]> mj.ucw.cz Git - saga.git/blob - rank.tex
Continuing with the intro to dynamic algorithms.
[saga.git] / rank.tex
1 \ifx\endpart\undefined
2 \input macros.tex
3 \fi
4
5 \chapter{Ranking Combinatorial Structures}
6 \id{rankchap}
7
8 \section{Ranking and unranking}
9
10 The techniques for building efficient data structures on the RAM described
11 in Chapter~\ref{ramchap} can be also used for a~variety of problems related
12 to ranking of combinatorial structures. Generally, the problems are stated
13 in the following way:
14
15 \defn\id{rankdef}%
16 Let~$C$ be a~set of objects and~$\prec$ a~linear order on~$C$. The \df{rank}
17 $R_{C,\prec}(x)$ of an~element $x\in C$ is the number of elements $y\in C$ such that $y\prec x$.
18 We will call the function $R_{C,\prec}$ the \df{ranking function} for $C$ ordered by~$\prec$
19 and its inverse $R^{-1}_{C,\prec}$ the \df{unranking function} for $C$ and~$\prec$. When the set
20 and the order are clear from the context, we will use plain~$R(x)$ and $R^{-1}(x)$.
21 Also, when $\prec$ is defined on a~superset~$C'$ of~$C$, we naturally extend $R_C(x)$
22 to elements $x\in C'\setminus C$.
23
24 \example
25 Let us consider the set $C_k=\{\0,\1\}^k$ of all binary strings of length~$k$ ordered
26 lexicographically. Then $R^{-1}(i)$ is the $i$-th smallest element of this set, that
27 is the number~$i$ written in binary and padded to~$k$ digits (i.e., $\(i)_k$ in the
28 notation of Section~\ref{bitsect}). Obviously, $R(x)$ is the integer whose binary
29 representation is the string~$x$.
30
31 \para
32 In this chapter, we will investigate how to compute the ranking and unranking
33 functions for different sets efficiently. Usually, we will make use of the fact
34 that the ranks (and hence the input and output of our algorithm) are large
35 numbers, so we can use the integers of a~similar magnitude to represent non-trivial
36 data structures.
37
38 \para
39 Until the end of the chapter, we will always assume that our model of computation
40 is the Random Access Machine (more specifically, the Word-RAM).
41
42 %--------------------------------------------------------------------------------
43
44 \section{Ranking of permutations}
45 \id{pranksect}
46
47 One of the most common ranking problems is ranking of permutations on the set~$[n]=\{1,2,\ldots,n\}$.
48 This is frequently used to create arrays indexed by permutations: for example in Ruskey's algorithm
49 for finding Hamilton cycles in Cayley graphs (see~\cite{ruskey:ham} and \cite{ruskey:hce})
50 or when exploring state spaces of combinatorial puzzles like the Loyd's Fifteen \cite{ss:fifteen}.
51 Many other applications are surveyed by Critani et al.~in~\cite{critani:rau} and in
52 most cases, the time complexity of the whole algorithm is limited by the efficiency
53 of the (un)ranking functions.
54
55 The permutations are usually ranked according to their lexicographic order.
56 In fact, an~arbitrary order is often sufficient if the ranks are used solely
57 for indexing of arrays. The lexicographic order however has an~additional advantage
58 of a~nice structure, which allows various operations on permutations to be
59 performed directly on their ranks.
60
61 Na\"\i{}ve algorithms for lexicographic ranking require time $\Theta(n^2)$ in the
62 worst case \cite{reingold:catp} and even on average~\cite{liehe:raulow}.
63 This can be easily improved to $O(n\log n)$ by using either a binary search
64 tree to calculate inversions, or by a divide-and-conquer technique, or by clever
65 use of modular arithmetic (all three algorithms are described in
66 \cite{knuth:sas}). Myrvold and Ruskey \cite{myrvold:rank} mention further
67 improvements to $O(n\log n/\log \log n)$ by using the RAM data structures of Dietz
68 \cite{dietz:oal}.
69
70 Linear time complexity was reached by Myrvold and Ruskey \cite{myrvold:rank}
71 for a~non-lexicographic order, which is defined locally by the history of the
72 data structure --- in fact, they introduce a linear-time unranking algorithm
73 first and then they derive an inverse algorithm without describing the order
74 explicitly. However, they leave the problem of lexicographic ranking open.
75
76 We will describe a~general procedure which, when combined with suitable
77 RAM data structures, yields a~linear-time algorithm for lexicographic
78 (un)ranking.
79
80 \nota\id{brackets}%
81 We will view permutations on a~finite set $A\subseteq {\bb N}$ as ordered $\vert A\vert$-tuples
82 (in other words, arrays) containing every element of~$A$ exactly once. We will
83 use square brackets to index these tuples: $\pi=(\pi[1],\ldots,\pi[\vert A\vert])$,
84 and sub-tuples: $\pi[i\ldots j] = (\pi[i],\ldots,\pi[j])$.
85 The lexicographic ranking and unranking functions for the permutations on~$A$
86 will be denoted by~$L(\pi,A)$ and $L^{-1}(i,A)$ respectively.
87
88 \obs\id{permrec}%
89 Let us first observe that permutations have a simple recursive structure.
90 If we fix the first element $\pi[1]$ of a~permutation~$\pi$ on the set~$[n]$, the
91 elements $\pi[2], \ldots, \pi[n]$ form a~permutation on $[n]-\{\pi[1]\} = \{1,\ldots,\pi[1]-1,\pi[1]+1,\ldots,n\}$.
92 The lexicographic order of two permutations $\pi$ and~$\pi'$ on the original set is then determined
93 by $\pi[1]$ and $\pi'[1]$ and only if these elements are equal, it is decided
94 by the lexicographic comparison of permutations $\pi[2\ldots n]$ and $\pi'[2\ldots n]$.
95 Moreover, for fixed~$\pi[1]$ all permutations on the smaller set occur exactly
96 once, so the rank of $\pi$ is $(\pi[1]-1)\cdot (n-1)!$ plus the rank of
97 $\pi[2\ldots n]$.
98
99 This gives us a~reduction from (un)ranking of permutations on $[n]$ to (un)ranking
100 of permutations on a $(n-1)$-element set, which suggests a straightforward
101 algorithm, but unfortunately this set is different from $[n-1]$ and it even
102 depends on the value of~$\pi[1]$. We could renumber the elements to get $[n-1]$,
103 but it would require linear time per iteration. To avoid this, we generalize the
104 problem to permutations on subsets of $[n]$. For a permutation $\pi$ on a~set
105 $A\subseteq [n]$ of size~$m$, similar reasoning gives a~simple formula:
106 $$
107 L((\pi[1],\ldots,\pi[m]),A) = R_A(\pi[1]) \cdot (m-1)! +
108 L((\pi[2],\ldots,\pi[m]), A\setminus\{\pi[1]\}),
109 $$
110 which uses the ranking function~$R_A$ for~$A$. This recursive formula immediately
111 translates to the following recursive algorithms for both ranking and unranking
112 (described for example in \cite{knuth:sas}):
113
114 \alg $\<Rank>(\pi,i,n,A)$: Compute the rank of a~permutation $\pi[i\ldots n]$ on~$A$.
115 \id{rankalg}
116 \algo
117 \:If $i\ge n$, return~0.
118 \:$a\=R_A(\pi[i])$.
119 \:$b\=\<Rank>(\pi,i+1,n,A \setminus \{\pi[i]\})$.
120 \:Return $a\cdot(n-i)! + b$.
121 \endalgo
122
123 \>We can call $\<Rank>(\pi,1,n,[n])$ for ranking on~$[n]$, i.e., to calculate
124 $L(\pi,[n])$.
125
126 \alg $\<Unrank>(j,i,n,A)$: Return an~array~$\pi$ such that $\pi[i\ldots n]$ is the $j$-th permutation on~$A$.
127 \id{unrankalg}
128 \algo
129 \:If $i>n$, return $(0,\ldots,0)$.
130 \:$x\=R^{-1}_A(\lfloor j/(n-i)! \rfloor)$.
131 \:$\pi\=\<Unrank>(j\bmod (n-i)!,i+1,n,A\setminus \{x\})$.
132 \:$\pi[i]\=x$.
133 \:Return~$\pi$.
134 \endalgo
135
136 \>We can call $\<Unrank>(j,1,n,[n])$ for the unranking problem on~$[n]$, i.e., to get $L^{-1}(j,[n])$.
137
138 \para
139 The most time-consuming parts of the above algorithms are of course operations
140 on the set~$A$. If we store~$A$ in a~data structure of a~known time complexity, the complexity
141 of the whole algorithm is easy to calculate:
142
143 \lemma\id{ranklemma}%
144 Suppose that there is a~data structure maintaining a~subset of~$[n]$ under a~sequence
145 of deletions, which supports ranking and unranking of elements, and that
146 the time complexity of a~single operation is at most~$t(n)$.
147 Then lexicographic ranking and unranking of permutations can be performed in time $\O(n\cdot t(n))$.
148
149 \proof
150 Let us analyse the above algorithms. The depth of the recursion is~$n$ and in each
151 nested invokation of the recursive procedure we perform a~constant number of operations.
152 All of them are either trivial, or calculations of factorials (which can be precomputed in~$\O(n)$ time),
153 or operations on the data structure.
154 \qed
155
156 \example
157 If we store~$A$ in an~ordinary array, we have insertion and deletion in constant time,
158 but ranking and unranking in~$\O(n)$, so $t(n)=\O(n)$ and the algorithm is quadratic.
159 Binary search trees give $t(n)=\O(\log n)$. The data structure of Dietz \cite{dietz:oal}
160 improves it to $t(n)=O(\log n/\log \log n)$. In fact, all these variants are equivalent
161 to the classical algorithms based on inversion vectors, because at the time of processing~$\pi[i]$,
162 the value of $R_A(\pi[i])$ is exactly the number of elements forming inversions with~$\pi[i]$.
163
164 \para
165 To obtain linear time complexity, we will make use of the representation of
166 vectors by integers on the RAM as developed in Section~\ref{bitsect}, but first
167 of all, we will make sure that the ranks are large numbers, so the word size of the
168 machine has to be large as well:
169
170 \obs
171 $\log n! = \Theta(n\log n)$, therefore the word size~$W$ must be~$\Omega(n\log n)$.
172
173 \proof
174 We have $n^n \ge n! \ge \lfloor n/2\rfloor^{\lfloor n/2\rfloor}$, so $n\log n \ge \log n! \ge \lfloor n/2\rfloor\cdot\log \lfloor n/2\rfloor$.
175 \qed
176
177 \thmn{Lexicographic ranking of permutations \cite{mm:rank}}
178 When we order the permutations on the set~$[n]$ lexicographically, both ranking
179 and unranking can be performed on the RAM in time~$\O(n)$.
180
181 \proof
182 We will store the elements of the set~$A$ in a~sorted vector. Each element has
183 $\O(\log n)$ bits, so the whole vector takes $\O(n\log n)$ bits, which by the
184 above observation fits in a~constant number of machine words. We know from
185 Algorithm~\ref{vecops} that ranks can be calculated in constant time in such
186 vectors and that insertions and deletions can be translated to ranks and
187 masking. Unranking, that is indexing of the vector, is masking alone.
188 So we can apply the previous Lemma \ref{ranklemma} with $t(n)=\O(1)$.
189 \qed
190
191 \rem
192 We can also easily derive the non-lexicographic linear-time algorithm of Myrvold
193 and Ruskey~\cite{myrvold:rank} from our algorithm. We will relax the requirements
194 on the data structure to allow order of elements dependent on the history of the
195 structure (i.e., on the sequence of deletes performed so far). We can observe that
196 although the algorithm no longer gives the lexicographic ranks, the unranking function
197 is still an~inverse of the ranking function, because the sequence of deletes
198 from~$A$ is the same when both ranking and unraking.
199
200 The implementation of the relaxed structure is straightforward. We store the set~$A$
201 in an~array~$\alpha$ and use the order of the elements in~$\alpha$ determine the
202 order on~$A$. We will also maintain an~``inverse'' array $\alpha^{-1}$ such that
203 $\alpha[\alpha^{-1}[x]]=x$ for every~$x\in A$. Ranking and unranking can be performed
204 by a~simple lookup in these arrays: $R_A(x)=\alpha^{-1}[x]$, $R^{-1}(i)=\alpha[i]$.
205 When we want to delete an~element, we exchange it with the last element in the
206 array~$\alpha$ and update~$\alpha^{-1}$ accordingly.
207
208
209 %--------------------------------------------------------------------------------
210
211 \section{Ranking of {\secitfont k\/}-permutations}
212 \id{kpranksect}
213
214 The technique from the previous section can be also generalized to lexicographic ranking of
215 \df{$k$-permutations,} that is of ordered $k$-tuples drawn from the set~$[n]$.
216 There are $n^{\underline k} = n\cdot(n-1)\cdot\ldots\cdot(n-k+1)$
217 such $k$-permutations and they have a~recursive structure similar to the one of
218 the permutations. We will therefore use the same recursive scheme as before
219 (algorithms \ref{rankalg} and \ref{unrankalg}), but we will modify the first step of both algorithms
220 to stop after the first~$k$ iterations. We will also replace the number $(n-i)!$
221 of permutations on the remaining elements by the number of $(k-i)$-permutations on the same elements,
222 i.e., by $(n-i)^{\underline{k-i}}$. As $(n-i)^{\underline{k-i}} = (n-i) \cdot (n-i-1)^{\underline{k-i-1}}$,
223 we can precalculate all these numbers in linear time.
224
225 Unfortunately, the ranks of $k$-permutations can be much smaller, so we can no
226 longer rely on the same data structure fitting in a constant number of word-sized integers.
227 For example, if $k=1$, the ranks are $\O(\log n)$-bit numbers, but the data
228 structure still requires $\Theta(n\log n)$ bits.
229
230 We do a minor side step by remembering the complement of~$A$ instead, that is
231 the set of the at most~$k$ elements we have already seen. We will call this set~$H$
232 (because it describes the ``holes'' in~$A$). Let us prove that $\Omega(k\log n)$ bits
233 are needed to represent the rank, so the vector representation of~$H$ fits in
234 a~constant number of words.
235
236 \lemma
237 The number of $k$-permutations on~$[n]$ is $2^{\Omega(k\log n)}$.
238
239 \proof
240 We already know that there $n^{\underline k}$ such $k$-permutations. If $k\le n/2$,
241 then every term in the product is $n/2$ or more, so $\log n^{\underline k} \ge
242 k\cdot (\log n - 1)$. If $k\ge n/2$, then $n^{\underline k} \ge n^{\underline{\smash{n/2}}}$
243 and $\log n^{\underline k} \ge (n/2)(\log n - 1) \ge (k/2)(\log n - 1)$.
244 \qed
245
246 \para
247 It remains to show how to translate the operations on~$A$ to operations on~$H$,
248 again stored as a~sorted vector~${\bf h}$. Insertion to~$A$ correspond to
249 deletion from~$H$ and vice versa. The rank of any~$x\in[n]$ in~$A$ is $x$ minus
250 the number of holes that are smaller than~$x$, therefore $R_A(x)=x-R_H(x)$.
251 To calculate $R_H(x)$, we can again use the vector operation \<Rank> from Algorithm \ref{vecops},
252 this time on the vector~$\bf h$.
253
254 The only operation we cannot translate directly is unranking in~$A$. We will
255 therefore define an~auxiliary vector~$\bf r$ of the same size as~$\bf h$
256 containing the ranks of the holes: $r_i=R_A(h_i)=h_i-R_H(h_i)=h_i-i$.
257 To find the $j$-th smallest element of~$A$, we locate the interval between
258 holes to which this element belongs: the interval is bordered from below by
259 a~hole~$h_i$ such that $i$ is the largest index satisfying~$r_i \le j$.
260 In other words, $i=\<Rank>(r,j+1)-1$. Finding the right element in the interval
261 is then easy: $R^{-1}_A(j) = h_i + 1 + j - r_i$.
262
263 \example
264 If $A=\{2,5,6\}$ and $n=8$, then ${\bf h}=(1,3,4,7,8)$ and ${\bf r}
265 = (0,1,1,3,3)$. When we want to calculate $R^{-1}_A(2)$, we find $i=2$ and
266 the wanted element is $h_2+1+2-r_2 = 4+1+2-1 = 6$.
267
268 \para
269 The vector~$\bf r$ can be updated in constant time whenever an~element is
270 inserted to~$\bf h$. It is sufficient to shift the fields apart (we know
271 that the position of the new element in~$\bf r$ is the same as in~$\bf h$),
272 insert the new value using masking operations and decrease all higher fields
273 by one in parallel by using a~single subtraction. Updates after deletions
274 from~$\bf h$ are analogous.
275
276 We have replaced all operations on~$A$ by the corresponding operations on the
277 modified data structure, each of which works again in constant time. Therefore
278 we have just proven the following theorem, which brings this section to
279 a~happy ending:
280
281 \thmn{Lexicographic ranking of $k$-permutations \cite{mm:rank}}
282 When we order the $k$-per\-mu\-ta\-tions on the set~$[n]$ lexicographically, both
283 ranking and unranking can be performed on the RAM in time~$\O(k)$.
284
285 \proof
286 We modify algorithms \ref{rankalg} and \ref{unrankalg} for $k$-permutations as
287 shown at the beginning of this section. We use the vectors $\bf h$ and~$\bf r$
288 described above as an~implicit representation of the set~$A$. The modified
289 algorithm uses recursion $k$~levels deep and as each operation on~$A$ can be
290 performed in~$\O(1)$ time using $\bf h$ and~$\bf r$, every level takes only
291 constant time. The time bound follows. \qed
292
293 %--------------------------------------------------------------------------------
294
295 \section{Restricted permutations}
296
297 Another interesting class of combinatorial objects that can be counted and
298 ranked are restricted permutations. An~archetypal member of this class are
299 permutations without a~fixed point, i.e., permutations~$\pi$ such that $\pi(i)\ne i$
300 for all~$i$. These are also called \df{derangements} or \df{hatcheck permutations.}\foot{%
301 As the story in~\cite{matnes:idm} goes, once upon a~time there was a~hatcheck lady who
302 was so confused that she was giving out the hats completely randomly. What is
303 the probability that none of the gentlemen receives his own hat?} We will present
304 a~general (un)ranking method for any class of restricted permutations and
305 derive a~linear-time algorithm for the derangements from it.
306
307 \defn\id{permnota}%
308 We will fix a~non-negative integer~$n$ and use ${\cal P}$ for the set of
309 all~permutations on~$[n]$.
310 A~\df{restriction graph} is a~bipartite graph~$G$ whose parts are two copies
311 of the set~$[n]$. A~permutation $\pi\in{\cal P}$ satisfies the restrictions
312 if $(i,\pi(i))$ is an~edge of~$G$ for every~$i$.
313
314 We will follow the path unthreaded by Kaplansky and Riordan
315 \cite{kaplansky:rooks} and charted by Stanley in \cite{stanley:econe}.
316 We will relate restricted permutations to placements of non-attacking
317 rooks on a~hollow chessboard.
318
319 \defn
320 \itemize\ibull
321 \:A~\df{board} is the grid $B=[n]\times [n]$. It consists of $n^2$ \df{squares.}
322 \:A~\df{trace} of a~permutation $\pi\in{\cal P}$ is the set of squares $T(\pi)=\{ (i,\pi(i)) ; i\in[n] \}$.
323 \endlist
324
325 \obs\id{rooksobs}%
326 The traces of permutations (and thus the permutations themselves) correspond
327 exactly to placements of $n$ rooks at the board in a~way such that the rooks do
328 not attack each other (i.e., there is at most one rook in every row and
329 likewise in every column; as there are $n$~rooks, there must be exactly one of them in
330 every row and column). When speaking about \df{rook placements,} we will always
331 mean non-attacking placements.
332
333 Restricted permutations then correspond to placements of rooks on a~board with
334 some of the squares removed. The \df{holes} (missing squares) correspond to the
335 non-edges of~$G$, so $\pi\in{\cal P}$ satisfies the restrictions iff
336 $T(\pi)$ avoids the holes.
337
338 \defn
339 Let~$H\subseteq B$ be any set of holes in the board. Then:
340 \itemize\ibull
341 \:$N_j$ denotes the number of placements of $n$~rooks on the board such that exactly~$j$ of the rooks
342 stand on holes. That is, $N_j := \#\{ \pi\in{\cal P}: \#(H\cap T(\pi)) = j \}$.
343 \:$r_k$ is the number of ways how to place $k$~rooks on the holes. In other words,
344 this is the number of $k$-element subsets of~$H$ such that no two elements share
345 a~common row or column.
346 \:$N$ is the generating function for the~$N_j$'s:
347 $$
348 N(x) = \sum_{j\ge 0} N_j x^j.
349 $$
350 As $N_j=0$ for $j>n$, this function is in fact a~finite polynomial.
351 \endlist
352
353 \thmn{The number of restricted permutations, Stanley \cite{stanley:econe}}
354 The function~$N$ can be expressed in terms of the numbers~$r_k$ as:
355 $$
356 N(x) = \sum_{k=0}^n r_k \cdot (n-k)! \cdot (x-1)^k.
357 $$
358
359 \proof
360 If two polynomials of degree~$n$ coincide at more than~$n$ points, they
361 are identical, therefore it is sufficient to prove that the equality holds
362 for all $x\in{\bb N}^+$.
363 The $N(x)$ counts the ways of placing~$n$ rooks on the board and labeling
364 each of them which stands on a~hole with an~element of~$[x]$. The right-hand
365 side counts the same: We can obtain any such configuration by placing $k$~rooks
366 on~$H$ first, labeling them with elements of~$\{2,\ldots,x\}$, placing
367 additional $n-k$ rooks on the remaining rows and columns (there are $(n-k)!$ ways
368 how to do this) and labeling those of the the new rooks standing on a~hole with~1.
369 \qed
370
371 \cor
372 When we substitute~$x=0$ in the above equality, we get a~formula for the
373 number of rook placements avoiding the holes altogether:
374 $$N_0 = N(0) = \sum_{k=0}^n (-1)^k \cdot (n-k)! \cdot r_k.$$
375
376 \example\id{hatcheck}%
377 Let us apply this theory to the hatcheck lady problem. The set~$H$ of holes is the main diagonal
378 of the board: $H=\{ (i,i) : i\in[n] \}$. When we want to place $k$~rooks on the holes,
379 we can do that in $r_k={n\choose k}$ ways. By the previous corollary, the number of
380 derangements is:
381 $$
382 N_0 = \sum_{k=0}^n (-1)^k \cdot (n-k)! \cdot {n\choose k}
383     = \sum_{k=0}^n (-1)^k \cdot {n!\over k!}
384     = n! \cdot \sum_{k=0}^n {(-1)^k\over k!}.
385 $$
386 As the sum converges to~$1/e$ when $n$~approaches infinity, we know that the number
387 of derangements is asymptotically $n!/e$.
388
389 \obs\id{matchobs}%
390 Placements of~$n$ rooks (and therefore also restricted permutations) can be
391 also equated with perfect matchings in the restriction graph~$G$. The edges
392 of the matching correspond to the squares occupied by the rooks, the condition
393 that no two rooks share a~row nor column translates to the edges not touching
394 each other, and the use of exactly~$n$ rooks is equivalent to the matching
395 being perfect.
396
397 There is also a~well-known correspondence between the perfect matchings
398 in a~bipartite graph and non-zero summands in the formula for the permanent
399 of the bipartite adjacency matrix~$M$ of the graph. This holds because the
400 non-zero summands are in one-to-one correspondence with the placements
401 of~$n$ rooks on the corresponding board. The number $N_0$ is therefore
402 equal to the permanent of the matrix~$M$.
403
404 We will summarize our observations in the following lemma:
405
406 \lemma\id{permchar}%
407 The following sets have the same cardinality:
408
409 \itemize\ibull
410 \:permutations which obey a~given restriction graph~$G$,
411 \:non-attacking placements of rooks on a~$n\times n$ board avoiding holes
412   which correspond to non-edges of~$G$,
413 \:perfect matchings in the graph~$G$,
414 \:non-zero summands in the permanent of the adjacency matrix of~$G$.
415 \endlist
416
417 \proof
418 See observations \ref{rooksobs} and~\ref{matchobs}.
419 \qed
420
421 \para
422 The diversity of the characterizations of restricted permutations brings
423 both good and bad news. The good news is that we can use the
424 plethora of known results on bipartite matchings. Most importantly, we can efficiently
425 determine whether there exists at least one permutation satistying a~given set of restrictions:
426
427 \thm
428 There is an~algorithm which decides in time $\O(n^{1/2}\cdot m)$ whether there exists
429 a~permutation satisfying a~given restriction graph.
430
431 \proof
432 It is sufficient to verify that there exists a~perfect matching in the
433 given graph. By a~standard technique, this can be reduced in linear time to finding a~maximum
434 flow in a~suitable unit-capacity network. This flow can be then found using the Dinic's
435 algorithm in time $\O(\sqrt{n}\cdot m)$.
436 (See \cite{dinic:flow} for the flow algorithm, \cite{even:dinic} for the time bound
437 and \cite{schrijver} for more references on flows and matchings.)
438 \qed
439
440 \para
441 The bad news is that computing the permanent is known to be~$\#P$-complete even
442 for zero-one matrices (as proven by Valiant in \cite{valiant:permanent}).
443 As a~ranking function for a~set of~matchings can be used to count all such
444 matchings, we obtain the following theorem:
445
446 \thm
447 If there is a~polynomial-time algorithm for lexicographic ranking of permutations with
448 a~set of restrictions which is a~part of the input, then $P=\#P$.
449
450 \proof
451 We will show that a~polynomial-time ranking algorithm would imply a~polynomial-time
452 algorithm for computing the permanent of an~arbitrary zero-one matrix, which
453 is a~$\#P$-complete problem.
454
455 We know from Lemma \ref{permchar} that non-zero
456 summands in the permanent of a~zero-one matrix~$M$ correspond to permutations restricted
457 by a~graph~$G$ whose bipartite adjacency matrix is~$M$. The permanent is
458 therefore equal to the number of such permutations, which is one more than the
459 rank of the lexicographically maximum such permutation.
460 It therefore remains to show that we can find the lexicographically maximum
461 permutation permitted by~$G$ in polynomial time.
462
463 We can determine $\pi[1]$ by trying all the possible values permitted by~$G$
464 in decreasing order and stopping as soon as we find~$\pi[1]$ which can be
465 extended to a~complete permutation. This can be verified using the previous
466 theorem on~the graph of the remaining restrictions, i.e., on~$G$ with the vertices
467 1~on one side and~$\pi[1]$ on the other side removed.
468 Once we have~$\pi[1]$, proceed by finding $\pi[2]$ in the same way, using the reduced
469 graph. This way we construct the whole maximum permutation~$\pi$
470 in~$\O(n^2)$ calls to the verification algorithm.
471 \qed
472
473 \para
474 However, the hardness of computing the permanent is the only obstacle.
475 We will show that whenever we are given a~set of restrictions for which
476 the counting problem is easy (and it is also easy for subgraphs obtained
477 by deleting vertices), ranking is easy as well. The key will be once again
478 a~recursive structure, similar to the one we have seen in the case of plain
479 permutations in \ref{permrec}.
480
481 \nota\id{restnota}%
482 As we will work with permutations on different sets simultaneously, we have
483 to extend our notation accordingly. For every finite set of elements $A\subset{\bb N}$,
484 we will consider the set ${\cal P}_A$ of all permutations on~$A$ as customary
485 viewed as ordered $\vert A\vert$-tuples. The restriction graph will be represented
486 by its adjacency matrix~$M\in \{0,1\}^{\vert A\vert\times \vert A\vert}$ and
487 a~permutation $\pi\in{\cal P}_A$ satisfies~$M$ (conforms to the restrictions)
488 iff $M[i,j]=1$ whenever $j=R_A(\pi[i])+1$.\foot{The $+1$ is added because
489 matrices are indexed from~1 while the lowest rank is~0.}
490 The set of all such~$\pi$ will be denoted by~${\cal P}_{A,M}$
491 and their number (which obviously does not depend on the choice of~$A$) by $N_0(M) = {\per M}$.
492
493 We will also frequently need to delete a~row and a~column simultaneously
494 from~$M$. This operation corresponds to deletion of one vertex from each
495 part of the restriction graph. We will write $M^{i,j}$ for the matrix~$M$
496 with its $i$-th row and $j$-th column removed.
497
498 \obs
499 Let us consider a~permutation $\pi\in{\cal P}_A$ and $n=\vert A\vert$.
500 When we fix the value of the element $\pi[1]$, the remaining elements form
501 a~permutation $\pi'=\pi[2\ldots n]$ on the set~$A'=A\setminus\{\pi[1]\}$.
502 The permutation~$\pi$ satisfies the restriction matrix~$M$ if and only if
503 $M[1,a]=1$ for $a=R_A(\pi[1])$ and $\pi'$ satisfies a~restriction matrix~$M'=M^{1,a}$.
504 This translates to the following counterparts of algorithms \ref{rankalg}
505 and \ref{unrankalg}:
506
507 \alg\id{rrankalg}%
508 $\<Rank>(\pi,i,n,A,M)$: Compute the lexicographic rank of a~permutation $\pi[i\ldots n]\in{\cal P}_{A,M}$.
509
510 \algo
511 \:If $i\ge n$, return 0.
512 \:$a\=R_A(\pi[i])$.
513 \:$b\=C_a=\sum_k N_0(M^{1,k})$ over all $k$ such that $1\le k\le a$ and $M[1,k]=1$.
514   \cmt{$C_a$ is the number of permutations in ${\cal P}_{A,M}$ whose first element lies
515   among the first $a$ elements of~$A$.}
516 \:Return $b + \<Rank>(\pi,i+1,n,A\setminus\{\pi[i]\},M^{1,a+1})$.
517 \endalgo
518
519 \>To calculate the rank of~$\pi\in{\cal P}_{A,M}$, we call $\<Rank>(\pi,1,\vert A\vert,A,M)$.
520
521 \alg\id{runrankalg}%
522 $\<Unrank>(j,i,n,A,M)$: Return an~array~$\pi$ such that $\pi[i,\ldots,n]$ is the $j$-th
523 permutation in~${\cal P}_{A,M}$.
524
525 \algo
526 \:If $i>n$, return $(0,\ldots,0)$.
527 \:Find minimum $a$ such that $C_a > j$ (where $C_a$ is as above).
528 \:$x\=R^{-1}_A(a-1)$.
529 \:$\pi\=\<Unrank>(j-C_{a-1}, i+1, n, A\setminus\{x\}, M^{1,a})$.
530 \:$\pi[i]\=x$.
531 \:Return~$\pi$.
532 \endalgo
533
534 \>To find the $j$-th permutation in~${\cal P}_{A,M}$, we call $\<Unrank>(j,1,\vert A\vert,A,M)$.
535
536 \para
537 The time complexity of these algorithms will be dominated by the computation of
538 the numbers $C_a$, which requires a~linear amount of calls to~$N_0$ on every
539 level of the recursion, and by the manipulation with matrices. Because of this,
540 we do not any special data structure for the set~$A$, an~ordinary sorted array
541 will suffice. (Also, we cannot use the vector representation blindly, because
542 we have no guarantee that the word size is large enough.)
543
544 \thmn{Lexicographic ranking of restricted permutations}
545 Suppose that we have a~family of matrices ${\cal M}=\{M_1,M_2,\ldots\}$ such that $M_n\in \{0,1\}^{n\times n}$
546 and it is possible to calculate the permanent of~$M'$ in time $\O(t(n))$ for every matrix $M'$
547 obtained by deletion of rows and columns from~$M_n$. Then there exist algorithms
548 for ranking and unranking in ${\cal P}_{A,M_n}$ in time $\O(n^4 + n^2\cdot t(n))$
549 if $M_n$ and an~$n$-element set~$A$ are given as a~part of the input.
550
551 \proof
552 We will combine the algorithms \ref{rrankalg} and \ref{runrankalg} with the supplied
553 function for computing the permanent. All matrices constructed by the algorithm
554 are submatrices of~$M_n$ of the required type, so all computations of the function~$N_0$
555 can be performed in time $\O(t(n))$ each.
556
557 The recursion is $n$~levels deep. Every level involves
558 a~constant number of (un)ranking operations on~$A$ and computation of at most~$n$
559 of the $C_a$'s. Each such $C_a$ can be derived from~$C_{a-1}$ by constructing
560 a~submatrix of~$M$ (which takes $\O(n^2)$ time) and computing its $N_0$. We therefore
561 spend time $\O(n^2)$ on operations with the set~$A$, $\O(n^4)$ on matrix manipulations
562 and $\O(n^2\cdot t(n))$ by the computations of the~$N_0$'s.
563 \qed
564
565 \rem
566 In cases where the efficient evaluation of the permanent is out of our reach,
567 we can consider using the fully-polynomial randomized approximation scheme
568 for the permanent described by Jerrum, Sinclair and Vigoda in \cite{jerrum:permanent}.
569 We then get an~approximation scheme for the ranks.
570
571 \rem
572 There are also deterministic algorithms for computing the number of perfect matchings
573 in various special graph families (which imply polynomial-time ranking algorithms for
574 the corresponding families of permutations). If the graph is planar, we can
575 use the Kasteleyn's algorithm \cite{kasteleyn:crystals} based on Pfaffian
576 orientations which runs in time $\O(n^3)$.
577 It has been recently extended to arbitrary surfaces by Yuster and Zwick
578 \cite{yuster:matching} and sped up to $\O(n^{2.19})$. The counting problem
579 for arbitrary minor-closed classes (cf.~section \ref{minorclosed}) is still
580 open.
581
582 %--------------------------------------------------------------------------------
583
584 \section{Hatcheck lady and other derangements}
585
586 The time bound for ranking of general restricted permutations shown in the previous
587 section is obviously very coarse. Its main purpose was to demonstrate that
588 many special cases of the ranking problem can be indeed computed in polynomial time.
589 For most families of restriction matrices, we can do much better. One of the possible improvements
590 is to replace the matrix~$M$ by the corresponding restriction graph and instead of
591 copying the matrix at every level of recursion, we perform local operations on the graph
592 and undo them later. Another useful trick is to calculate the $N_0$'s of the smaller
593 matrices using information already computed for the larger matrices.
594
595 These speedups are hard to state formally in general (they depend on the
596 structure of the matrices), so we will concentrate on a~specific example
597 instead. We will show that for the derangements one can achieve linear time complexity.
598
599 \nota\id{hatrank}%
600 As we already know, the hatcheck permutations correspond to restriction
601 matrices that contain zeroes only on the main diagonal and graphs that are
602 complete bipartite with the matching $\{(i,i) : i\in[n]\}$ deleted. For
603 a~given order~$n$, we will call this matrix~$D_n$ and the graph~$G_n$ and
604 we will show that the submatrices of~$D_n$ share several nice properties:
605
606 \lemma\id{submatrixlemma}%
607 Let $D$ be a~submatrix of~$D_n$ obtained by deletion of rows and columns.
608 Then the value of the permanent of~$D$ depends only on the size of~$D$
609 and on the number of zero entries in~$D$.
610
611 \proof
612 We know from Lemma~\ref{permchar} that the permanent counts matchings in the
613 graph~$G$ obtained from~$G_n$ by removing the vertices corresponding to the
614 deleted rows and columns of~$D_n$. Therefore we can prove the lemma for
615 the number of matchings instead.
616
617 As~$G_n$ is a~complete bipartite graph without edges of a~single perfect matching,
618 the graph~$G$ must be also complete bipartite with some non-touching edges
619 missing. Two such graphs $G$ and~$G'$ are therefore isomorphic if and only if they have the
620 same number of vertices and also the same number of missing edges. As the
621 number of matchings is an~isomorphism invariant, the lemma follows.
622 \qed
623
624 \rem
625 There is a~clear combinatorial intuition behind this lemma: if we are
626 to count permutations with restrictions placed on~$z$ elements and these
627 restrictions are independent, it does not matter how exactly they look like.
628
629 \defn
630 Let $n_0(z,d)$ be the permanent shared by all submatrices as described
631 by the above lemma, which have $d\times d$ entries and exactly~$z$ zeroes.
632
633 \lemma
634 The function~$n_0$ satisfies the following recurrence:
635 $$\eqalign{
636 n_0(0,d) &= d!, \cr
637 n_0(d,d) &= d! \cdot \sum\nolimits_{k=0}^d {(-1)^k \over k!}, \cr
638 \noalign{\medskip}
639 n_0(z,d) &= z\cdot n_0(z-1,d-1) + (d-z)\cdot n_0(z,d-1) \quad\hbox{for $z<d$.} \cr
640 }\eqno{(*)}$$
641
642 \proof
643 The base cases of the recurrence are straightforward: $n_0(0,d)$ counts the
644 unrestricted permutations on~$[d]$, and $n_0(d,d)$ is equal to the number of derangements
645 on~$[d]$, which we have already computed in Observation \ref{hatcheck}. Let us
646 prove the third formula.
647
648 We will count the permutations~$\pi$ restricted by a~matrix~$M$ of the given parameters
649 $z$ and~$d$. As $z<d$, there is at least one position in the permutation for which
650 no restriction applies and by Lemma~\ref{submatrixlemma} we can choose without
651 loss of generality that it is the first position.
652
653 If we select $\pi[1]$ from the~$z$ restricted elements, the rest of~$\pi$ is a~permutation
654 on the remaining elements with one restriction less and there are $n_0(z-1,d-1)$ such
655 permutations. On the other hand, if we use an~unrestricted element, all restrictions
656 stay in effect, so there are~$n_0(z,d-1)$ ways how to do so.
657 \qed
658
659 \lemma
660 The function~$n_0$ also satisfies the following recurrence:
661 $$
662 n_0(z-1,d) = n_0(z,d) + n_0(z-1,d-1) \quad\hbox{for $z>0$, $d>0$.} \eqno{(\maltese)}
663 $$
664
665 \proof
666 We will again take advantage of having proven Lemma~\ref{submatrixlemma}, which
667 allows us to choose arbitrary matrices with the given parameters. Let us pick a~matrix~$M_z$
668 containing $z$~zeroes such that $M_z[1,1]=0$. Then define~$M_{z-1}$ which is equal to~$M_z$
669 everywhere except $M_{z-1}[1,1]=1$.
670
671 We will count the permutations $\pi\in {\cal P}_d$ satisfying~$M_{z-1}$ in two ways.
672 First, there are $n_0(z-1,d)$ such permutations. On the other hand, we can divide
673 the them to two types depending on whether $\pi[1]=1$. Those having $\pi[1]\ne 1$
674 are exactly the $n_0(z,d)$ permutations satisfying~$M_z$. The others correspond to
675 permutations $(\pi[2],\ldots,\pi[d])$ on $\{2,\ldots,d\}$ that satisfy~$M_z^{1,1}$,
676 so there are $n_0(z-1,d-1)$ of them.
677 \qed
678
679 \cor\id{nzeroprecalc}%
680 For a~given~$n$, a~table of the values $n_0(z,d)$ for all $0\le z\le d\le n$
681 can be precomputed in time~$\O(n^2)$.
682
683 \proof
684 Use either recurrence and induction on~$z+d$.
685 \qed
686
687 \cor\id{smalldiff}%
688 For every $0\le z<d$ we have $n_0(z,d) - n_0(z+1,d) \le n_0(z,d)/d$.
689
690 \proof
691 According to the recurrence $(\maltese)$, the difference $n_0(z,d) - n_0(z+1,d)$ is
692 equal to $n_0(z,d-1)$. We can bound this by plugging the trivial inequality $n_0(z,d-1) \le n_0(z-1,d-1)$
693 to~$(*)$, from which we obtain $n_0(z,d) \ge d\cdot n_0(z,d-1)$.
694 \qed
695
696 \para\id{rrankmod}%
697 Let us show how to modify the ranking algorithm (\ref{rrankalg}) using the insight
698 we have gained into the structure of derangements.
699
700 The algorithm uses the matrix~$M$ only for computing~$N_0$ of its submatrices
701 and we have shown that this value depends only on the order of the matrix and
702 the number of zeroes in it. We will therefore replace maintenance of the matrix
703 by remember the number~$z$ of its zeroes and the set~$Z$ that contains the elements
704 $x\in A$ whose locations are restricted (there is a~zero anywhere in the $(R_A(x)+1)$-th
705 column of~$M$). In other words, every $x\in Z$ can appear at all positions in the
706 permutation except one (and these forbidden positions are different for different~$x$'s),
707 while the remaining elements of~$A$ can appear anywhere.
708
709 As we already observed (\ref{hatcheck}) that the number of derangements on~$[n]$ is $\Theta(n!)$,
710 we can again use word-sized vectors to represent the sets~$A$ and~$Z$ with insertion,
711 deletion, ranking and unranking on them in constant time.
712
713 When the algorithm selects a~submatrix $M'=M^{1,k}$ for an~element $x$ of~rank~$k-1$, this
714 matrix it is described by either by the choice of $z'=z-1$ and~$Z'=Z\setminus\{x\}$ (if $x\in Z$)
715 or $z'=z$ and $Z'=Z$ (if $x\not\in Z$).
716 All computations of~$N_0$ in the algorithm can therefore be replaced by looking
717 up the appropriate $n_0(z',\vert A\vert-1)$ in the precomputed table. Moreover, we can
718 calculate a~single~$C_a$ in constant time, because all summands are either $n_0(z,\vert A\vert-1)$
719 or $n_0(z-1,\vert A\vert-1)$ depending on the set~$Z$. We get:
720 $$C_a = r\cdot n_0(z-1,\vert A\vert-1) + (a-r) \cdot n_0(z,\vert A\vert-1),$$
721 where $r=R_Z(R^{-1}_A(a))$, that is the number of restricted elements among the $a$~smallest ones in~$A$.
722
723 All operations at a~single level of the \<Rank> function now run in constant time,
724 but \<Unrank> needs to search among the~$C_a$'s to find the first of them which
725 exceeds the given rank. We could use binary search, but that would take $\Theta(\log n)$
726 time. There is however a~clever trick: the value of~$C_a$ does not vary too much with
727 the set~$Z$. Specifically, by Corollary~\ref{smalldiff} the difference between the values
728 for $Z=\emptyset$ and $Z=A$ is at most $n_0(z-1,\vert A\vert -1)$. It is therefore
729 sufficient to just divide the rank by $n_0(z-1,\vert A\vert-1)$ and we get either
730 the correct value of~$a$ or one more. Both possibilities can be checked in constant time.
731
732 We can therefore conclude this section by the following theorem:
733
734 \thmn{Ranking of derangements}%
735 For every~$n$, the derangements on the set~$[n]$ can be ranked and unranked according to the
736 lexicographic order in time~$\O(n)$ after spending $\O(n^2)$ on initialization of auxiliary tables.
737
738 \proof
739 We modify the general algorithms for (un)ranking of restricted permutations (\ref{rrankalg} and \ref{runrankalg})
740 as described above (\ref{rrankmod}). Each of the $n$~levels of recursion will then run in constant time. The values~$n_0$ will
741 be looked up in a~table precalculated in quadratic time as shown in Corollary~\ref{nzeroprecalc}.
742 \qed
743
744
745
746 \endpart