]> mj.ucw.cz Git - ads2.git/blobdiff - 6-kmp/6-kmp.tex
Korektury od Martina Pecky.
[ads2.git] / 6-kmp / 6-kmp.tex
index 288b2a23efa6aa33e02f6d303c6895ecb83256fe..041c06a793bdd9013a5a8976bebc805b3ca1ad98 100644 (file)
@@ -18,7 +18,7 @@ M
 \h{Pomalý algoritmus}
 Zkusíme algoritmus vylep¹it tak, aby fungoval správnì: pokud nastane nìjaká neshoda, vrátíme se zpátky tìsnì za~zaèátek toho, kdy se nám to zaèalo shodovat. To je ov¹em vlastnì skoro toté¾, jako brát postupnì v¹echny mo¾né zaèátky v~\uv{senì} a~pro ka¾dý z~nìj ovìøit, jestli se tam \uv{jehla} nachází èi nikoliv.
 
-Tento algoritmus evidentnì funguje. Bì¾í v¹ak v~èase: $S$ mo¾ných zaèátkù, krát èas potøebný na~jedno porovnání (zda se na~dané pozici nenachází \uv{jehla}), co¾ nám mù¾e trvat a¾ $J$. Proto je èasová slo¾itost $\O(SJ)$. V praxi bude algoritus èasto rychlej¹í, proto¾e typicky velmi brzo zjistíme, ¾e se øetìzce neshodují, ale je mo¾né vymyslet vstup, kde bude potøeba porovnání opravdu tolik.
+Tento algoritmus evidentnì funguje. Bì¾í v¹ak v~èase: $S$ mo¾ných zaèátkù, krát èas potøebný na~jedno porovnání (zda se na~dané pozici nenachází \uv{jehla}), co¾ nám mù¾e trvat a¾ $J$. Proto je èasová slo¾itost $\O(SJ)$. V praxi bude algoritmus èasto rychlej¹í, proto¾e typicky velmi brzo zjistíme, ¾e se øetìzce neshodují, ale je mo¾né vymyslet vstup, kde bude potøeba porovnání opravdu tolik.
 
 Nyní se pokusme najít takový algoritmus, který by byl tak rychlý, jako {\I Hloupý algoritmus}, ale chytrý, jako ten {\I Pomalý}.
 
@@ -59,13 +59,13 @@ Aby se n
 \endlist
 
 
-V¹imnìme si, ¾e prázdné slovo je prefixem, suffixem i~podslovem jekéhokoliv slova vèetnì sebe sama.
+V¹imnìme si, ¾e prázdné slovo je prefixem, suffixem i~podslovem jakéhokoliv slova vèetnì sebe sama.
 Ka¾dé slovo je také prefixem, suffixem i~podslovem sebe sama. To se ne v¾dy hodí. Nìkdy budeme chtít øíct, ¾e nìjaké slovo je {\I vlastním} prefixem nebo suffixem. To bude znamenat, ¾e to nebude celé slovo.
 
 \> $\alpha$ je {\I vlastní prefix} slova $\beta \equiv \alpha$ je prefix $\beta~\&~\alpha \neq \beta$.
 
 \h{Vyhledávací automat (Knuth, Morris, Pratt)}
-{\I Vyhledávací automat} bude graf, jeho¾ vrcholùm budeme øíkat {\I stavy}. Jejich jména budou prefixy hledaného slova a~hrany budou odpovídat tomu, jak jeden prefix mù¾eme získat z~pøedchozího prefixu pøidáním jednoho stavu. Poèáteèní stav je prázdné slovo $\varepsilon$ a~koncový je celá $\iota$. Dopøedné hrany grafu budou popisovat pøechod mezi stavy ve~smyslu zvìt¹ení délky jména stavu (dopøedná funkce $h(\alpha)$, urèující znak na~dopøedné hranì z~$\alpha$). Zpìtné hrany grafu budou popisovat pøechod (zpìtná funkce $z(\alpha)$) mezi stavem $\alpha$ a~nejdel¹ím vlastním suffixem $\alpha$, který je prefixem $\iota$, kdy¾ nastane neshoda.
+{\I Vyhledávací automat} bude graf, jeho¾ vrcholùm budeme øíkat {\I stavy}. Jejich jména budou prefixy hledaného slova a~hrany budou odpovídat tomu, jak jeden prefix mù¾eme získat z~pøedchozího prefixu pøidáním jednoho písmene. Poèáteèní stav je prázdné slovo $\varepsilon$ a~koncový je celá $\iota$. Dopøedné hrany grafu budou popisovat pøechod mezi stavy ve~smyslu zvìt¹ení délky jména stavu (dopøedná funkce $h(\alpha)$, urèující znak na~dopøedné hranì z~$\alpha$). Zpìtné hrany grafu budou popisovat pøechod (zpìtná funkce $z(\alpha)$) mezi stavem $\alpha$ a~nejdel¹ím vlastním suffixem $\alpha$, který je prefixem $\iota$, kdy¾ nastane neshoda.
 
 \figure{barb.eps}{Vyhledávací automat.}{4.1in}
 
@@ -122,7 +122,7 @@ Nyn
 \s{Pozorování:}
 Pøedstavme si, ¾e automat u¾ máme hotový a~tím, ¾e budeme sledovat jeho chování, chceme zjistit, jak v~nìm vedou zpìtné hrany.
 Vezmìme si nìjaký stav~$\beta$. To, kam z~nìj vede zpìtná hrana zjistíme tak, ¾e spustíme automat na~øetìzec $\beta$~bez prvního písmenka a~stav, ve~kterém se automat zastaví, je pøesnì ten, kam má vést i~zpìtná hrana z~$\beta$. Jinými slovy víme, ¾e $z(\beta) = \alpha (\beta[1:])$. 
-Proè takováto vìc funguje? V¹imìme si, ¾e definice $z$ a~to, co nám o~$\alpha$ øíká invariant je témìø toto¾ná -- $z(\beta)$ je nejdel¹í vlastní suffix $\beta$, který je stavem, $\alpha(\beta)$ je nejdel¹í suffix $\beta$, který je stavem. Jediná odli¹nost je v~tom, ¾e definice $z$ narozdíl od~definice $\alpha$ zakazuje nevlastní suffixy. Jak nyní vylouèit suffix $\beta$, který by byl roven $\beta$ samotné? Zkrátíme $\beta$ o~první znak. Tím pádem v¹echny suffixy $\beta$ bez prvního znaku jsou stejné jako v¹echny vlastní suffixy $\beta$.
+Proè takováto vìc funguje? V¹imìme si, ¾e definice $z$ a~to, co nám o~$\alpha$ øíká invariant, je témìø toto¾né -- $z(\beta)$ je nejdel¹í vlastní suffix $\beta$, který je stavem, $\alpha(\beta)$ je nejdel¹í suffix $\beta$, který je stavem. Jediná odli¹nost je v~tom, ¾e definice $z$ narozdíl od~definice $\alpha$ zakazuje nevlastní suffixy. Jak nyní vylouèit suffix $\beta$, který by byl roven $\beta$ samotné? Zkrátíme $\beta$ o~první znak. Tím pádem v¹echny suffixy $\beta$ bez prvního znaku jsou stejné jako v¹echny vlastní suffixy $\beta$.
 
 K èemu je toto pozorování dobré? Rozmysleme si, ¾e pomocí nìj u¾ doká¾eme zkonstruovat zpìtné hrany. Není to ale trochu divné, kdy¾ pøi simulování automatu na~øetìzec bez prvního znaku u¾ zpìtné hrany potøebujeme? Není. Za chvíli zjistíme, ¾e takto mù¾eme zji¹»ovat zpìtné hrany postupnì -- a~to tak, ¾e pou¾íváme v¾dy jenom ty, které jsme u¾ sestrojili.
  
@@ -131,7 +131,7 @@ V
 
 Nabízí se tedy zaèít zpìtnou hranou z~prvního znaku (která vede evidentnì do~$\varepsilon$), pak postupnì brát dal¹í stavy a~pro ka¾dý z~nich si spoèítat, kdy spustíme automat na~jméno stavu bez prvního znaku a~tím získáme dal¹í zpìtnou hranu. Toto funguje, ale je to kvadratické \dots. Máme toti¾ $J$ stavù a~pro ka¾dý z~nich nám automat bì¾í v~èase a¾ lineárním s~$J$. Jak z~toho ven?
 
-Z~prvního stavu povede zpìtná funkce do~$\varepsilon$. Pro dal¹í stavy chceme spoèítat zpìtnou funkci. Z~druhého stavu $\iota[0:2]$ tedy automat spustíme na~$\iota[1:2]$, dále pak na~$\iota[1:3]$, $\iota[1:4]$, atd. Ty øetìzce, pro které potøebujeme spo¹tìt automat, abychom dostali zpìtné hrany, jsou tedy ve~skuteènosti takové, ¾e ka¾dý dal¹í dostaneme roz¹íøením pøedchozího o~jeden znak. To jsou ale pøesnì ty stavy, kterými projde automat pøi zpracovávání øetezce $\iota$ od~prvního znaku dál. Jedním prùchodem automatu nad jehlou bez prvního písmenka se tím pádem rovnou dozvíme v¹echny údaje, které potøebujeme.
+Z~prvního stavu povede zpìtná funkce do~$\varepsilon$. Pro dal¹í stavy chceme spoèítat zpìtnou funkci. Z~druhého stavu $\iota[0:2]$ tedy automat spustíme na~$\iota[1:2]$, dále pak na~$\iota[1:3]$, $\iota[1:4]$, atd. Ty øetìzce, pro které potøebujeme spo¹tìt automat, abychom dostali zpìtné hrany, jsou tedy ve~skuteènosti takové, ¾e ka¾dý dal¹í dostaneme roz¹íøením pøedchozího o~jeden znak. To jsou ale pøesnì ty stavy, kterými projde automat pøi zpracovávání øetìzce $\iota$ od~prvního znaku dál. Jedním prùchodem automatu nad jehlou bez prvního písmenka se tím pádem rovnou dozvíme v¹echny údaje, které potøebujeme.
 Z~pøedchozího pozorování plyne, ¾e nikdy nebudeme potøebovat zpìtnou hranu, kterou jsme je¹tì nezkonstruovali a~jeliko¾ víme, ¾e jedno prohledání trvá lineárnì s~délkou toho, v~èem hledáme, tak toto celé pobì¾í v~lineárním èase. Dostaneme tedy následující algoritmus:
 
 \s{Konstrukce zpìtné funkce:}
@@ -156,7 +156,7 @@ Line
 Nyní si uká¾eme je¹tì jeden algoritmus na~hledání jedné jehly, který nebude mít v~nejhor¹ím pøípadì lineární slo¾itost, ale bude ji mít prùmìrnì. Bude daleko jednodu¹¹í a~uká¾e se, ¾e je v~praxi daleko rychlej¹í. Bude to algoritmus zalo¾ený na~hashování.
 
 
-Pøedstavme si, ¾e máme seno délky $S$ a~jehlu délky $J$, a~vezmìme si nìjakou hashovací funkci, které dáme na~vstup $J$-tici znakù (tedy podslova dlouhá jako jehla). Tato hashovací funkce nám je pak zobrazí do~nìjaké velké mno¾iny èísel. Jak nám toto pomù¾e pøi hledání jehly? Vezmeme si libovolné \uv{okénko} délky $J$ a~ne¾ budeme zji¹»ovat, zda se v~nìm jehla vyskytuje, tak si spoèítáme hashovací funkci a~porovnáme ji s~hashem jehly. Èili ptáme se, jestli je hash ze sena od~nìjaké pozice $I$ do~pozice $I+J$ roven hashi jehly -- formálnì: $h(\sigma [I: I+J ]) = h(\iota)$. Teprve tehdy, kdy¾ zjistíme, ¾e se hodnota hashovací fce shoduje, zaèneme doopravdy porovnávat øetìzce.
+Pøedstavme si, ¾e máme seno délky $S$ a~jehlu délky $J$, a~vezmìme si nìjakou hashovací funkci, které dáme na~vstup $J$-tici znakù (tedy podslova dlouhá jako jehla). Tato hashovací funkce nám je pak zobrazí do~mno¾iny $\{0,\ldots,N-1\}$ pro nìjaké dost velké~$N$. Jak nám toto pomù¾e pøi hledání jehly? Vezmeme si libovolné \uv{okénko} délky $J$ a~ne¾ budeme zji¹»ovat, zda se v~nìm jehla vyskytuje, tak si spoèítáme hashovací funkci a~porovnáme ji s~hashem jehly. Èili ptáme se, jestli je hash ze sena od~nìjaké pozice $I$ do~pozice $I+J$ roven hashi jehly -- formálnì: $h(\sigma [I: I+J ]) = h(\iota)$. Teprve tehdy, kdy¾ zjistíme, ¾e se hodnota hashovací fce shoduje, zaèneme doopravdy porovnávat øetìzce.
 
 Není to ale nìjaká hloupost? Mù¾e nám vùbec takováto konstrukce pomoci? Není to tak, ¾e na~spoèítání hashovací funkce z~$J$ znakù, potøebujeme tìch $J$ znakù pøeèíst, co¾ je stejnì rychlé, jako rovnou øetìzce porovnávat? Pou¾ijeme trik, který bude spoèívat v~tom, ¾e si zvolíme ¹ikovnou hashovací funkci. Udìláme to tak, abychom ji mohli pøi posunutí \uv {okénka} o~jeden znak doprava v~konstantním èase pøepoèítat. Chceme umìt z~$h(x_1 \dots x_j)$ spoèítat $h(x_2 \dots x_{j+1})$.
 Na~zaèátku si tedy spoèítáme hash jehly a~první $J$-tice znakù sena. Pak ji¾ jenom posouváme \uv {okénko} o~jedna, pøepoèítáme hashovací funkci a~kdy¾ se shoduje s~hashem jehly, tak porovnáme. Budeme pøitom vìøit tomu, ¾e pokud se tam jehla nevyskytuje, pak máme hashovací funkci natolik rovnomìrnou, ¾e pravdìpodobnost toho, ¾e se pøesto strefíme do~hashe jehly, je $1/N$. Jinými slovy jenom v~jednom z~øádovì $N$ pøípadù budeme porovnávat fale¹nì -- tedy provedeme porovnání a~vyjde nám, ¾e výsledek je neshoda. V~prùmìrném pøípadì tedy mù¾eme stlaèit slo¾itost a¾ témìø k~lineární.
@@ -171,15 +171,15 @@ Po posunut
 $$(x_2 \cdot p^{J-1} + x_3 \cdot p^{J-2} + \dots + x_J \cdot p^1 + x_{J+1} \cdot p^0 ) \bmod N.$$
 Kdy¾ se ale podíváme na~èleny tìchto dvou polynomù, zjistíme, ¾e se li¹í jen o~málo. Pùvodní polynom staèí pøenásobit~$p$, odeèíst první èlen s~$x_1$ a~naopak pøièíst chybìjící èlen $x_{J+1}$. Dostáváme tedy:
 $$h(x_2 \dots x_{J+1}) = (p \cdot h(x_1 \dots x_J) - x_1 \cdot p^J + x_{J+1}) \bmod N.$$
-Pøepoèítání hashovací funkce tedy není nic jiného, ne¾ pøenásobení té minulé~$p$, odeètení nìjakého násobku toho znaku, který vypadl z~okénka a~pøiètení toho znaku, o~který se okénko posunulo. Pokud tedy máme k~dispozici aritmetické operace v~konstantním èase, zvládneme konstantnì pøepoèítávat i~hashovací funkci.
+Pøepoèítání hashovací funkce tedy není nic jiného, ne¾ pøenásobení té minulé~$p$, odeètení nìjakého násobku toho znaku, který vypadl z~okénka, a~pøiètení toho znaku, o~který se okénko posunulo. Pokud tedy máme k~dispozici aritmetické operace v~konstantním èase, zvládneme konstantnì pøepoèítávat i~hashovací funkci.
 
-Tato hashovací funkce se dokonce nejen hezky poèítá, ale dokonce se i~opravdu \uv{hezky} chová (tedy \uv{rozumnì} náhodnì), pokud zvolíme vhodné~$p$. To bychom mìli zvoli tak, aby bylo rozhodnì nesoudìlné s~$N$ -- tedy $\<NSD>(p, N) = 1$. Aby se nám navíc dobøe projevilo modulo obsa¾ené v~hashovací funkci, mìlo by být~$p$ relativnì velké (lze dopoèítat, ¾e optimum je mezi $2/3 \cdot N$ a~$3/4 \cdot N$). S~takto zvoleným~$p$ se tato hashovací funkce chová velmi pøíznivì a~v~praxi má celý algoritmus takøka lineární èasovou slo¾itost (prùmìrnou).
+Tato hashovací funkce se dokonce nejen hezky poèítá, ale dokonce se i~opravdu \uv{hezky} chová (tedy \uv{rozumnì} náhodnì), pokud zvolíme vhodné~$p$. To bychom mìli zvolit tak, aby bylo rozhodnì nesoudìlné s~$N$ -- tedy $\<NSD>(p, N) = 1$. Aby se nám navíc dobøe projevilo modulo obsa¾ené v~hashovací funkci, mìlo by být~$p$ relativnì velké (lze dopoèítat, ¾e optimum je mezi $2/3 \cdot N$ a~$3/4 \cdot N$). S~takto zvoleným~$p$ se tato hashovací funkce chová velmi pøíznivì a~v~praxi má celý algoritmus takøka lineární èasovou slo¾itost (prùmìrnou).
 
 \h{Hledání více øetìzcù najednou}
 Nyní si zahrajeme tuté¾ hru, ov¹em v~trochu slo¾itìj¹ích kulisách. Podíváme se na~algoritmus, který si poradí i~s více ne¾ jednou jehlou. 
 Mìjme tedy jehly $\iota_1 \dots \iota_n$, a~jejich délky $J_i = \vert \iota_i \vert $. Dále budeme potøebovat seno $\sigma$ délky $S=\vert \sigma \vert$.
 
-Pøedtím, ne¾ se pustíme do~vlastního vyhledávacího algoritmu, mo¾ná bychom si mìli ujasnit, co vlastnì bude jeho výstupem. U problému hledání jedné jehly to bylo jasné -- byla to nìjaká mno¾ina pozic v~senì, na~kterých zaèínaly výskyty jehly. Jak tomu ale bude zde? Sice bychom také mohly vrátit pouze mno¾inu pozic, ale my budeme chtít malièko víc. Budeme toti¾ chtít vìdìt i~to, která jehla se na~které pozici vyskytuje. Výstup tedy bude vypadat následovnì: $V = \{(i,j)~\vert~\sigma[i:i+J_j]= \iota_j \}$.
+Pøedtím, ne¾ se pustíme do~vlastního vyhledávacího algoritmu, mo¾ná bychom si mìli ujasnit, co vlastnì bude jeho výstupem. U problému hledání jedné jehly to bylo jasné -- byla to nìjaká mno¾ina pozic v~senì, na~kterých zaèínaly výskyty jehly. Jak tomu ale bude zde? Sice bychom také mohli vrátit pouze mno¾inu pozic, ale my budeme chtít malièko víc. Budeme toti¾ chtít vìdìt i~to, která jehla se na~které pozici vyskytuje. Výstup tedy bude vypadat následovnì: $V = \{(i,j)~\vert~\sigma[i:i+J_j]= \iota_j \}$.
 
 Zde se v¹ak skrývá jedna drobná zrada. Budeme se asi muset vzdát nadìje, ¾e najdeme algoritmus, jeho¾ slo¾itost je lineární v~celkové délce v¹ech jehel a~sena. Výstup toti¾ mù¾e být del¹í ne¾ lineární. Mù¾e se nám klidnì stát, ¾e na~jedné pozici v~senì se bude vyskytovat více rùzných jehel -- pokud bude jedna jehla prefixem jiné (co¾ jsme nikde nezakázali), tak máme povinnost ohlásit oba výskyty. Vzhledem k~tomu budeme hledat takový algoritmus, který bude lineární v~délce vstupu plus délce výstupu, co¾ je evidentnì to nejlep¹í, èeho mù¾eme dosáhnout.
 
@@ -203,7 +203,7 @@ Zb
 
 První, co se nabízí, je vyu¾ít toho, ¾e jsme si oznaèili nìjaké vrcholy, kde hledaná slova konèí. Co tedy zkusit hlásit výskyt tohoto slova v¾dy, kdy¾ pøijdeme do~nìjakého oznaèeného vrcholu? Tento zpùsob v¹ak nefunguje, pokud se uvnitø nìkteré jehly skrývá jehla vnoøená. Napøíklad po~pøeètení slova |bara|, nám ná¹ souèasný automat neøíká, ¾e bychom mìli nìjaké slovo ohlásit, a~pøitom tam evidentì konèí podøetìzec |ara|. Stejnì tak pokud pøeèteme |barbara|, u¾ si nev¹imneme toho, ¾e tam konèí zároveò i~|ara|. Pouhé \uv{hlá¹ení teèek} tedy nefunguje.
 
-Dále si mù¾eme v¹imnout toho, ¾e v¹echna slova, která by se mìla v~daném stavu hlásit, jsou suffixy jména tohoto stavu. Pøi tom víme, ¾e zpìtná hrana jméno stavu zkracuje zleva. Tak¾e speciálnì v¹echny suffixy daného stavu, které jsou také stavy, se dají najít tak, ¾e se vydáme po~zpìtných hranách do~koøene. Nabízí se tedy v¾dy projít cestu po~zpìtných hranách a¾ do~koøene a~hlásit v¹echny \uv{teèky}. Tento zpùsob by nám v¹ak celý algoritmus znaènì zpomalilo, proto¾e cesta do~koøene mù¾e být relativnì dlouhá, ale teèek na~ní obvykle bude málo.
+Dále si mù¾eme v¹imnout toho, ¾e v¹echna slova, která by se mìla v~daném stavu hlásit, jsou suffixy jména tohoto stavu. Pøitom víme, ¾e zpìtná hrana jméno stavu zkracuje zleva. Tak¾e speciálnì v¹echny suffixy daného stavu, které jsou také stavy, se dají najít tak, ¾e se vydáme po~zpìtných hranách do~koøene. Nabízí se tedy v¾dy projít cestu po~zpìtných hranách a¾ do~koøene a~hlásit v¹echny \uv{teèky}. Tento zpùsob by nám v¹ak celý algoritmus znaènì zpomalil, proto¾e cesta do~koøene mù¾e být relativnì dlouhá, ale teèek na~ní obvykle bude málo.
 
 Mohli bychom také zkusit si pro ka¾dý stav $\beta$ pøedpoèítat mno¾inu $cache(\beta)$, která by obsahovala v¹echna slova, která máme hlásit, kdy¾ se ve~stavu $\beta$ nacházíme. Pokud pak do~tohoto stavu vstoupíme, podíváme se na~tuto mno¾inu a~vypí¹eme v¹e, co v~ní je. Výpis nám bude evidentnì trvat lineárnì k~velikosti mno¾iny, celkovì tedy lineárnì k~velikosti výstupu. Problém je ale ten, ¾e jednotlivé cache mohou být hodnì velké, tak¾e je nestihneme sestrojit v lineárním èase. (Rozmyslete si pøíklad slovníku, kdy se to stane.)
 
@@ -246,7 +246,7 @@ Nejprve si nadefinujeme, jak vypad
 
 Algoritmus hledání vlastnì není nic jiného, ne¾ prosté projití po~zelených zkratkových hranách ze stavu $\alpha$, ve~kterém právì jsme, a~ohlá¹ení v¹eho, co po~cestì najdeme.
 
-V ka¾dém okam¾iku se automat nachází ve~stavu, který odpovídá nejmen¹ímu mo¾nému suffixu toho, co jsme u¾ pøeèetli. Dùkaz tohoto invariantu je stejný jako u verze automatu pro hledání pouze jedné jehly, nebo» vychází pouze z~definice zpìtných hran. Podobnì nahlédneme, ¾e èasová slo¾itost vyhledávací procedury je lineární v~délce sena plus to, co spotøebujeme na~hlá¹ení výskytù. Nejprve na~chvíli zapomeneme, ¾e nìjaké výskyty hlásíme a~spoèítáme jenom kroky. Ty mohou vést dopøedu a~zpátky. Krok dopøedu prodlu¾uje jméno stavu o~jedna, krok dozadu zkracuje aspoò o~jedna. Tudí¾ krokù dozadu je maximálnì tolik, co krokù dopøedu a~krokù dopøedu je maximálnì tolik, kolik je délka sena. V¹echny kroky dohromady tedy trvají $\O(S)$. Hlá¹ení výskytù pak trvá $\O(S~+ \vert V \vert)$. Celé hledání tedy trvá lineárnì v~délce vstupu a~výstupu.
+V ka¾dém okam¾iku se automat nachází ve~stavu, který odpovídá nejdel¹ímu mo¾nému suffixu toho, co jsme u¾ pøeèetli. Dùkaz tohoto invariantu je stejný jako u verze automatu pro hledání pouze jedné jehly, nebo» vychází pouze z~definice zpìtných hran. Podobnì nahlédneme, ¾e èasová slo¾itost vyhledávací procedury je lineární v~délce sena plus to, co spotøebujeme na~hlá¹ení výskytù. Nejprve na~chvíli zapomeneme, ¾e nìjaké výskyty hlásíme a~spoèítáme jenom kroky. Ty mohou vést dopøedu a~zpátky. Krok dopøedu prodlu¾uje jméno stavu o~jedna, krok dozadu zkracuje aspoò o~jedna. Tudí¾ krokù dozadu je maximálnì tolik, co krokù dopøedu a~krokù dopøedu je maximálnì tolik, kolik je délka sena. V¹echny kroky dohromady tedy trvají $\O(S)$. Hlá¹ení výskytù pak trvá $\O(S~+ \vert V \vert)$. Celé hledání tedy trvá lineárnì v~délce vstupu a~výstupu.
 
 Zbývá nám u¾ jen konstrukce automatu. Opìt vyu¾ijeme faktu, ¾e zpìtná hrana ze stavu $\beta$ vede tam, kam by se dostal automat pøi hledání $\beta$ bez prvního písmenka. Tak¾e zase chceme nìco, jako simulovat výpoèet toho automatu na~slovech bez prvního písmenka a~doufat v~to, ¾e si vystaèíme s~tou èástí automatu, kterou jsme u¾ postavili. Tentokrát to v¹ak nemù¾eme dìlat jedno slovo po~druhém, proto¾e zpìtné hrany mohou vést køí¾em mezi jednotlivými vìtvemi automatu. Mohlo by se nám tedy stát, ¾e pøi hledání nìjakého slova potøebujeme zpìtnou hranu, která vede do~jiného slova, které jsme je¹tì nezkonstruovali. Tak¾e tento postup sel¾e. Mù¾eme v¹ak vyu¾ít toho, ¾e ka¾dá zpìtná hrana vede ve~stromu alespoò o~jednu hladinu vý¹. Mù¾eme tak strom konstruovat po~hladinách. Lze si to tedy pøedstavit tak, ¾e paralelnì spustíme vyhledávání v¹ech slov bez prvních písmenek a~v¾dycky udìláme jeden podkrok ka¾dého z~tìch hledání, co¾ nám dá zpìtné hrany z~dal¹ího patra stromu.