2 * UCW Library -- Configuration files
4 * (c) 2001--2006 Robert Spalek <robert@ucw.cz>
5 * (c) 2003--2012 Martin Mares <mj@ucw.cz>
7 * This software may be freely distributed and used according to the terms
8 * of the GNU Lesser General Public License.
14 #include <ucw/clists.h>
20 * Configuration contexts
21 * ~~~~~~~~~~~~~~~~~~~~~~
23 * The state of the configuration parser is stored within a configuration context.
24 * If you do not create contexts explicitly, the library will create one for you
25 * and you need not care, as long as you use a single configuration file.
27 * In whole generality, you can define as many context as you wish and switch
28 * between them. Each thread has its own pointer to the current context, which
29 * must not be shared with other threads.
32 /** Create a new configuration context. **/
33 struct cf_context *cf_new_context(void);
36 * Free a configuration context. The context must not be set as current
39 * All configuration settings made within the context are rolled back
40 * (except when journalling is turned off). All memory allocated on behalf
41 * of the context is freed, which includes memory obtained by calls to
44 void cf_free_context(struct cf_context *cc);
47 * Make the given configuration context current and return the previously
48 * active context. Both the new and the old context may be NULL.
50 struct cf_context *cf_switch_context(struct cf_context *cc);
53 * Return a pointer to the current context, or create the default context
54 * if there is no context active.
56 struct cf_context *cf_obtain_context(void);
58 /*** === Data types [[conf_types]] ***/
60 enum cf_class { /** Class of the configuration item. **/
61 CC_END, // end of list
62 CC_STATIC, // single variable or static array
63 CC_DYNAMIC, // dynamically allocated array
64 CC_PARSER, // arbitrary parser function
65 CC_SECTION, // section appears exactly once
66 CC_LIST, // list with 0..many nodes
67 CC_BITMAP // of up to 32 items
70 enum cf_type { /** Type of a single value. **/
71 CT_INT, CT_U64, CT_DOUBLE, // number types
73 CT_STRING, // string type
74 CT_LOOKUP, // in a string table
75 CT_USER // user-defined type
81 * A parser function gets an array of (strdup'ed) strings and a pointer with
82 * the customized information (most likely the target address). It can store
83 * the parsed value anywhere in any way it likes, however it must first call
84 * @cf_journal_block() on the overwritten memory block. It returns an error
85 * message or NULL if everything is all right.
87 typedef char *cf_parser(uns number, char **pars, void *ptr);
89 * A parser function for user-defined types gets a string and a pointer to
90 * the destination variable. It must store the value within [ptr,ptr+size),
91 * where size is fixed for each type. It should not call @cf_journal_block().
93 typedef char *cf_parser1(char *string, void *ptr);
95 * An init- or commit-hook gets a pointer to the section or NULL if this
96 * is the global section. It returns an error message or NULL if everything
97 * is all right. The init-hook should fill in default values (needed for
98 * dynamically allocated nodes of link lists or for filling global variables
99 * that are run-time dependent). The commit-hook should perform sanity
100 * checks and postprocess the parsed values. Commit-hooks must call
101 * @cf_journal_block() too. Caveat! init-hooks for static sections must not
102 * use @cf_malloc() but normal <<memory:xmalloc()>>.
104 typedef char *cf_hook(void *ptr);
106 * Dumps the contents of a variable of a user-defined type.
108 typedef void cf_dumper1(struct fastbuf *fb, void *ptr);
110 * Similar to init-hook, but it copies attributes from another list node
111 * instead of setting the attributes to default values. You have to provide
112 * it if your node contains parsed values and/or sub-lists.
114 typedef char *cf_copier(void *dest, void *src);
116 struct cf_user_type { /** Structure to store information about user-defined variable type. **/
117 uns size; // of the parsed attribute
118 char *name; // name of the type (for dumping)
119 cf_parser1 *parser; // how to parse it
120 cf_dumper1 *dumper; // how to dump the type
124 struct cf_item { /** Single configuration item. **/
125 const char *name; // case insensitive
126 int number; // length of an array or #parameters of a parser (negative means at most)
127 void *ptr; // pointer to a global variable or an offset in a section
129 struct cf_section *sec; // declaration of a section or a list
130 cf_parser *par; // parser function
131 const char * const *lookup; // NULL-terminated sequence of allowed strings for lookups
132 struct cf_user_type *utype; // specification of the user-defined type
134 enum cf_class cls:16; // attribute class
135 enum cf_type type:16; // type of a static or dynamic attribute
138 struct cf_section { /** A section. **/
139 uns size; // 0 for a global block, sizeof(struct) for a section
140 cf_hook *init; // fills in default values (no need to bzero)
141 cf_hook *commit; // verifies parsed data (optional)
142 cf_copier *copy; // copies values from another instance (optional, no need to copy basic attributes)
143 struct cf_item *cfg; // CC_END-terminated array of items
144 uns flags; // for internal use only
152 * You could create the structures manually, but you can use these macros to
157 * Declaration of <<struct_cf_section,`cf_section`>>
158 * ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
160 * These macros can be used to configure the <<struct_cf_section,`cf_section`>>
165 * Data type of a section.
166 * If you store the section into a structure, use this macro.
168 * Storing a section into a structure is useful mostly when you may have multiple instances of the
169 * section (eg. <<conf_multi,array or list>>).
174 * cnode n; // This one is for the list itself
179 * static struct clist nodes;
181 * static struct cf_section node = {
182 * CF_TYPE(struct list_node),
184 * CF_STRING("name", PTR_TO(struct list_node, name)),
185 * CF_UNS("value", PTR_TO(struct list_node, value)),
190 * static struct cf_section section = {
191 * CF_LIST("node", &nodes, &node),
195 * You could use <<def_CF_STATIC,`CF_STATIC`>> or <<def_CF_DYNAMIC,`CF_DYNAMIC`>>
196 * macros to create arrays.
198 #define CF_TYPE(s) .size = sizeof(s)
200 * An init <<hooks,hook>>.
201 * You can use this to initialize dynamically allocated items (for a dynamic array or list).
202 * The hook returns an error message or NULL if everything was OK.
204 #define CF_INIT(f) .init = (cf_hook*) f
206 * A commit <<hooks,hook>>.
207 * You can use this one to check sanity of loaded data and postprocess them.
208 * You must call @cf_journal_block() if you change anything.
210 * Return error message or NULL if everything went OK.
212 #define CF_COMMIT(f) .commit = (cf_hook*) f
214 * A <<hooks,copy function>>.
215 * You need to provide one for too complicated sections where a memcpy is not
216 * enough to copy it properly. It happens, for example, when you have a dynamically
217 * allocated section containing a list of other sections.
219 * You return an error message or NULL if you succeed.
221 #define CF_COPY(f) .copy = (cf_copier*) f /** **/
222 #define CF_ITEMS .cfg = ( struct cf_item[] ) /** List of sub-items. **/
223 #define CF_END { .cls = CC_END } /** End of the structure. **/
225 * Declaration of a configuration item
226 * ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
228 * Each of these describe single <<struct_cf_item,configuration item>>. They are mostly
229 * for internal use, do not use them directly unless you really know what you are doing.
233 * Static array of items.
234 * Expects you to allocate the memory and provide pointer to it.
236 #define CF_STATIC(n,p,T,t,c) { .cls = CC_STATIC, .type = CT_##T, .name = n, .number = c, .ptr = CHECK_PTR_TYPE(p,t*) }
238 * Dynamic array of items.
239 * Expects you to provide pointer to your pointer to data and it will allocate new memory for it
240 * and set your pointer to it.
242 #define CF_DYNAMIC(n,p,T,t,c) { .cls = CC_DYNAMIC, .type = CT_##T, .name = n, .number = c, .ptr = CHECK_PTR_TYPE(p,t**) }
243 #define CF_PARSER(n,p,f,c) { .cls = CC_PARSER, .name = n, .number = c, .ptr = p, .u.par = (cf_parser*) f } /** A low-level parser. **/
244 #define CF_SECTION(n,p,s) { .cls = CC_SECTION, .name = n, .number = 1, .ptr = p, .u.sec = s } /** A sub-section. **/
245 #define CF_LIST(n,p,s) { .cls = CC_LIST, .name = n, .number = 1, .ptr = CHECK_PTR_TYPE(p,clist*), .u.sec = s } /** A list with sub-items. **/
246 #define CF_BITMAP_INT(n,p) { .cls = CC_BITMAP, .type = CT_INT, .name = n, .number = 1, .ptr = CHECK_PTR_TYPE(p,u32*) } /** A bitmap. **/
247 #define CF_BITMAP_LOOKUP(n,p,t) { .cls = CC_BITMAP, .type = CT_LOOKUP, .name = n, .number = 1, .ptr = CHECK_PTR_TYPE(p,u32*), .u.lookup = t } /** A bitmap with named bits. **/
249 * Basic configuration items
250 * ^^^^^^^^^^^^^^^^^^^^^^^^^
252 * They describe basic data types used in the configuration. This should be enough for
253 * most real-life purposes.
255 * The parameters are as follows:
257 * * @n -- name of the item.
258 * * @p -- pointer to the variable where it shall be stored.
261 #define CF_INT(n,p) CF_STATIC(n,p,INT,int,1) /** Single `int` value. **/
262 #define CF_INT_ARY(n,p,c) CF_STATIC(n,p,INT,int,c) /** Static array of integers. **/
263 #define CF_INT_DYN(n,p,c) CF_DYNAMIC(n,p,INT,int,c) /** Dynamic array of integers. **/
264 #define CF_UNS(n,p) CF_STATIC(n,p,INT,uns,1) /** Single `uns` (`unsigned`) value. **/
265 #define CF_UNS_ARY(n,p,c) CF_STATIC(n,p,INT,uns,c) /** Static array of unsigned integers. **/
266 #define CF_UNS_DYN(n,p,c) CF_DYNAMIC(n,p,INT,uns,c) /** Dynamic array of unsigned integers. **/
267 #define CF_U64(n,p) CF_STATIC(n,p,U64,u64,1) /** Single unsigned 64bit integer (`u64`). **/
268 #define CF_U64_ARY(n,p,c) CF_STATIC(n,p,U64,u64,c) /** Static array of u64s. **/
269 #define CF_U64_DYN(n,p,c) CF_DYNAMIC(n,p,U64,u64,c) /** Dynamic array of u64s. **/
270 #define CF_DOUBLE(n,p) CF_STATIC(n,p,DOUBLE,double,1) /** Single instance of `double`. **/
271 #define CF_DOUBLE_ARY(n,p,c) CF_STATIC(n,p,DOUBLE,double,c) /** Static array of doubles. **/
272 #define CF_DOUBLE_DYN(n,p,c) CF_DYNAMIC(n,p,DOUBLE,double,c) /** Dynamic array of doubles. **/
273 #define CF_IP(n,p) CF_STATIC(n,p,IP,u32,1) /** Single IPv4 address. **/
274 #define CF_IP_ARY(n,p,c) CF_STATIC(n,p,IP,u32,c) /** Static array of IP addresses. **/.
275 #define CF_IP_DYN(n,p,c) CF_DYNAMIC(n,p,IP,u32,c) /** Dynamic array of IP addresses. **/
278 * You provide a pointer to a `char *` variable and it will fill it with
279 * dynamically allocated string. For example:
281 * static char *string = "Default string";
283 * static struct cf_section section = {
285 * CF_STRING("string", &string),
290 #define CF_STRING(n,p) CF_STATIC(n,p,STRING,char*,1)
291 #define CF_STRING_ARY(n,p,c) CF_STATIC(n,p,STRING,char*,c) /** Static array of strings. **/
292 #define CF_STRING_DYN(n,p,c) CF_DYNAMIC(n,p,STRING,char*,c) /** Dynamic array of strings. **/
294 * One string out of a predefined set.
295 * You provide the set as an array of strings terminated by NULL (similar to @argv argument
296 * of main()) as the @t parameter.
298 * The configured variable (pointer to `int`) is set to index of the string.
299 * So, it works this way:
301 * static *strings[] = { "First", "Second", "Third", NULL };
303 * static int variable;
305 * static struct cf_section section = {
307 * CF_LOOKUP("choice", &variable, strings),
312 * Now, if the configuration contains `choice "Second"`, `variable` will be set to 1.
314 #define CF_LOOKUP(n,p,t) { .cls = CC_STATIC, .type = CT_LOOKUP, .name = n, .number = 1, .ptr = CHECK_PTR_TYPE(p,int*), .u.lookup = t }
316 * Static array of strings out of predefined set.
318 #define CF_LOOKUP_ARY(n,p,t,c) { .cls = CC_STATIC, .type = CT_LOOKUP, .name = n, .number = c, .ptr = CHECK_PTR_TYPE(p,int*), .u.lookup = t }
320 * Dynamic array of strings out of predefined set.
322 #define CF_LOOKUP_DYN(n,p,t,c) { .cls = CC_DYNAMIC, .type = CT_LOOKUP, .name = n, .number = c, .ptr = CHECK_PTR_TYPE(p,int**), .u.lookup = t }
324 * A user-defined type.
325 * See <<custom_parser,creating custom parsers>> section if you want to know more.
327 #define CF_USER(n,p,t) { .cls = CC_STATIC, .type = CT_USER, .name = n, .number = 1, .ptr = p, .u.utype = t }
329 * Static array of user-defined types (all of the same type).
330 * See <<custom_parser,creating custom parsers>> section.
332 #define CF_USER_ARY(n,p,t,c) { .cls = CC_STATIC, .type = CT_USER, .name = n, .number = c, .ptr = p, .u.utype = t }
334 * Dynamic array of user-defined types.
335 * See <<custom_parser,creating custom parsers>> section.
337 #define CF_USER_DYN(n,p,t,c) { .cls = CC_DYNAMIC, .type = CT_USER, .name = n, .number = c, .ptr = p, .u.utype = t }
340 * Any number of dynamic array elements
342 #define CF_ANY_NUM -0x7fffffff
344 #define DARY_LEN(a) ((uns*)a)[-1] /** Length of an dynamic array. **/
345 #define DARY_ALLOC(type,len,val...) ((struct { uns l; type a[len]; }) { .l = len, .a = { val } }).a
346 // creates a static instance of a dynamic array
353 * Each configuration context has one or more <<mempool:,memory pools>>, where all
354 * data related to the configuration are stored.
356 * The following set of functions allocate from these pools. The allocated memory
357 * is valid as long as the current configuration (when the configuration file is
358 * reloaded or rolled back, or the context is deleted, it gets lost).
360 * Memory allocated from within custom parsers should be allocated from the pools.
362 struct mempool *cf_get_pool(void); /** Return a pointer to the current configuration pool. **/
363 void *cf_malloc(uns size); /** Returns @size bytes of memory allocated from the current configuration pool. **/
364 void *cf_malloc_zero(uns size); /** Like @cf_malloc(), but zeroes the memory. **/
365 char *cf_strdup(const char *s); /** Copy a string into @cf_malloc()ed memory. **/
366 char *cf_printf(const char *fmt, ...) FORMAT_CHECK(printf,1,2); /** printf() into @cf_malloc()ed memory. **/
373 * For error recovery when <<reload,reloading configuration>>.
375 extern uns cf_need_journal; /** Is the journal needed? If you do not reload configuration, you set this to 0 and gain a little more performance and free memory. **/
377 * When a block of memory is about to be changed, put the old value
378 * into journal with this function. You need to call it from a <<hooks,commit hook>>
379 * if you change anything. It is used internally by low-level parsers.
380 * <<custom_parser,Custom parsers>> do not need to call it, it is called
383 void cf_journal_block(void *ptr, uns len);
384 #define CF_JOURNAL_VAR(var) cf_journal_block(&(var), sizeof(var)) // Store single value into journal.
388 * Section declaration
389 * ~~~~~~~~~~~~~~~~~~~
393 * Plug another top-level section into the configuration system.
394 * @name is the name in the configuration file,
395 * @sec is pointer to the section description.
396 * If @allow_unknown is set to 0 and a variable not described in @sec
397 * is found in the configuration file, it produces an error.
398 * If you set it to 1, all such variables are ignored.
400 void cf_declare_section(const char *name, struct cf_section *sec, uns allow_unknown);
402 * If you have a section in a structure and you want to initialize it
403 * (eg. if you want a copy of default values outside the configuration),
404 * you can use this. It initializes it recursively.
406 * This is used mostly internally. You probably do not need it.
408 void cf_init_section(const char *name, struct cf_section *sec, void *ptr, uns do_bzero);
412 * Parsers for basic types
413 * ~~~~~~~~~~~~~~~~~~~~~~~
415 * Each of them gets a string to parse and pointer to store the value.
416 * It returns either NULL or error message.
418 * The parsers support units. See <<config:units,their list>>.
420 char *cf_parse_int(const char *str, int *ptr); /** Parser for integers. **/
421 char *cf_parse_u64(const char *str, u64 *ptr); /** Parser for 64 unsigned integers. **/
422 char *cf_parse_double(const char *str, double *ptr); /** Parser for doubles. **/
423 char *cf_parse_ip(const char *p, u32 *varp); /** Parser for IP addresses. **/