]> mj.ucw.cz Git - saga.git/blob - rank.tex
Finished derangements.
[saga.git] / rank.tex
1 \ifx\endpart\undefined
2 \input macros.tex
3 \fi
4
5 \chapter{Ranking Combinatorial Structures}
6
7 \section{Ranking and unranking}
8
9 The techniques for building efficient data structures on the RAM described
10 in Chapter~\ref{ramchap} can be also used for a~variety of problems related
11 to ranking of combinatorial structures. Generally, the problems are stated
12 in the following way:
13
14 \defn\id{rankdef}%
15 Let~$C$ be a~set of objects and~$\prec$ a~linear order on~$C$. The \df{rank}
16 $R_{C,\prec}(x)$ of an~element $x\in C$ is the number of elements $y\in C$ such that $y\prec x$.
17 We will call the function $R_{C,\prec}$ the \df{ranking function} for $C$ ordered by~$\prec$
18 and its inverse $R^{-1}_{C,\prec}$ the \df{unranking function} for $C$ and~$\prec$. When the set
19 and the order are clear from the context, we will use plain~$R(x)$ and $R^{-1}(x)$.
20 Also, when $\prec$ is defined on a~superset~$C'$ of~$C$, we naturally extend $R_C(x)$
21 to elements $x\in C'\setminus C$.
22
23 \example
24 Let us consider the set $C_k=\{\0,\1\}^k$ of all binary strings of length~$k$ ordered
25 lexicographically. Then $R^{-1}(i)$ is the $i$-th smallest element of this set, that
26 is the number~$i$ written in binary and padded to~$k$ digits (i.e., $\(i)_k$ in the
27 notation of Section~\ref{bitsect}). Obviously, $R(x)$ is the integer whose binary
28 representation is the string~$x$.
29
30 \para
31 In this chapter, we will investigate how to compute the ranking and unranking
32 functions for different sets efficiently. Usually, we will make use of the fact
33 that the ranks (and hence the input and output of our algorithm) are large
34 numbers, so we can use the integers of a~similar magnitude to represent non-trivial
35 data structures.
36
37 \para
38 Until the end of the chapter, we will always assume that our model of computation
39 is the Random Access Machine (more specifically, the Word-RAM).
40
41 %--------------------------------------------------------------------------------
42
43 \section{Ranking of permutations}
44 \id{pranksect}
45
46 One of the most common ranking problems is ranking of permutations on the set~$[n]=\{1,2,\ldots,n\}$.
47 This is frequently used to create arrays indexed by permutations: for example in Ruskey's algorithm
48 for finding Hamilton cycles in Cayley graphs (see~\cite{ruskey:ham} and \cite{ruskey:hce})
49 or when exploring state spaces of combinatorial puzzles like the Loyd's Fifteen \cite{ss:fifteen}.
50 Many other applications are surveyed by Critani et al.~in~\cite{critani:rau} and in
51 most cases, the time complexity of the whole algorithm is limited by the efficiency
52 of the (un)ranking functions.
53
54 The permutations are usually ranked according to their lexicographic order.
55 In fact, an~arbitrary order is often sufficient if the ranks are used solely
56 for indexing of arrays. The lexicographic order however has an~additional advantage
57 of a~nice structure, which allows various operations on permutations to be
58 performed directly on their ranks.
59
60 Na\"\i{}ve algorithms for lexicographic ranking require time $\Theta(n^2)$ in the
61 worst case \cite{reingold:catp} and even on average~\cite{liehe:raulow}.
62 This can be easily improved to $O(n\log n)$ by using either a binary search
63 tree to calculate inversions, or by a divide-and-conquer technique, or by clever
64 use of modular arithmetic (all three algorithms are described in
65 \cite{knuth:sas}). Myrvold and Ruskey \cite{myrvold:rank} mention further
66 improvements to $O(n\log n/\log \log n)$ by using the RAM data structures of Dietz
67 \cite{dietz:oal}.
68
69 Linear time complexity was reached by Myrvold and Ruskey \cite{myrvold:rank}
70 for a~non-lexicographic order, which is defined locally by the history of the
71 data structure --- in fact, they introduce a linear-time unranking algorithm
72 first and then they derive an inverse algorithm without describing the order
73 explicitly. However, they leave the problem of lexicographic ranking open.
74
75 We will describe a~general procedure which, when combined with suitable
76 RAM data structures, yields a~linear-time algorithm for lexicographic
77 (un)ranking.
78
79 \nota\id{brackets}%
80 We will view permutations on a~finite set $A\subseteq {\bb N}$ as ordered $\vert A\vert$-tuples
81 (in other words, arrays) containing every element of~$A$ exactly once. We will
82 use square brackets to index these tuples: $\pi=(\pi[1],\ldots,\pi[\vert A\vert])$.
83 The corresponding lexicographic ranking and unranking functions will be denoted by~$L(\pi,A)$
84 and $L^{-1}(i,A)$ respectively.
85
86 \obs\id{permrec}%
87 Let us first observe that permutations have a simple recursive structure.
88 If we fix the first element $\pi[1]$ of a~permutation~$\pi$ on the set~$[n]$, the
89 elements $\pi[2], \ldots, \pi[n]$ form a~permutation on $[n]-\{\pi[1]\} = \{1,\ldots,\pi[1]-1,\pi[1]+1,\ldots,n\}$.
90 The lexicographic order of two permutations $\pi$ and~$\pi'$ on the original set is then determined
91 by $\pi[1]$ and $\pi'[1]$ and only if these elements are equal, it is decided
92 by the lexicographic comparison of permutations $(\pi[2],\ldots,\pi[n])$ and
93 $(\pi'[2],\ldots,\pi'[n])$. Moreover, for fixed~$\pi[1]$ all permutations on
94 the smaller set occur exactly once, so the rank of $\pi$ is $(\pi[1]-1)\cdot
95 (n-1)!$ plus the rank of $(\pi[2],\ldots,\pi[n])$.
96
97 This gives us a~reduction from (un)ranking of permutations on $[n]$ to (un)ranking
98 of permutations on a $(n-1)$-element set, which suggests a straightforward
99 algorithm, but unfortunately this set is different from $[n-1]$ and it even
100 depends on the value of~$\pi[1]$. We could renumber the elements to get $[n-1]$,
101 but it would require linear time per iteration. To avoid this, we generalize the
102 problem to permutations on subsets of $[n]$. For a permutation $\pi$ on a~set
103 $A\subseteq [n]$ of size~$m$, similar reasoning gives a~simple formula:
104 $$
105 L((\pi[1],\ldots,\pi[m]),A) = R_A(\pi[1]) \cdot (m-1)! +
106 L((\pi[2],\ldots,\pi[m]), A\setminus\{\pi[1]\}),
107 $$
108 which uses the ranking function~$R_A$ for~$A$. This recursive formula immediately
109 translates to the following recursive algorithms for both ranking and unranking
110 (described for example in \cite{knuth:sas}):
111
112 \alg $\<Rank>(\pi,i,n,A)$: Compute the rank of a~permutation $\pi[i\ldots n]$ on~$A$.
113 \id{rankalg}
114 \algo
115 \:If $i\ge n$, return~0.
116 \:$a\=R_A(\pi[i])$.
117 \:$b\=\<Rank>(\pi,i+1,n,A \setminus \{\pi[i]\})$.
118 \:Return $a\cdot(n-i)! + b$.
119 \endalgo
120
121 \>We can call $\<Rank>(\pi,1,n,[n])$ for ranking on~$[n]$, i.e., to calculate
122 $L(\pi,[n])$.
123
124 \alg $\<Unrank>(j,i,n,A)$: Return an~array~$\pi$ such that $\pi[i,\ldots,n]$ is the $j$-th permutation on~$A$.
125 \id{unrankalg}
126 \algo
127 \:If $i>n$, return $(0,\ldots,0)$.
128 \:$x\=R^{-1}_A(\lfloor j/(n-i)! \rfloor)$.
129 \:$\pi\=\<Unrank>(j\bmod (n-i)!,i+1,n,A\setminus \{x\})$.
130 \:$\pi[i]\=x$.
131 \:Return~$\pi$.
132 \endalgo
133
134 \>We can call $\<Unrank>(j,1,n,[n])$ for the unranking problem on~$[n]$, i.e., to get $L^{-1}(j,[n])$.
135
136 \para
137 The most time-consuming parts of the above algorithms are of course operations
138 on the set~$A$. If we store~$A$ in a~data structure of a~known time complexity, the complexity
139 of the whole algorithm is easy to calculate:
140
141 \lemma\id{ranklemma}%
142 Suppose that there is a~data structure maintaining a~subset of~$[n]$ under a~sequence
143 of deletions, which supports ranking and unranking of elements, and that
144 the time complexity of a~single operation is at most~$t(n)$.
145 Then lexicographic ranking and unranking of permutations can be performed in time $\O(n\cdot t(n))$.
146
147 \proof
148 Let us analyse the above algorithms. The depth of the recursion is~$n$ and in each
149 nested invokation of the recursive procedure we perform a~constant number of operations.
150 All of them are either trivial, or calculations of factorials (which can be precomputed in~$\O(n)$ time),
151 or operations on the data structure.
152 \qed
153
154 \example
155 If we store~$A$ in an~ordinary array, we have insertion and deletion in constant time,
156 but ranking and unranking in~$\O(n)$, so $t(n)=\O(n)$ and the algorithm is quadratic.
157 Binary search trees give $t(n)=\O(\log n)$. The data structure of Dietz \cite{dietz:oal}
158 improves it to $t(n)=O(\log n/\log \log n)$. In fact, all these variants are equivalent
159 to the classical algorithms based on inversion vectors, because at the time of processing~$\pi[i]$,
160 the value of $R_A(\pi[i])$ is exactly the number of elements forming inversions with~$\pi[i]$.
161
162 \para
163 To obtain linear time complexity, we will make use of the representation of
164 vectors by integers on the RAM as developed in Section~\ref{bitsect}, but first
165 of all, we will make sure that the ranks are large numbers, so the word size of the
166 machine has to be large as well:
167
168 \obs
169 $\log n! = \Theta(n\log n)$, therefore the word size~$W$ must be~$\Omega(n\log n)$.
170
171 \proof
172 We have $n^n \ge n! \ge \lfloor n/2\rfloor^{\lfloor n/2\rfloor}$, so $n\log n \ge \log n! \ge \lfloor n/2\rfloor\cdot\log \lfloor n/2\rfloor$.
173 \qed
174
175 \thmn{Lexicographic ranking of permutations \cite{mm:rank}}
176 When we order the permutations on the set~$[n]$ lexicographically, both ranking
177 and unranking can be performed on the RAM in time~$\O(n)$.
178
179 \proof
180 We will store the elements of the set~$A$ in a~sorted vector. Each element has
181 $\O(\log n)$ bits, so the whole vector takes $\O(n\log n)$ bits, which by the
182 above observation fits in a~constant number of machine words. We know from
183 Algorithm~\ref{vecops} that ranks can be calculated in constant time in such
184 vectors and that insertions and deletions can be translated to ranks and
185 masking. Unranking, that is indexing of the vector, is masking alone.
186 So we can apply the previous Lemma \ref{ranklemma} with $t(n)=\O(1)$.
187 \qed
188
189 \rem
190 We can also easily derive the non-lexicographic linear-time algorithm of Myrvold
191 and Ruskey~\cite{myrvold:rank} from our algorithm. We will relax the requirements
192 on the data structure to allow order of elements dependent on the history of the
193 structure (i.e., on the sequence of deletes performed so far). We can observe that
194 although the algorithm no longer gives the lexicographic ranks, the unranking function
195 is still an~inverse of the ranking function, because the sequence of deletes
196 from~$A$ is the same when both ranking and unraking.
197
198 The implementation of the relaxed structure is straightforward. We store the set~$A$
199 in an~array~$\alpha$ and use the order of the elements in~$\alpha$ determine the
200 order on~$A$. We will also maintain an~``inverse'' array $\alpha^{-1}$ such that
201 $\alpha[\alpha^{-1}[x]]=x$ for every~$x\in A$. Ranking and unranking can be performed
202 by a~simple lookup in these arrays: $R_A(x)=\alpha^{-1}[x]$, $R^{-1}(i)=\alpha[i]$.
203 When we want to delete an~element, we exchange it with the last element in the
204 array~$\alpha$ and update~$\alpha^{-1}$ accordingly.
205
206
207 %--------------------------------------------------------------------------------
208
209 \section{Ranking of {\secitfont k\/}-permutations}
210 \id{kpranksect}
211
212 The technique from the previous section can be also generalized to lexicographic ranking of
213 \df{$k$-permutations,} that is of ordered $k$-tuples drawn from the set~$[n]$.
214 There are $n^{\underline k} = n\cdot(n-1)\cdot\ldots\cdot(n-k+1)$
215 such $k$-permutations and they have a~recursive structure similar to the one of
216 the permutations. We will therefore use the same recursive scheme as before
217 (algorithms \ref{rankalg} and \ref{unrankalg}), but we will modify the first step of both algorithms
218 to stop after the first~$k$ iterations. We will also replace the number $(n-i)!$
219 of permutations on the remaining elements by the number of $(k-i)$-permutations on the same elements,
220 i.e., by $(n-i)^{\underline{k-i}}$. As $(n-i)^{\underline{k-i}} = (n-i) \cdot (n-i-1)^{\underline{k-i-1}}$,
221 we can precalculate all these numbers in linear time.
222
223 Unfortunately, the ranks of $k$-permutations can be much smaller, so we can no
224 longer rely on the same data structure fitting in a constant number of word-sized integers.
225 For example, if $k=1$, the ranks are $\O(\log n)$-bit numbers, but the data
226 structure still requires $\Theta(n\log n)$ bits.
227
228 We do a minor side step by remembering the complement of~$A$ instead, that is
229 the set of the at most~$k$ elements we have already seen. We will call this set~$H$
230 (because it describes the ``holes'' in~$A$). Let us prove that $\Omega(k\log n)$ bits
231 are needed to represent the rank, so the vector representation of~$H$ fits in
232 a~constant number of words.
233
234 \lemma
235 The number of $k$-permutations on~$[n]$ is $2^{\Omega(k\log n)}$.
236
237 \proof
238 We already know that there $n^{\underline k}$ such $k$-permutations. If $k\le n/2$,
239 then every term in the product is $n/2$ or more, so $\log n^{\underline k} \ge
240 k\cdot (\log n - 1)$. If $k\ge n/2$, then $n^{\underline k} \ge n^{\underline{\smash{n/2}}}$
241 and $\log n^{\underline k} \ge (n/2)(\log n - 1) \ge (k/2)(\log n - 1)$.
242 \qed
243
244 \para
245 It remains to show how to translate the operations on~$A$ to operations on~$H$,
246 again stored as a~sorted vector~${\bf h}$. Insertion to~$A$ correspond to
247 deletion from~$H$ and vice versa. The rank of any~$x\in[n]$ in~$A$ is $x$ minus
248 the number of holes which are smaller than~$x$, therefore $R_A(x)=x-R_H(x)$.
249 To calculate $R_H(x)$, we can again use the vector operation \<Rank> from Algorithm \ref{vecops},
250 this time on the vector~$\bf h$.
251
252 The only operation we cannot translate directly is unranking in~$A$. We will
253 therefore define an~auxiliary vector~$\bf r$ of the same size as~$\bf h$
254 containing the ranks of the holes: $r_i=R_A(h_i)=h_i-R_H(h_i)=h_i-i$.
255 To find the $j$-th smallest element of~$A$, we locate the interval between
256 holes to which this element belongs: the interval is bordered from below by
257 a~hole~$h_i$ such that $i$ is the largest index satisfying~$r_i \le j$.
258 In other words, $i=\<Rank>(r,j+1)-1$. Finding the right element in the interval
259 is then easy: $R^{-1}_A(j) = h_i + 1 + j - r_i$.
260
261 \example
262 If $A=\{2,5,6\}$ and $n=8$, then ${\bf h}=(1,3,4,7,8)$ and ${\bf r}
263 = (0,1,1,3,3)$. When we want to calculate $R^{-1}_A(2)$, we find $i=2$ and
264 the wanted element is $h_2+1+2-r_2 = 4+1+2-1 = 6$.
265
266 \para
267 The vector~$\bf r$ can be updated in constant time whenever an~element is
268 inserted to~$\bf h$. It is sufficient to shift the fields apart (we know
269 that the position of the new element in~$\bf r$ is the same as in~$\bf h$),
270 insert the new value using masking operations and decrease all higher fields
271 by one in parallel by using a~single subtraction. Updates after deletions
272 from~$\bf h$ are analogous.
273
274 We have replaced all operations on~$A$ by the corresponding operations on the
275 modified data structure, each of which works again in constant time. Therefore
276 we have just proven the following theorem, which brings this section to
277 a~happy ending:
278
279 \thmn{Lexicographic ranking of $k$-permutations \cite{mm:rank}}
280 When we order the $k$-per\-mu\-ta\-tions on the set~$[n]$ lexicographically, both
281 ranking and unranking can be performed on the RAM in time~$\O(k)$.
282
283 \proof
284 We modify algorithms \ref{rankalg} and \ref{unrankalg} for $k$-permutations as
285 shown at the beginning of this section. We use the vectors $\bf h$ and~$\bf r$
286 described above as an~implicit representation of the set~$A$. The modified
287 algorithm uses recursion $k$~levels deep and as each operation on~$A$ can be
288 performed in~$\O(1)$ time using $\bf h$ and~$\bf r$, every level takes only
289 constant time. The time bound follows. \qed
290
291 %--------------------------------------------------------------------------------
292
293 \section{Hatcheck lady and other derangements}
294
295 Another interesting class of combinatorial objects which can be counted and
296 ranked are restricted permutations. An~archetypal member of this class are
297 permutations without a~fixed point, i.e., permutations~$\pi$ such that $\pi(i)\ne i$
298 for all~$i$. These are also called \df{derangements} or \df{hatcheck permutations.}\foot{%
299 As the story in~\cite{matnes:idm} goes, once upon a~time there was a~hatcheck lady who
300 was so confused that she was giving out the hats completely randomly. What is
301 the probability that none of the gentlemen receives his own hat?} We will present
302 a~general (un)ranking method for any class of restricted permutations and
303 derive a~linear-time algorithm for the derangements from it.
304
305 \defn\id{permnota}%
306 We will fix a~non-negative integer~$n$ and use ${\cal P}$ for the set of
307 all~permutations on~$[n]$.
308 A~\df{restriction graph} is a~bipartite graph~$G$ whose parts are two copies
309 of the set~$[n]$. A~permutation $\pi\in{\cal P}$ satisfies the restrictions
310 if $(i,\pi(i))$ is an~edge of~$G$ for every~$i$.
311
312 We will follow the path unthreaded by Kaplansky and Riordan
313 \cite{kaplansky:rooks} and charted by Stanley in \cite{stanley:econe}.
314 We will relate restricted permutations to placements of non-attacking
315 rooks on a~hollow chessboard.
316
317 \defn
318 \itemize\ibull
319 \:A~\df{board} is the grid $B=[n]\times [n]$. It consists of $n^2$ \df{squares.}
320 \:A~\df{trace} of a~permutation $\pi\in{\cal P}$ is the set of squares $T(\pi)=\{ (i,\pi(i)) ; i\in[n] \}$.
321 \endlist
322
323 \obs\id{rooksobs}%
324 The traces of permutations (and thus the permutations themselves) correspond
325 exactly to placements of $n$ rooks at the board in a~way such that the rooks do
326 not attack each other (i.e., there is at most one rook in every row and
327 likewise in every column; as there are $n$~rooks, there must be exactly one of them in
328 every row and column). When speaking about \df{rook placements,} we will always
329 mean non-attacking placements.
330
331 Restricted permutations then correspond to placements of rooks on a~board with
332 some of the squares removed. The \df{holes} (missing squares) correspond to the
333 non-edges of~$G$, so $\pi\in{\cal P}$ satisfies the restrictions iff
334 $T(\pi)$ avoids the holes.
335
336 \defn
337 Let~$H\subseteq B$ be any set of holes in the board. Then:
338 \itemize\ibull
339 \:$N_j$ denotes the number of placements of $n$~rooks on the board such that exactly~$j$ of the rooks
340 stand on holes. That is, $N_j := \#\{ \pi\in{\cal P}: \#(H\cap T(\pi)) = j \}$.
341 \:$r_k$ is the number of ways how to place $k$~rooks on the holes. In other words,
342 this is the number of $k$-element subsets of~$H$ such that no two elements share
343 a~common row or column.
344 \:$N$ is the generating function for the~$N_j$'s:
345 $$
346 N(x) = \sum_{j\ge 0} N_j x^j.
347 $$
348 As $N_j=0$ for $j>n$, this function is in fact a~finite polynomial.
349 \endlist
350
351 \thmn{The number of restricted permutations, Stanley \cite{stanley:econe}}
352 The function~$N$ can be expressed in terms of the numbers~$r_k$ as:
353 $$
354 N(x) = \sum_{k=0}^n r_k \cdot (n-k)! \cdot (x-1)^k.
355 $$
356
357 \proof
358 If two polynomials of degree~$n$ coincide at more than~$n$ points, they
359 are identical, therefore it is sufficient to prove that the equality holds
360 for all $x\in{\bb N}^+$.
361 The $N(x)$ counts the ways of placing~$n$ rooks on the board and labeling
362 each of them which stands on a~hole with an~element of~$[x]$. The right-hand
363 side counts the same: We can obtain any such configuration by placing $k$~rooks
364 on~$H$ first, labeling them with elements of~$\{2,\ldots,x\}$, placing
365 additional $n-k$ rooks on the remaining rows and columns (there are $(n-k)!$ ways
366 how to do this) and labeling those of the the new rooks standing on a~hole with~1.
367 \qed
368
369 \cor
370 When we substitute~$x=0$ in the above equality, we get a~formula for the
371 number of rook placements avoiding the holes altogether:
372 $$N_0 = N(0) = \sum_{k=0}^n (-1)^k \cdot (n-k)! \cdot r_k.$$
373
374 \example\id{hatcheck}%
375 Let us apply this theory to the hatcheck lady problem. The set~$H$ of holes is the main diagonal
376 of the board: $H=\{ (i,i) : i\in[n] \}$. When we want to place $k$~rooks on the holes,
377 we can do that in $r_k={n\choose k}$ ways. By the previous corollary, the number of
378 derangements is:
379 $$
380 N_0 = \sum_{k=0}^n (-1)^k \cdot (n-k)! \cdot {n\choose k}
381     = \sum_{k=0}^n (-1)^k \cdot {n!\over k!}
382     = n! \cdot \sum_{k=0}^n {(-1)^k\over k!}.
383 $$
384 As the sum converges to~$1/e$ when $n$~approaches infinity, we know that the number
385 of derangements is asymptotically $n!/e$.
386
387 \obs\id{matchobs}%
388 Placements of~$n$ rooks (and therefore also restricted permutations) can be
389 also equated with perfect matchings in the restriction graph~$G$. The edges
390 of the matching correspond to the squares occupied by the rooks, the condition
391 that no two rooks share a~row nor column translates to the edges not touching
392 each other, and the use of exactly~$n$ rooks is equivalent to the matching
393 being perfect.
394
395 There is also a~well-known correspondence between the perfect matchings
396 in a~bipartite graph and non-zero summands in the formula for the permanent
397 of the bipartite adjacency matrix~$M$ of the graph. This holds because the
398 non-zero summands are in one-to-one correspondence with the placements
399 of~$n$ rooks on the corresponding board. The number $N_0$ is therefore
400 equal to the permanent of the matrix~$M$.
401
402 We will summarize our observations in the following lemma:
403
404 \lemma\id{permchar}%
405 The following sets have the same cardinality:
406
407 \itemize\ibull
408 \:permutations which obey a~given restriction graph~$G$,
409 \:non-attacking placements of rooks on a~$n\times n$ board avoiding holes
410   which correspond to non-edges of~$G$,
411 \:perfect matchings in the graph~$G$,
412 \:non-zero summands in the permanent of the adjacency matrix of~$G$.
413 \endlist
414
415 \proof
416 See observations \ref{rooksobs} and~\ref{matchobs}.
417 \qed
418
419 \para
420 The diversity of the characterizations of restricted permutations brings
421 both good and bad news. The good news is that we can use the
422 plethora of known results on bipartite matchings. Most importantly, we can efficiently
423 determine whether there exists at least one permutation satistying a~given set of restrictions:
424
425 \thm
426 There is an~algorithm which decides in time $\O(n^{1/2}\cdot m)$ whether there exists
427 a~permutation satisfying a~given restriction graph.
428
429 \proof
430 It is sufficient to verify that there exists a~perfect matching in the
431 given graph. By a~standard technique, this can be reduced in linear time to finding a~maximum
432 flow in a~suitable unit-capacity network. This flow can be then found using the Dinic's
433 algorithm in time $\O(\sqrt{n}\cdot m)$.
434 (See \cite{dinic:flow} for the flow algorithm, \cite{even:dinic} for the time bound
435 and \cite{schrijver} for more references on flows and matchings.)
436 \qed
437
438 \para
439 The bad news is that computing the permanent is known to be~$\#P$-complete even
440 for zero-one matrices (as proven by Valiant in \cite{valiant:permanent}).
441 As a~ranking function for a~set of~matchings can be used to count all such
442 matchings, we obtain the following theorem:
443
444 \thm
445 If there is a~polynomial-time algorithm for lexicographic ranking of permutations with
446 a~set of restrictions which is a~part of the input, then $P=\#P$.
447
448 \proof
449 We will show that a~polynomial-time ranking algorithm would imply a~polynomial-time
450 algorithm for computing the permanent of an~arbitrary zero-one matrix, which
451 is a~$\#P$-complete problem.
452
453 We know from Lemma \ref{permchar} that non-zero
454 summands in the permanent of a~zero-one matrix~$M$ correspond to permutations restricted
455 by a~graph~$G$ whose bipartite adjacency matrix is~$M$. The permanent is
456 therefore equal to the number of such permutations, which is one more than the
457 rank of the lexicographically maximum such permutation.
458 It therefore remains to show that we can find the lexicographically maximum
459 permutation permitted by~$G$ in polynomial time.
460
461 We can determine $\pi[1]$ by trying all the possible values permitted by~$G$
462 in decreasing order and stopping as soon as we find~$\pi[1]$ which can be
463 extended to a~complete permutation. This can be verified using the previous
464 theorem on~the graph of the remaining restrictions, i.e., on~$G$ with the vertices
465 1~on one side and~$\pi[1]$ on the other side removed.
466 Once we have~$\pi[1]$, proceed by finding $\pi[2]$ in the same way, using the reduced
467 graph. This way we construct the whole maximum permutation~$\pi$
468 in~$\O(n^2)$ calls to the verification algorithm.
469 \qed
470
471 \para
472 However, the hardness of computing the permanent is the only obstacle.
473 We will show that whenever we are given a~set of restrictions for which
474 the counting problem is easy (and it is also easy for subgraphs obtained
475 by deleting vertices), ranking is easy as well. The key will be once again
476 a~recursive structure, similar to the one we have seen in the case of plain
477 permutations in \ref{permrec}.
478
479 \nota\id{restnota}%
480 As we will work with permutations on different sets simultaneously, we have
481 to extend our notation accordingly. For every finite set of elements $A\subset{\bb N}$,
482 we will consider the set ${\cal P}_A$ of all permutations on~$A$ as customary
483 viewed as ordered $\vert A\vert$-tuples. The restriction graph will be represented
484 by its adjacency matrix~$M\in \{0,1\}^{\vert A\vert\times \vert A\vert}$ and
485 a~permutation $\pi\in{\cal P}_A$ satisfies~$M$ (conforms to the restrictions)
486 iff $M[i,j]=1$ whenever $j=R_A(\pi[i])+1$.\foot{The $+1$ is added because
487 matrices are indexed from~1 while the lowest rank is~0.}
488 The set of all such~$\pi$ will be denoted by~${\cal P}_{A,M}$
489 and their number (which obviously does not depend on the choice of~$A$) by $N_0(M) = {\per M}$.
490
491 We will also frequently need to delete a~row and a~column simultaneously
492 from~$M$. This operation corresponds to deletion of one vertex from each
493 part of the restriction graph. We will write $M^{i,j}$ for the matrix~$M$
494 with its $i$-th row and $j$-th column removed.
495
496 \obs
497 Let us consider a~permutation $\pi\in{\cal P}_A$ and $n=\vert A\vert$.
498 When we fix the value of the element $\pi[1]$, the remaining elements form
499 a~permutation $\pi'=(\pi[2],\ldots,\pi[n])$ on the set~$A'=A\setminus\{\pi[1]\}$.
500 The permutation~$\pi$ satisfies the restriction matrix~$M$ if and only if
501 $M[1,a]=1$ for $a=R_A(\pi[1])$ and $\pi'$ satisfies a~restriction matrix~$M'=M^{1,a}$.
502 This translates to the following counterparts of algorithms \ref{rankalg}
503 and \ref{unrankalg}:
504
505 \alg\id{rrankalg}%
506 $\<Rank>(\pi,i,n,A,M)$: Compute the lexicographic rank of a~permutation $\pi[i\ldots n]\in{\cal P}_{A,M}$.
507
508 \algo
509 \:If $i\ge n$, return 0.
510 \:$a\=R_A(\pi[i])$.
511 \:$b\=C_a=\sum_k N_0(M^{1,k})$ over all $k$ such that $1\le k\le a$ and $M[1,k]=1$.
512   \cmt{$C_a$ is the number of permutations in ${\cal P}_{A,M}$ whose first element lies
513   among the first $a$ elements of~$A$.}
514 \:Return $b + \<Rank>(\pi,i+1,n,A\setminus\{\pi[i]\},M^{1,a+1})$.
515 \endalgo
516
517 \>To calculate the rank of~$\pi\in{\cal P}_{A,M}$, we call $\<Rank>(\pi,1,\vert A\vert,A,M)$.
518
519 \alg\id{runrankalg}%
520 $\<Unrank>(j,i,n,A,M)$: Return an~array~$\pi$ such that $\pi[i,\ldots,n]$ is the $j$-th
521 permutation in~${\cal P}_{A,M}$.
522
523 \algo
524 \:If $i>n$, return $(0,\ldots,0)$.
525 \:Find minimum $a$ such that $C_a > j$ (where $C_a$ is as above).
526 \:$x\=R^{-1}_A(a-1)$.
527 \:$\pi\=\<Unrank>(j-C_{a-1}, i+1, n, A\setminus\{x\}, M^{1,a})$.
528 \:$\pi[i]\=x$.
529 \:Return~$\pi$.
530 \endalgo
531
532 \>To find the $j$-th permutation in~${\cal P}_{A,M}$, we call $\<Unrank>(j,1,\vert A\vert,A,M)$.
533
534 \para
535 The time complexity of these algorithms will be dominated by the computation of
536 the numbers $C_a$, which requires a~linear amount of calls to~$N_0$ on every
537 level of the recursion, and by the manipulation with matrices. Because of this,
538 we do not any special data structure for the set~$A$, an~ordinary sorted array
539 will suffice. (Also, we cannot use the vector representation blindly, because
540 we have no guarantee that the word size is large enough.)
541
542 \thmn{Lexicographic ranking of restricted permutations}
543 Suppose that we have a~family of matrices ${\cal M}=\{M_1,M_2,\ldots\}$ such that $M_n\in \{0,1\}^{n\times n}$
544 and it is possible to calculate the permanent of~$M'$ in time $\O(t(n))$ for every matrix $M'$
545 obtained by deletion of rows and columns from~$M_n$. Then there exist algorithms
546 for ranking and unranking in ${\cal P}_{A,M_n}$ in time $\O(n^4 + n^2\cdot t(n))$
547 if $M_n$ and an~$n$-element set~$A$ are given as a~part of the input.
548
549 \proof
550 We will combine the algorithms \ref{rrankalg} and \ref{runrankalg} with the supplied
551 function for computing the permanent. All matrices constructed by the algorithm
552 are submatrices of~$M_n$ of the required type, so all computations of the function~$N_0$
553 can be performed in time $\O(t(n))$ each.
554
555 The recursion is $n$~levels deep. Every level involves
556 a~constant number of (un)ranking operations on~$A$ and computation of at most~$n$
557 of the $C_a$'s. Each such $C_a$ can be derived from~$C_{a-1}$ by constructing
558 a~submatrix of~$M$ (which takes $\O(n^2)$ time) and computing its $N_0$. We therefore
559 spend time $\O(n^2)$ on operations with the set~$A$, $\O(n^4)$ on matrix manipulations
560 and $\O(n^2\cdot t(n))$ by the computations of the~$N_0$'s.
561 \qed
562
563 \rem
564 This time bound is obviously very coarse, its main purpose was to demonstrate that
565 many special cases of the ranking problem can be indeed computed in polynomial time.
566 For most families of restriction matrices, we can do much better. One of the possible improvements
567 is to replace the matrix~$M$ by the corresponding restriction graph and instead of
568 copying the matrix at every level of recursion, we perform local operations on the graph
569 and undo them later. Another useful trick is to calculate the $N_0$'s of the smaller
570 matrices using information already computed for the larger matrices.
571
572 These speedups are hard to state formally in general (they depend on the
573 structure of the matrices), so we will concentrate on a~specific example
574 instead. We will show that for derangements one can achieve linear time complexity.
575
576 \examplen{Ranking of hatcheck permutations a.k.a.~derangements}\id{hatrank}%
577 As we already know, the hatcheck permutations correspond to restriction
578 matrices which contain zeroes only on the main diagonal and graphs which are
579 complete bipartite with the matching $\{(i,i) : i\in[n]\}$ deleted. For
580 a~given order~$n$, we will call this matrix~$D_n$ and the graph~$G_n$ and
581 we will show that the submatrices of~$D_n$ share several nice properties:
582
583 \lemma\id{submatrixlemma}%
584 Let $D$ be a~submatrix of~$D_n$ obtained by deletion of rows and columns.
585 Then the value of the permanent of~$D$ depends only on the size of~$D$
586 and on the number of zero entries in~$D$.
587
588 \proof
589 We know from Lemma~\ref{permchar} that the permanent counts matchings in the
590 graph~$G$ obtained from~$G_n$ by removing the vertices corresponding to the
591 deleted rows and columns of~$D_n$. Therefore we can prove the lemma for
592 the number of matchings instead.
593
594 As~$G_n$ is a~complete bipartite graph without edges of a~single perfect matching,
595 the graph~$G$ must be also complete bipartite with some non-touching edges
596 missing. Two such graphs $G$ and~$G'$ are therefore isomorphic if and only if they have the
597 same number of vertices and also the same number of missing edges. As the
598 number of matchings is an~isomorphism invariant, the lemma follows.
599 \qed
600
601 \defn
602 Let $n_0(z,d)$ be the permanent shared by all submatrices as described
603 by the above lemma, which have $d\times d$ entries and exactly~$z$ zeroes.
604
605 \lemma
606 The function~$n_0$ satisfies the following recurrence:
607 $$\eqalign{
608 n_0(0,d) &= d!, \cr
609 n_0(d,d) &= d! \cdot \sum\nolimits_{k=0}^d {(-1)^k \over k!}, \cr
610 \noalign{\medskip}
611 n_0(z,d) &= z\cdot n_0(z-1,d-1) + (d-z)\cdot n_0(z,d-1) \quad\hbox{for $z<d$.} \cr
612 }\eqno{(*)}$$
613
614 \proof
615 The base cases of the recurrence are straightforward: $n_0(0,d)$ counts the
616 unrestricted permutations on~$[d]$, and $n_0(d,d)$ is equal to the number of derangements
617 on~$[d]$, which we have already computed in Observation \ref{hatcheck}. Let us
618 prove the third formula.
619
620 We will count the permutations~$\pi$ restricted by a~matrix~$M$ of the given parameters
621 $z$ and~$d$. As $z<d$, there is at least one position in the permutation for which
622 no restriction applies and by Lemma~\ref{submatrixlemma} we can choose without
623 loss of generality that it is the first position.
624
625 If we select $\pi[1]$ from the~$z$ restricted elements, the rest of~$\pi$ is a~permutation
626 on the remaining elements with one restriction less and there are $n_0(z-1,d-1)$ such
627 permutations. On the other hand, if we use an~unrestricted element, all restrictions
628 stay in effect, so there are~$n_0(z,d-1)$ ways how to do so.
629 \qed
630
631 \lemma
632 The function~$n_0$ also satisfies the following recurrence:
633 $$
634 n_0(z-1,d) = n_0(z,d) + n_0(z-1,d-1) \quad\hbox{for $z>0$, $d>0$.} \eqno{(\maltese)}
635 $$
636
637 \proof
638 We will again take advantage of having proven Lemma~\ref{submatrixlemma}, which
639 allows us to choose arbitrary matrices with the given parameters. Let us pick a~matrix~$M_z$
640 containing $z$~zeroes such that $M_z[1,1]=0$. Then define~$M_{z-1}$ which is equal to~$M_z$
641 everywhere except $M_{z-1}[1,1]=1$.
642
643 We will count the permutations $\pi\in {\cal P}_d$ satisfying~$M_{z-1}$ in two ways.
644 First, there are $n_0(z-1,d)$ such permutations. On the other hand, we can divide
645 the them to two types depending on whether $\pi[1]=1$. Those having $\pi[1]\ne 1$
646 are exactly the $n_0(z,d)$ permutations satisfying~$M_z$. The others correspond to
647 permutations $(\pi[2],\ldots,\pi[d])$ on $\{2,\ldots,d\}$ which satisfy~$M_z^{1,1}$,
648 so there are $n_0(z-1,d-1)$ of them.
649 \qed
650
651 \cor\id{nzeroprecalc}%
652 For a~given~$n$, a~table of the values $n_0(z,d)$ for all $0\le z\le d\le n$
653 can be precomputed in time~$\O(n^2)$.
654
655 \proof
656 Use either recurrence and induction on~$z+d$.
657 \qed
658
659 \cor\id{smalldiff}%
660 For every $0\le z<d$ we have $n_0(z,d) - n_0(z+1,d) \le n_0(z,d)/d$.
661
662 \proof
663 According to the recurrence $(\maltese)$, the difference $n_0(z,d) - n_0(z+1,d)$ is
664 equal to $n_0(z,d-1)$. We can bound this by plugging the trivial inequality $n_0(z,d-1) \le n_0(z-1,d-1)$
665 to~$(*)$, from which we obtain $n_0(z,d) \ge d\cdot n_0(z,d-1)$.
666 \qed
667
668 \para\id{rrankmod}%
669 Let us show how to modify the ranking algorithm (\ref{rrankalg}) using the insight
670 we have gained into the structure of derangements.
671
672 The algorithm uses the matrix~$M$ only for computing~$N_0$ of its submatrices
673 and we have shown that this value depends only on the order of the matrix and
674 the number of zeroes in it. We will therefore replace maintenance of the matrix
675 by remember the number~$z$ of its zeroes and the set~$Z$ which contains the elements
676 $x\in A$ whose locations are restricted (there is a~zero anywhere in the $(R_A(x)+1)$-th
677 column of~$M$). In other words, every $x\in Z$ can appear at all positions in the
678 permutation except one (and these forbidden positions are different for different~$x$'s),
679 while the remaining elements of~$A$ can appear anywhere.
680
681 As we already observed (\ref{hatcheck}) that the number of derangements on~$[n]$ is $\Theta(n!)$,
682 we can again use word-sized vectors to represent the sets~$A$ and~$Z$ with insertion,
683 deletion, ranking and unranking on them in constant time.
684
685 When the algorithm selects a~submatrix $M'=M^{1,k}$ for an~element $x$ of~rank~$k-1$, this
686 matrix it is described by either by the choice of $z'=z-1$ and~$Z'=Z\setminus\{x\}$ (if $x\in Z$)
687 or $z'=z$ and $Z'=Z$ (if $x\not\in Z$).
688 All computations of~$N_0$ in the algorithm can therefore be replaced by looking
689 up the appropriate $n_0(z',\vert A\vert-1)$ in the precomputed table. Moreover, we can
690 calculate a~single~$C_a$ in constant time, because all summands are either $n_0(z,\vert A\vert-1)$
691 or $n_0(z-1,\vert A\vert-1)$ depending on the set~$Z$. We get:
692 $$C_a = r\cdot n_0(z-1,\vert A\vert-1) + (a-r) \cdot n_0(z,\vert A\vert-1),$$
693 where $r=R_Z(R^{-1}_A(a))$, that is the number of restricted elements among the $a$~smallest ones in~$A$.
694
695 All operations at a~single level of the \<Rank> function now run in constant time,
696 but \<Unrank> needs to search among the~$C_a$'s to find the first of them which
697 exceeds the given rank. We could use binary search, but that would take $\Theta(\log n)$
698 time. There is however a~clever trick: the value of~$C_a$ does not vary too much with
699 the set~$Z$. Specifically, by Corollary~\ref{smalldiff} the difference between the values
700 for $Z=\emptyset$ and $Z=A$ is at most $n_0(z-1,\vert A\vert -1)$. It is therefore
701 sufficient to just divide the rank by $n_0(z-1,\vert A\vert-1)$ and we get either
702 the correct value of~$a$ or one more. Both possibilities can be checked in constant time.
703
704 We can therefore conclude this section by the following theorem:
705
706 \thmn{Ranking of derangements}%
707 For every~$n$, the derangements on the set~$[n]$ can be ranked and unranked according to the
708 lexicographic order in time~$\O(n)$ after spending $\O(n^2)$ on initialization of auxiliary tables.
709
710 \proof
711 We modify the general algorithms for (un)ranking of restricted permutations (\ref{rrankalg} and \ref{runrankalg})
712 as described above (\ref{rrankmod}). Each of the $n$~levels of recursion will then run in constant time. The values~$n_0$ will
713 be looked up in a~table precalculated in quadratic time as shown in Corollary~\ref{nzeroprecalc}.
714 \qed
715
716
717
718 \endpart