * s[i + 8] + DAUB_3 * s[i +12]) / 0x1000; - t[i + 8] = (DAUB_3 * s[i + 8] - DAUB_2 * s[i +12] + DAUB_1 * s[i + 0] - DAUB_0 * s[i + 4]) / 0x1000; - t[i +12] = (DAUB_3 * s[i + 0] - DAUB_2 * s[i + 4] + DAUB_1 * s[i + 8] - DAUB_0 * s[i +12]) / 0x1000; - } + /* Extract energies in LH, HL and HH bands */ + block->v[3] = fast_sqrt_u32(isqr(t[8]) + isqr(t[9]) + isqr(t[12]) + isqr(t[13])); + block->v[4] = fast_sqrt_u32(isqr(t[2]) + isqr(t[3]) + isqr(t[6]) + isqr(t[7])); + block->v[5] = fast_sqrt_u32(isqr(t[10]) + isqr(t[11]) + isqr(t[14]) + isqr(t[15])); + sum[3] += block->v[3] * block->area; + sum[4] += block->v[4] * block->area; + sum[5] += block->v[5] * block->area; + } + } - /* Extract energies in LH, HL and HH bands */ - block->lh = CLAMP((int)(sqrt(t[8] * t[8] + t[9] * t[9] + t[12] * t[12] + t[13] * t[13]) / 16), 0, 255); - block->hl = CLAMP((int)(sqrt(t[2] * t[2] + t[3] * t[3] + t[6] * t[6] + t[7] * t[7]) / 16), 0, 255); - block->hh = CLAMP((int)(sqrt(t[10] * t[10] + t[11] * t[11] + t[14] * t[14] + t[15] * t[15]) / 16), 0, 255); - } + /* Compute featrures average */ + uint inv = 0xffffffffU / data->area; + for (uint i = 0; i < IMAGE_VEC_F; i++) + data->f[i] = ((u64)sum[i] * inv) >> 32; - /* FIXME: simple average is for testing pusposes only */ - uns l_sum = 0; - uns u_sum = 0; - uns v_sum = 0; - uns lh_sum = 0; - uns hl_sum = 0; - uns hh_sum = 0; - for (uns i = 0; i < blocks_count; i++) + if (image->cols < image_sig_min_width || image->rows < image_sig_min_height) { - l_sum += blocks[i].l; - u_sum += blocks[i].u; - v_sum += blocks[i].v; - lh_sum += blocks[i].lh; - hl_sum += blocks[i].hl; - hh_sum += blocks[i].hh; + data->valid = 0; + data->regions_count = 0; } + else + data->valid = 1; +} - sig->vec.f[0] = l_sum / blocks_count; - sig->vec.f[1] = u_sum / blocks_count; - sig->vec.f[2] = v_sum / blocks_count; - sig->vec.f[3] = lh_sum / blocks_count; - sig->vec.f[4] = hl_sum / blocks_count; - sig->vec.f[5] = hh_sum / blocks_count; - - /* Quantize blocks to image regions */ - struct region regions[IMAGE_REG_MAX]; - sig->len = compute_k_means(blocks, blocks_count, regions, MIN(blocks_count, IMAGE_REG_MAX)); +void +image_sig_finish(struct image_sig_data *data, struct image_signature *sig) +{ + for (uint i = 0; i < IMAGE_VEC_F; i++) + sig->vec.f[i] = data->f[i]; + sig->len = data->regions_count; + sig->flags = data->flags; + if (!sig->len) + return; /* For each region */ u64 w_total = 0; - uns w_border = (MIN(w, h) + 3) / 4; - uns w_mul = 127 * 256 / w_border; - for (uns i = 0; i < sig->len; i++) + uint w_border = MIN(data->cols, data->rows) * image_sig_border_size; + int w_mul = w_border ? image_sig_border_bonus * 256 / (int)w_border : 0; + for (uint i = 0; i < sig->len; i++) { - struct region *r = regions + i; + struct image_sig_region *r = data->regions + i; DBG("Processing region %u: count=%u", i, r->count); ASSERT(r->count); - + /* Copy texture properties */ - sig->reg[i].f[0] = r->l; - sig->reg[i].f[1] = r->u; - sig->reg[i].f[2] = r->v; - sig->reg[i].f[3] = r->lh; - sig->reg[i].f[4] = r->hl; - sig->reg[i].f[5] = r->hh; + sig->reg[i].f[0] = r->a[0]; + sig->reg[i].f[1] = r->a[1]; + sig->reg[i].f[2] = r->a[2]; + sig->reg[i].f[3] = r->a[3]; + sig->reg[i].f[4] = r->a[4]; + sig->reg[i].f[5] = r->a[5]; /* Compute coordinates centroid and region weight */ - u64 x_avg = 0, y_avg = 0, w_sum = 0; - for (struct block *b = r->blocks; b; b = b->next) + u64 x_sum = 0, y_sum = 0, w_sum = 0; + for (struct image_sig_block *b = r->blocks; b; b = b->next) { - x_avg += b->x; - y_avg += b->y; - uns d = b->x; + x_sum += b->x; + y_sum += b->y; + uint d = b->x; d = MIN(d, b->y); - d = MIN(d, w - b->x - 1); - d = MIN(d, h - b->y - 1); + d = MIN(d, data->cols - b->x - 1); + d = MIN(d, data->rows - b->y - 1); if (d >= w_border) w_sum += 128; else - w_sum += 128 + (d - w_border) * w_mul / 256; + w_sum += 128 + (int)(w_border - d) * w_mul / 256; } w_total += w_sum; r->w_sum = w_sum; - x_avg /= r->count; - y_avg /= r->count; - DBG(" centroid=(%u %u)", (uns)x_avg, (uns)y_avg); + uint x_avg = x_sum / r->count; + uint y_avg = y_sum / r->count; + DBG(" centroid=(%u %u)", x_avg, y_avg); /* Compute normalized inertia */ u64 sum1 = 0, sum2 = 0, sum3 = 0; - for (struct block *b = r->blocks; b; b = b->next) + for (struct image_sig_block *b = r->blocks; b; b = b->next) { - uns inc2 = dist(x_avg, b->x) + dist(y_avg, b->y); - uns inc1 = sqrt(inc2); + uint inc2 = isqr(x_avg - b->x) + isqr(y_avg - b->y); + uint inc1 = fast_sqrt_u32(inc2); sum1 += inc1; sum2 += inc2; sum3 += inc1 * inc2; } - sig->reg[i].h[0] = CLAMP(image_sig_inertia_scale[0] * sum1 * ((3 * M_PI * M_PI) / 2) * pow(r->count, -1.5), 0, 65535); - sig->reg[i].h[1] = CLAMP(image_sig_inertia_scale[1] * sum2 * ((4 * M_PI * M_PI * M_PI) / 2) / ((u64)r->count * r->count), 0, 65535); - sig->reg[i].h[2] = CLAMP(image_sig_inertia_scale[2] * sum3 * ((5 * M_PI * M_PI * M_PI * M_PI) / 2) * pow(r->count, -2.5), 0, 65535); - + sig->reg[i].h[0] = CLAMP(image_sig_inertia_scale[0] * sum1 * ((3 * M_PI * M_PI) / 2) * pow(r->count, -1.5), 0, 255); + sig->reg[i].h[1] = CLAMP(image_sig_inertia_scale[1] * sum2 * ((4 * M_PI * M_PI * M_PI) / 2) / ((u64)r->count * r->count), 0, 255); + sig->reg[i].h[2] = CLAMP(image_sig_inertia_scale[2] * sum3 * ((5 * M_PI * M_PI * M_PI * M_PI) / 2) * pow(r->count, -2.5), 0, 255); + sig->reg[i].h[3] = (uint)x_avg * 127 / data->cols; + sig->reg[i].h[4] = (uint)y_avg * 127 / data->rows; } /* Compute average differences */ u64 df = 0, dh = 0; - uns cnt = 0; - for (uns i = 0; i < sig->len; i++) - for (uns j = i + 1; j < sig->len; j++) - { - uns d = 0; - for (uns k = 0; k < IMAGE_REG_F; k++) - d += dist(sig->reg[i].f[k], sig->reg[j].f[k]); - df += sqrt(d); - d = 0; - for (uns k = 0; k < IMAGE_REG_H; k++) - d += dist(sig->reg[i].h[k], sig->reg[j].h[k]); - dh += sqrt(d); - cnt++; - } - sig->df = df / cnt; - sig->dh = dh / cnt; + + if (sig->len < 2) + { + sig->df = 1; + sig->dh = 1; + } + else + { + uint cnt = 0; + for (uint i = 0; i < sig->len; i++) + for (uint j = i + 1; j < sig->len; j++) + { + uint d = 0; + for (uint k = 0; k < IMAGE_REG_F; k++) + d += image_sig_cmp_features_weights[k] * isqr(sig->reg[i].f[k] - sig->reg[j].f[k]); + df += fast_sqrt_u32(d); + d = 0; + for (uint k = 0; k < IMAGE_REG_H; k++) + d += image_sig_cmp_features_weights[k + IMAGE_REG_F] * isqr(sig->reg[i].h[k] - sig->reg[j].h[k]); + dh += fast_sqrt_u32(d); + cnt++; + } + sig->df = CLAMP(df / cnt, 1, 0xffff); + sig->dh = CLAMP(dh / cnt, 1, 0xffff); + } DBG("Average regions difs: df=%u dh=%u", sig->df, sig->dh); /* Compute normalized weights */ - uns wa = 128, wb = 128; - for (uns i = sig->len; --i > 0; ) + uint wa = 128, wb = 128; + for (uint i = sig->len; --i > 0; ) { - struct region *r = regions + i; - wa -= sig->reg[i].wa = CLAMP(r->count * 128 / blocks_count, 1, (int)(wa - i)); - wb -= sig->reg[i].wb = CLAMP(r->w_sum * 128 / w_total, 1, (int)(wa - i)); + struct image_sig_region *r = data->regions + i; + wa -= sig->reg[i].wa = CLAMP(r->count * 128 / data->blocks_count, 1, (int)(wa - i)); + wb -= sig->reg[i].wb = CLAMP(r->w_sum * 128 / w_total, 1, (int)(wb - i)); } sig->reg[0].wa = wa; sig->reg[0].wb = wb; - + + /* Store image dimensions */ + sig->cols = data->image->cols; + sig->rows = data->image->rows; + /* Dump regions features */ #ifdef LOCAL_DEBUG - for (uns i = 0; i < sig->len; i++) + for (uint i = 0; i < sig->len; i++) { byte buf[IMAGE_REGION_DUMP_MAX]; image_region_dump(buf, sig->reg + i); DBG("region %u: features=%s", i, buf); } -#endif +#endif +} - xfree(blocks); +void +image_sig_cleanup(struct image_sig_data *data) +{ + xfree(data->blocks); +} +int +compute_image_signature(struct image_context *ctx, struct image_signature *sig, struct image *image) +{ + struct image_sig_data data; + if (!image_sig_init(ctx, &data, image)) + return 0; + image_sig_preprocess(&data); + if (data.valid) + { + image_sig_segmentation(&data); + image_sig_detect_textured(&data); + } + image_sig_finish(&data, sig); + image_sig_cleanup(&data); return 1; } -