2 * UCW Library -- Configuration files
4 * (c) 2001--2006 Robert Spalek <robert@ucw.cz>
5 * (c) 2003--2014 Martin Mares <mj@ucw.cz>
6 * (c) 2014 Pavel Charvat <pchar@ucw.cz>
8 * This software may be freely distributed and used according to the terms
9 * of the GNU Lesser General Public License.
15 #include <ucw/clists.h>
18 #ifdef CONFIG_UCW_CLEAN_ABI
19 #define cf_close_group ucw_cf_close_group
20 #define cf_declare_rel_section ucw_cf_declare_rel_section
21 #define cf_declare_section ucw_cf_declare_section
22 #define cf_delete_context ucw_cf_delete_context
23 #define cf_dump_sections ucw_cf_dump_sections
24 #define cf_find_item ucw_cf_find_item
25 #define cf_get_pool ucw_cf_get_pool
26 #define cf_init_section ucw_cf_init_section
27 #define cf_journal_block ucw_cf_journal_block
28 #define cf_journal_commit_transaction ucw_cf_journal_commit_transaction
29 #define cf_journal_new_transaction ucw_cf_journal_new_transaction
30 #define cf_journal_rollback_transaction ucw_cf_journal_rollback_transaction
31 #define cf_load ucw_cf_load
32 #define cf_malloc ucw_cf_malloc
33 #define cf_malloc_zero ucw_cf_malloc_zero
34 #define cf_modify_item ucw_cf_modify_item
35 #define cf_new_context ucw_cf_new_context
36 #define cf_open_group ucw_cf_open_group
37 #define cf_parse_double ucw_cf_parse_double
38 #define cf_parse_int ucw_cf_parse_int
39 #define cf_parse_ip ucw_cf_parse_ip
40 #define cf_parse_u64 ucw_cf_parse_u64
41 #define cf_printf ucw_cf_printf
42 #define cf_reload ucw_cf_reload
43 #define cf_revert ucw_cf_revert
44 #define cf_set ucw_cf_set
45 #define cf_set_journalling ucw_cf_set_journalling
46 #define cf_strdup ucw_cf_strdup
47 #define cf_switch_context ucw_cf_switch_context
54 * Configuration contexts
55 * ~~~~~~~~~~~~~~~~~~~~~~
57 * The state of the configuration parser is stored within a configuration context.
58 * One such context is automatically created during initialization of the library
59 * and you need not care about more, as long as you use a single configuration file.
61 * In full generality, you can define as many contexts as you wish and switch
62 * between them. Each thread has its own pointer to the current context, which
63 * must not be shared with other threads.
66 /** Create a new configuration context. **/
67 struct cf_context *cf_new_context(void);
70 * Free a configuration context. The context must not be set as current
71 * for any thread, nor can it be the default context.
73 * All configuration settings made within the context are rolled back
74 * (except when journalling is turned off). All memory allocated on behalf
75 * of the context is freed, which includes memory obtained by calls to
78 void cf_delete_context(struct cf_context *cc);
81 * Make the given configuration context current and return the previously
82 * active context. Both the new and the old context may be NULL.
84 struct cf_context *cf_switch_context(struct cf_context *cc);
88 * Safe configuration loading
89 * ~~~~~~~~~~~~~~~~~~~~~~~~~~
91 * These functions can be used to to safely load or reload configuration.
95 * Load configuration from @file.
96 * Returns a non-zero value upon error. In that case, all changes to the
97 * configuration specified in the file are undone.
99 int cf_load(const char *file);
102 * Reload configuration from @file, replace the old one.
103 * If @file is NULL, reload all loaded configuration files and re-apply
104 * bits of configuration passed to @cf_set().
105 * Returns a non-zero value upon error. In that case, all configuration
106 * settings are rolled back to the state before calling this function.
108 int cf_reload(const char *file);
111 * Parse some part of configuration passed in @string.
112 * The syntax is the same as in the <<config:,configuration file>>.
113 * Returns a non-zero value upon error. In that case, all changes to the
114 * configuration specified by the already executed parts of the string
117 int cf_set(const char *string);
120 * Sometimes, the configuration is split to multiple files and when only
121 * some of the are loaded, the settings are not consistent -- for example,
122 * they might have been rejected by a commit hook, because a mandatory setting
125 * This function opens a configuration group, in which multiple files can be
126 * loaded and all commit hooks are deferred until the group is closed.
128 void cf_open_group(void);
131 * Close a group opened by @cf_open_group(). Returns a non-zero value upon error,
132 * which usually means that a commit hook has failed.
134 int cf_close_group(void);
137 * Return all configuration items to their initial state before loading the
138 * configuration file. If journalling is disabled, it does nothing.
140 void cf_revert(void);
142 /*** === Data types [[conf_types]] ***/
144 enum cf_class { /** Class of the configuration item. **/
145 CC_END, // end of list
146 CC_STATIC, // single variable or static array
147 CC_DYNAMIC, // dynamically allocated array
148 CC_PARSER, // arbitrary parser function
149 CC_SECTION, // section appears exactly once
150 CC_LIST, // list with 0..many nodes
151 CC_BITMAP // of up to 32 items
154 enum cf_type { /** Type of a single value. **/
155 CT_INT, CT_U64, CT_DOUBLE, // number types
157 CT_STRING, // string type
158 CT_LOOKUP, // in a string table
159 CT_USER, // user-defined type (obsolete)
160 CT_XTYPE // extended type
166 * A parser function gets an array of (strdup'ed) strings and a pointer with
167 * the customized information (most likely the target address). It can store
168 * the parsed value anywhere in any way it likes, however it must first call
169 * @cf_journal_block() on the overwritten memory block. It returns an error
170 * message or NULL if everything is all right.
172 typedef char *cf_parser(uint number, char **pars, void *ptr);
174 * A parser function for user-defined types gets a string and a pointer to
175 * the destination variable. It must store the value within [ptr,ptr+size),
176 * where size is fixed for each type. It should not call @cf_journal_block().
178 typedef char *cf_parser1(char *string, void *ptr);
180 * An init- or commit-hook gets a pointer to the section or NULL if this
181 * is the global section. It returns an error message or NULL if everything
182 * is all right. The init-hook should fill in default values (needed for
183 * dynamically allocated nodes of link lists or for filling global variables
184 * that are run-time dependent). The commit-hook should perform sanity
185 * checks and postprocess the parsed values. Commit-hooks must call
186 * @cf_journal_block() too. Caveat! init-hooks for static sections must not
187 * use @cf_malloc() but normal <<memory:xmalloc()>>.
189 typedef char *cf_hook(void *ptr);
191 * Dumps the contents of a variable of a user-defined type.
193 typedef void cf_dumper1(struct fastbuf *fb, void *ptr);
195 * Similar to init-hook, but it copies attributes from another list node
196 * instead of setting the attributes to default values. You have to provide
197 * it if your node contains parsed values and/or sub-lists.
199 typedef char *cf_copier(void *dest, void *src);
201 struct cf_user_type { /** Structure to store information about user-defined variable type. **/
202 uint size; // of the parsed attribute
203 char *name; // name of the type (for dumping)
204 cf_parser1 *parser; // how to parse it
205 cf_dumper1 *dumper; // how to dump the type
209 struct cf_item { /** Single configuration item. **/
210 const char *name; // case insensitive
211 int number; // length of an array or #parameters of a parser (negative means at most)
212 void *ptr; // pointer to a global variable or an offset in a section
214 struct cf_section *sec; // declaration of a section or a list
215 cf_parser *par; // parser function
216 const char * const *lookup; // NULL-terminated sequence of allowed strings for lookups
217 struct cf_user_type *utype; // specification of the user-defined type (obsolete)
218 const struct xtype *xtype; // specification of the extended type
220 enum cf_class cls:16; // attribute class
221 enum cf_type type:16; // type of a static or dynamic attribute
224 struct cf_section { /** A section. **/
225 uint size; // 0 for a global block, sizeof(struct) for a section
226 cf_hook *init; // fills in default values (no need to bzero)
227 cf_hook *commit; // verifies parsed data (optional)
228 cf_copier *copy; // copies values from another instance (optional, no need to copy basic attributes)
229 struct cf_item *cfg; // CC_END-terminated array of items
230 uint flags; // for internal use only
238 * You could create the structures manually, but you can use these macros to
243 * Declaration of <<struct_cf_section,`cf_section`>>
244 * ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
246 * These macros can be used to configure the <<struct_cf_section,`cf_section`>>
251 * Data type of a section.
252 * If you store the section into a structure, use this macro.
254 * Storing a section into a structure is useful mostly when you may have multiple instances of the
255 * section (eg. <<conf_multi,array or list>>).
260 * cnode n; // This one is for the list itself
265 * static struct clist nodes;
267 * static struct cf_section node = {
268 * CF_TYPE(struct list_node),
270 * CF_STRING("name", PTR_TO(struct list_node, name)),
271 * CF_UINT("value", PTR_TO(struct list_node, value)),
276 * static struct cf_section section = {
277 * CF_LIST("node", &nodes, &node),
281 * You could use <<def_CF_STATIC,`CF_STATIC`>> or <<def_CF_DYNAMIC,`CF_DYNAMIC`>>
282 * macros to create arrays.
284 #define CF_TYPE(s) .size = sizeof(s)
286 * An init <<hooks,hook>>.
287 * You can use this to initialize dynamically allocated items (for a dynamic array or list).
288 * The hook returns an error message or NULL if everything was OK.
290 #define CF_INIT(f) .init = (cf_hook*) f
292 * A commit <<hooks,hook>>.
293 * You can use this one to check sanity of loaded data and postprocess them.
294 * You must call @cf_journal_block() if you change anything.
296 * Return error message or NULL if everything went OK.
298 #define CF_COMMIT(f) .commit = (cf_hook*) f
300 * A <<hooks,copy function>>.
301 * You need to provide one for too complicated sections where a memcpy is not
302 * enough to copy it properly. It happens, for example, when you have a dynamically
303 * allocated section containing a list of other sections.
305 * You return an error message or NULL if you succeed.
307 #define CF_COPY(f) .copy = (cf_copier*) f /** **/
308 #define CF_ITEMS .cfg = ( struct cf_item[] ) /** List of sub-items. **/
309 #define CF_END { .cls = CC_END } /** End of the structure. **/
311 * Declaration of a configuration item
312 * ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
314 * Each of these describe single <<struct_cf_item,configuration item>>. They are mostly
315 * for internal use, do not use them directly unless you really know what you are doing.
319 * Static array of items.
320 * Expects you to allocate the memory and provide pointer to it.
322 #define CF_STATIC(n,p,T,t,c) { .cls = CC_STATIC, .type = CT_##T, .name = n, .number = c, .ptr = CHECK_PTR_TYPE(p,t*) }
324 * Dynamic array of items.
325 * Expects you to provide pointer to your pointer to data and it will allocate new memory for it
326 * and set your pointer to it.
328 #define CF_DYNAMIC(n,p,T,t,c) { .cls = CC_DYNAMIC, .type = CT_##T, .name = n, .number = c, .ptr = CHECK_PTR_TYPE(p,t**) }
329 #define CF_PARSER(n,p,f,c) { .cls = CC_PARSER, .name = n, .number = c, .ptr = p, .u.par = (cf_parser*) f } /** A low-level parser. **/
330 #define CF_SECTION(n,p,s) { .cls = CC_SECTION, .name = n, .number = 1, .ptr = p, .u.sec = s } /** A sub-section. **/
331 #define CF_LIST(n,p,s) { .cls = CC_LIST, .name = n, .number = 1, .ptr = CHECK_PTR_TYPE(p,clist*), .u.sec = s } /** A list with sub-items. **/
332 #define CF_BITMAP_INT(n,p) { .cls = CC_BITMAP, .type = CT_INT, .name = n, .number = 1, .ptr = CHECK_PTR_TYPE(p,u32*) } /** A bitmap. **/
333 #define CF_BITMAP_LOOKUP(n,p,t) { .cls = CC_BITMAP, .type = CT_LOOKUP, .name = n, .number = 1, .ptr = CHECK_PTR_TYPE(p,u32*), .u.lookup = t } /** A bitmap with named bits. **/
335 * Basic configuration items
336 * ^^^^^^^^^^^^^^^^^^^^^^^^^
338 * They describe basic data types used in the configuration. This should be enough for
339 * most real-life purposes.
341 * The parameters are as follows:
343 * * @n -- name of the item.
344 * * @p -- pointer to the variable where it shall be stored.
347 #define CF_INT(n,p) CF_STATIC(n,p,INT,int,1) /** Single `int` value. **/
348 #define CF_INT_ARY(n,p,c) CF_STATIC(n,p,INT,int,c) /** Static array of integers. **/
349 #define CF_INT_DYN(n,p,c) CF_DYNAMIC(n,p,INT,int,c) /** Dynamic array of integers. **/
350 #define CF_UINT(n,p) CF_STATIC(n,p,INT,uint,1) /** Single `uint` (`unsigned`) value. **/
351 #define CF_UINT_ARY(n,p,c) CF_STATIC(n,p,INT,uint,c) /** Static array of unsigned integers. **/
352 #define CF_UINT_DYN(n,p,c) CF_DYNAMIC(n,p,INT,uint,c) /** Dynamic array of unsigned integers. **/
353 #define CF_U64(n,p) CF_STATIC(n,p,U64,u64,1) /** Single unsigned 64bit integer (`u64`). **/
354 #define CF_U64_ARY(n,p,c) CF_STATIC(n,p,U64,u64,c) /** Static array of u64s. **/
355 #define CF_U64_DYN(n,p,c) CF_DYNAMIC(n,p,U64,u64,c) /** Dynamic array of u64s. **/
356 #define CF_DOUBLE(n,p) CF_STATIC(n,p,DOUBLE,double,1) /** Single instance of `double`. **/
357 #define CF_DOUBLE_ARY(n,p,c) CF_STATIC(n,p,DOUBLE,double,c) /** Static array of doubles. **/
358 #define CF_DOUBLE_DYN(n,p,c) CF_DYNAMIC(n,p,DOUBLE,double,c) /** Dynamic array of doubles. **/
359 #define CF_IP(n,p) CF_STATIC(n,p,IP,u32,1) /** Single IPv4 address. **/
360 #define CF_IP_ARY(n,p,c) CF_STATIC(n,p,IP,u32,c) /** Static array of IP addresses. **/.
361 #define CF_IP_DYN(n,p,c) CF_DYNAMIC(n,p,IP,u32,c) /** Dynamic array of IP addresses. **/
363 /* FIXME: Backwards compatibility only, should not be used at is will be removed soon. */
364 #define CF_UNS CF_UINT
365 #define CF_UNS_ARY CF_UINT_ARY
366 #define CF_UNS_DYN CF_UINT_DYN
370 * You provide a pointer to a `char *` variable and it will fill it with
371 * dynamically allocated string. For example:
373 * static char *string = "Default string";
375 * static struct cf_section section = {
377 * CF_STRING("string", &string),
382 #define CF_STRING(n,p) CF_STATIC(n,p,STRING,char*,1)
383 #define CF_STRING_ARY(n,p,c) CF_STATIC(n,p,STRING,char*,c) /** Static array of strings. **/
384 #define CF_STRING_DYN(n,p,c) CF_DYNAMIC(n,p,STRING,char*,c) /** Dynamic array of strings. **/
386 * One string out of a predefined set.
387 * You provide the set as an array of strings terminated by NULL (similar to @argv argument
388 * of main()) as the @t parameter.
390 * The configured variable (pointer to `int`) is set to index of the string.
391 * So, it works this way:
393 * static *strings[] = { "First", "Second", "Third", NULL };
395 * static int variable;
397 * static struct cf_section section = {
399 * CF_LOOKUP("choice", &variable, strings),
404 * Now, if the configuration contains `choice "Second"`, `variable` will be set to 1.
406 #define CF_LOOKUP(n,p,t) { .cls = CC_STATIC, .type = CT_LOOKUP, .name = n, .number = 1, .ptr = CHECK_PTR_TYPE(p,int*), .u.lookup = t }
408 * Static array of strings out of predefined set.
410 #define CF_LOOKUP_ARY(n,p,t,c) { .cls = CC_STATIC, .type = CT_LOOKUP, .name = n, .number = c, .ptr = CHECK_PTR_TYPE(p,int*), .u.lookup = t }
412 * Dynamic array of strings out of predefined set.
414 #define CF_LOOKUP_DYN(n,p,t,c) { .cls = CC_DYNAMIC, .type = CT_LOOKUP, .name = n, .number = c, .ptr = CHECK_PTR_TYPE(p,int**), .u.lookup = t }
416 * A user-defined type.
417 * See <<custom_parser,creating custom parsers>> section if you want to know more.
419 #define CF_USER(n,p,t) { .cls = CC_STATIC, .type = CT_USER, .name = n, .number = 1, .ptr = p, .u.utype = t }
421 * Static array of user-defined types (all of the same type).
422 * See <<custom_parser,creating custom parsers>> section.
424 #define CF_USER_ARY(n,p,t,c) { .cls = CC_STATIC, .type = CT_USER, .name = n, .number = c, .ptr = p, .u.utype = t }
426 * Dynamic array of user-defined types.
427 * See <<custom_parser,creating custom parsers>> section.
429 #define CF_USER_DYN(n,p,t,c) { .cls = CC_DYNAMIC, .type = CT_USER, .name = n, .number = c, .ptr = p, .u.utype = t }
432 * See <<xtypes:,extended types>> if you want to know more.
434 #define CF_XTYPE(n,p,t) { .cls = CC_STATIC, .type = CT_XTYPE, .name = n, .number = 1, .ptr = p, .u.xtype = t }
436 * Static array of extended types (all of the same type).
437 * See <<xtypes:,extended types>>.
439 #define CF_XTYPE_ARY(n,p,t,c) { .cls = CC_STATIC, .type = CT_XTYPE, .name = n, .number = c, .ptr = p, .u.xtype = t }
441 * Dynamic array of extended types.
442 * See <<xtypes:,extended types>>.
444 #define CF_XTYPE_DYN(n,p,t,c) { .cls = CC_DYNAMIC, .type = CT_XTYPE, .name = n, .number = c, .ptr = p, .u.xtype = t }
447 * Any number of dynamic array elements
449 #define CF_ANY_NUM -0x7fffffff
451 #define DARY_LEN(a) GARY_SIZE(a) /** Length of an dynamic array. An alias for `GARY_SIZE`. **/
458 * Each configuration context has one or more <<mempool:,memory pools>>, where all
459 * data related to the configuration are stored.
461 * The following set of functions allocate from these pools. The allocated memory
462 * is valid as long as the current configuration (when the configuration file is
463 * reloaded or rolled back, or the context is deleted, it gets lost).
465 * Memory allocated from within custom parsers should be allocated from the pools.
467 * Please note that the pool is not guaranteed to exist before you call cf_load(),
468 * cf_set(), or cf_getopt() on the particular context.
470 struct mempool *cf_get_pool(void); /** Return a pointer to the current configuration pool. **/
471 void *cf_malloc(uint size); /** Returns @size bytes of memory allocated from the current configuration pool. **/
472 void *cf_malloc_zero(uint size); /** Like @cf_malloc(), but zeroes the memory. **/
473 char *cf_strdup(const char *s); /** Copy a string into @cf_malloc()ed memory. **/
474 char *cf_printf(const char *fmt, ...) FORMAT_CHECK(printf,1,2); /** printf() into @cf_malloc()ed memory. **/
481 * The configuration system uses a simple journaling mechanism, which makes
482 * it possible to undo changes to configuration. A typical example is loading
483 * of configuration by cf_load(): internally, it creates a transaction, applies
484 * all changes specified by the configuration and if one of them fails, the whole
485 * journal is replayed to restore the whole original state. Similarly, cf_reload()
486 * uses the journal to switch between configurations.
488 * In most cases, you need not care about the journal, except when you need
489 * to change some data from a <<hooks,hook>>, or if you want to call cf_modify_item() and then
493 * This function can be used to disable the whole journalling mechanism.
494 * It saves some memory, but it makes undoing of configuration changes impossible,
495 * which breaks for example cf_reload().
497 void cf_set_journalling(int enable);
499 * When a block of memory is about to be changed, put the old value
500 * into journal with this function. You need to call it from a <<hooks,commit hook>>
501 * if you change anything. It is used internally by low-level parsers.
502 * <<custom_parser,Custom parsers>> do not need to call it, it is called
505 void cf_journal_block(void *ptr, uint len);
506 #define CF_JOURNAL_VAR(var) cf_journal_block(&(var), sizeof(var)) // Store a single value into the journal
508 struct cf_journal_item; /** Opaque identifier of the journal state. **/
510 * Starts a new transaction. It returns the current state so you can
511 * get back to it. The @new_pool parameter tells if a new memory pool
512 * should be created and used from now.
514 struct cf_journal_item *cf_journal_new_transaction(uint new_pool);
516 * Marks current state as a complete transaction. The @new_pool
517 * parameter tells if the transaction was created with new memory pool
518 * (the parameter must be the same as the one with
519 * @cf_journal_new_transaction() was called with). The @oldj parameter
520 * is the journal state returned from last
521 * @cf_journal_new_transaction() call.
523 void cf_journal_commit_transaction(uint new_pool, struct cf_journal_item *oldj);
525 * Returns to an old journal state, reverting anything the current
526 * transaction did. The @new_pool parameter must be the same as the
527 * one you used when you created the transaction. The @oldj parameter
528 * is the journal state you got from @cf_journal_new_transaction() --
529 * it is the state to return to.
531 void cf_journal_rollback_transaction(uint new_pool, struct cf_journal_item *oldj);
535 * Section declaration
536 * ~~~~~~~~~~~~~~~~~~~
540 * Plug another top-level section into the configuration system.
541 * @name is the name in the configuration file,
542 * @sec is pointer to the section description.
543 * If @allow_unknown is set to 0 and a variable not described in @sec
544 * is found in the configuration file, it produces an error.
545 * If you set it to 1, all such variables are ignored.
547 * Please note that a single section definition cannot be used in multiple
548 * configuration contexts simultaneously.
550 void cf_declare_section(const char *name, struct cf_section *sec, uint allow_unknown);
552 * Like @cf_declare_section(), but instead of item pointers, the section
553 * contains offsets relative to @ptr. In other words, it does the same
554 * as `CF_SECTION`, but for top-level sections.
556 void cf_declare_rel_section(const char *name, struct cf_section *sec, void *ptr, uint allow_unknown);
558 * If you have a section in a structure and you want to initialize it
559 * (eg. if you want a copy of default values outside the configuration),
560 * you can use this. It initializes it recursively.
562 * This is used mostly internally. You probably do not need it.
564 void cf_init_section(const char *name, struct cf_section *sec, void *ptr, uint do_bzero);
568 * Parsers for basic types
569 * ~~~~~~~~~~~~~~~~~~~~~~~
571 * Each of them gets a string to parse and pointer to store the value.
572 * It returns either NULL or error message.
574 * The parsers support units. See <<config:units,their list>>.
576 char *cf_parse_int(const char *str, int *ptr); /** Parser for integers. **/
577 char *cf_parse_u64(const char *str, u64 *ptr); /** Parser for 64 unsigned integers. **/
578 char *cf_parse_double(const char *str, double *ptr); /** Parser for doubles. **/
579 char *cf_parse_ip(const char *p, u32 *varp); /** Parser for IP addresses. **/
586 * Direct access to configuration items.
587 * You probably should not need this, but in your do, you have to handle
588 * <<journal,journalling>> yourself.
592 * List of operations used on items.
593 * This macro is used to generate internal source code,
594 * but you may be interested in the list of operations it creates.
596 * Each operation corresponds to the same-named operation
597 * described in <<config:operations,configuration syntax>>.
599 #define CF_OPERATIONS T(CLOSE) T(SET) T(CLEAR) T(ALL) \
600 T(APPEND) T(PREPEND) T(REMOVE) T(EDIT) T(AFTER) T(BEFORE) T(COPY) T(RESET)
601 /* Closing brace finishes previous block.
602 * Basic attributes (static, dynamic, parsed) can be used with SET.
603 * Dynamic arrays can be used with SET, APPEND, PREPEND.
604 * Sections can be used with SET.
605 * Lists can be used with everything. */
607 enum cf_operation { CF_OPERATIONS }; /** Allowed operations on items. See <<def_CF_OPERATIONS,`CF_OPERATIONS`>> for list (they have an `OP_` prefix -- it means you use `OP_SET` instead of just `SET`). **/
611 * Searches for a configuration item called @name.
612 * If it is found, it is copied into @item and NULL is returned.
613 * Otherwise, an error is returned and @item is zeroed.
615 char *cf_find_item(const char *name, struct cf_item *item);
617 * Performs a single operation on a given item.
619 char *cf_modify_item(struct cf_item *item, enum cf_operation op, int number, char **pars);
629 * Write the current state of all configuration items into @fb.
631 void cf_dump_sections(struct fastbuf *fb);