]> mj.ucw.cz Git - saga.git/blob - ram.tex
Fixed missing ref.
[saga.git] / ram.tex
1 \ifx\endpart\undefined
2 \input macros.tex
3 \fi
4
5 \chapter{Fine Details of Computation}
6 \id{ramchap}
7
8 \section{Models and machines}
9
10 Traditionally, computer scientists have been using a~variety of computational models
11 as a~formalism in which their algorithms are stated. If we were studying
12 NP-complete\-ness, we could safely assume that all these models are equivalent,
13 possibly up to polynomial slowdown which is negligible. In our case, the
14 differences between good and not-so-good algorithms are on a~much smaller
15 scale. In this chapter, we will replace the usual ``tape measure'' by a~micrometer,
16 state our computation models carefully and develop a repertoire of basic
17 data structures tailor-made for the fine details of the models.
18
19 We would like to keep the formalism close enough to the reality of the contemporary
20 computers. This rules out Turing machines and similar sequentially addressed
21 models, but even the remaining models are subtly different from each other. For example, some of them
22 allow indexing of arrays in constant time, while on the others,
23 arrays have to be emulated with pointer structures, requiring $\Omega(\log n)$
24 time to access a~single element of an~$n$-element array. It is hard to say which
25 way is superior --- while most ``real'' computers have instructions for constant-time
26 indexing, it seems to be physically impossible to fulfil this promise regardless of
27 the size of addressable memory. Indeed, at the level of logical gates inside the computer,
28 the depth of the actual indexing circuits is logarithmic.
29
30 In recent decades, most researchers in the area of combinatorial algorithms
31 have been considering two computational models: the Random Access Machine and the Pointer
32 Machine. The former is closer to the programmer's view of a~real computer,
33 the latter is slightly more restricted and ``asymptotically safe.''
34 We will follow this practice and study our algorithms in both models.
35
36 \para
37 The \df{Random Access Machine (RAM)} is not a~single coherent model, but rather a~family
38 of closely related machines which share the following properties.
39 (See Cook and Reckhow \cite{cook:ram} for one of the usual formal definitions
40 and Hagerup \cite{hagerup:wordram} for a~thorough description of the differences
41 between the RAM variants.)
42
43 The \df{memory} of the machine is represented by an~array of \df{memory cells}
44 addressed by non-negative integers. Each cell contains a~single non-negative integer.
45 The \df{program} is a~finite sequence of \df{instructions} of two basic kinds: calculation
46 instructions and control instructions.
47
48 \df{Calculation instructions} have two source arguments and one destination
49 argument, each \df{argument} being either an~immediate constant (not available
50 as destination), a~directly addressed memory cell (specified by its number)
51 or an~indirectly addressed memory cell (its address is stored in a~directly
52 addressed memory cell).
53
54 \df{Control instructions} include branches (to a~specific instruction in
55 the program), conditional branches (e.g., jump if two arguments specified as
56 in the calculation instructions are equal) and an~instruction to halt the program.
57
58 At the beginning of the computation, the memory contains the input data
59 in specified cells and arbitrary values in all other cells.
60 Then the program is executed one instruction at a~time. When it halts,
61 specified memory cells are interpreted as the program's output.
62
63 \para\id{wordsize}%
64 In the description of the RAM family, we have omitted several details
65 on~purpose, because different members of the family define them differently.
66 These are: the size of the available integers, the time complexity of a~single
67 instruction, the space complexity assigned to a~single memory cell and the set
68 of operations available in calculation instructions.
69
70 If we impose no limits on the magnitude of the numbers and we assume that
71 arithmetic and logical operations work on them in constant time, we get
72 a~very powerful parallel computer --- we can emulate an~exponential number
73 of parallel processors using arithmetics and suddenly almost everything can be
74 computed in constant time, modulo encoding and decoding of input and output.
75 Such models are unrealistic and there are two basic possibilities how to
76 avoid this behavior:
77
78 \numlist\ndotted
79 \:Keep unbounded numbers, but increase costs of instructions: each instruction
80   consumes time proportional to the number of bits of the numbers it processes,
81   including memory addresses. Similarly, space usage is measured in bits,
82   counting not only the values, but also the addresses of the respective memory
83   cells.
84 \:Place a~limit on the size of the numbers ---define the \df{word size~$W$,}
85   the number of bits available in each memory cell--- and keep the cost of
86   instructions and memory cells constant. The word size must not be constant,
87   since we can address only~$2^W$ cells of memory. If the input of the algorithm
88   is stored in~$N$ cells, we need~$W\ge\log N$ just to be able to read the input.
89   On the other hand, we are interested in polynomial-time algorithms only, so $\Theta(\log N)$-bit
90   numbers should be sufficient. In practice, we pick~$W$ to be the larger of
91   $\Theta(\log N)$ and the size of integers used in the algorithm's input and output.
92   We will call an integer that fits in a~single memory cell a~\df{machine word.}
93 \endlist
94
95 Both restrictions easily avoid the problems of unbounded parallelism. The first
96 choice is theoretically cleaner and Cook et al.~show nice correspondences to the
97 standard complexity classes, but the calculations of time and space complexity tend
98 to be somewhat tedious. What more, when compared with the RAM with restricted
99 word size, the complexities are usually exactly $\Theta(W)$ times higher.
100 This does not hold in general (consider a~program that uses many small numbers
101 and $\O(1)$ large ones), but it is true for the algorithms we are interested in.
102 Therefore we will always assume that the operations have unit cost and we make
103 sure that all numbers are limited by the available word size.
104
105 \para
106 As for the choice of RAM operations, the following three instruction sets are often used:
107
108 \itemize\ibull
109 \:\df{Word-RAM} --- allows the ``C-language operators'', i.e., addition,
110   subtraction, multiplication, division, remainder, bitwise $\band$, $\bor$, exclusive
111   $\bor$ ($\bxor$) and negation ($\bnot$), and bitwise shifts ($\shl$ and~$\shr$).
112 \:\df{${\rm AC}^0$-RAM} --- allows all operations from the class ${\rm AC}^0$, i.e.,
113   those computable by constant-depth polynomial-size boolean circuits with unlimited
114   fan-in and fan-out. This includes all operations of the Word-RAM except for multiplication,
115   division and remainders, and also many other operations like computing the Hamming
116   weight (number of bits set in a~given number).
117 \:Both restrictions combined.
118 \endlist
119
120 Thorup \cite{thorup:aczero} discusses the usual techniques employed by RAM algorithms
121 and he shows that they work on both Word-RAM and ${\rm AC}^0$-RAM, but the combination
122 of the two restrictions is too weak. On the other hand, the intersection of~${\rm AC}^0$
123 with the instruction set of modern processors is already strong enough (e.g., when we
124 add some floating-point operations and multimedia instructions available on the Intel's
125 Pentium~4~\cite{intel:pentium}).
126
127 We will therefore use the Word-RAM instruction set, mentioning differences from the
128 ${\rm AC}^0$-RAM where necessary.
129
130 \nota
131 When speaking of the \df{RAM,} we implicitly mean the version with numbers limited
132 by a~specified word size of $W$~bits, unit cost of operations and memory cells and the instruction
133 set of the Word-RAM. This corresponds to the usage in recent algorithmic literature,
134 although the authors rarely mention the details.
135
136 In some cases, a~non-uniform variant
137 of the Word-RAM is considered as well (e.g., by Hagerup \cite{hagerup:dd}):
138
139 \defn\id{nonuniform}%
140 A~Word-RAM is called \df{weakly non-uniform,} if it is equipped with $\O(1)$-time
141 access to a~constant number of word-sized constants, which depend only on the word
142 size. These are called \df{native constants} and they are available in fixed memory
143 cells when the program starts. (By analogy with the high-level programming languages,
144 these constants can be thought of as computed at ``compile time''.)
145
146 \para
147 The \df{Pointer Machine (PM)} also does not seem to have any well established definition. The
148 various kinds of pointer machines are examined by Ben-Amram in~\cite{benamram:pm},
149 but unlike the RAM's they turn out to be equivalent up to constant slowdown.
150 Our definition will be closely related to the \em{linking automaton} proposed
151 by Knuth in~\cite{knuth:fundalg}, we will only adapt it to use RAM-like
152 instructions instead of an~opaque control unit.
153
154 The PM works with two different types of data: \df{symbols} from a~finite alphabet
155 and \df{pointers}. The memory of the machine consists of a~fixed amount of \df{registers}
156 (some of them capable of storing a~single symbol, each of the others holds a~single pointer)
157 and an~arbitrary amount of \df{cells}. The structure of all cells is the same: each cell
158 again contains a~fixed number of fields for symbols and pointers. Registers can be addressed
159 directly, the cells only via pointers --- by using a~pointer stored either in a~register,
160 or in a~cell pointed to by a~register. Longer chains of pointers cannot be followed in
161 constant time.
162
163 We can therefore view the whole memory as a~directed graph, whose vertices
164 correspond to the cells (the registers are stored in a~single special cell).
165 The outgoing edges of each vertex correspond to pointer fields of the cells and they are
166 labeled with distinct labels drawn from a~finite set. In addition to that,
167 each vertex contains a~fixed amount of symbols. The machine can directly access
168 vertices within distance~2 from the register vertex.
169
170 The program is a~finite sequence of instructions of the following kinds:
171
172 \itemize\ibull
173 \:\df{symbol instructions,} which read a~pair of symbols, apply an~arbitrary
174   function to them and write the result to a~symbol register or field;
175 \:\df{pointer instructions} for assignment of pointers to pointer registers/fields
176   and for creation of new memory cells (a~pointer to the new cell is stored into a~register
177   immediately);
178 \:\df{control instructions} --- similarly to the RAM; conditional jumps can decide
179   arbitrary unary relations on symbols and compare pointers for equality.
180 \endlist
181
182 Time and space complexity are defined in the straightforward way: all instructions
183 have unit cost and so do all memory cells.
184
185 Both input and output of the machine are passed in the form of a~linked structure
186 pointed to by a~designated register. For example, we can pass graphs back and forth
187 without having to encode them as strings of numbers or symbols. This is important,
188 because with the finite alphabet of the~PM, symbolic representations of graphs
189 generally require super-linear space and therefore also time.\foot{%
190 The usual representation of edges as pairs of vertex labels uses $\Theta(m\log n)$ bits
191 and as a~simple counting argument shows, this is asymptotically optimal for general
192 sparse graphs. On the other hand, specific families of sparse graphs can be stored
193 more efficiently, e.g., by a~remarkable result of Tur\'an~\cite{turan:succinct},
194 planar graphs can be encoded in~$\O(n)$ bits. Encoding of dense graphs is of
195 course trivial as the adjacency matrix has only~$\Theta(n^2)$ bits.}
196
197 \para
198 Compared to the RAM, the PM lacks two important capabilities: indexing of arrays
199 and arithmetic instructions. We can emulate both with poly-logarithmic slowdown,
200 but it will turn out that they are rarely needed in graph algorithms. We are
201 also going to prove that the RAM is strictly stronger, so we will prefer to
202 formulate our algorithms for the PM and use the RAM only when necessary.
203
204 \thm
205 Every program for the Word-RAM with word size~$W$ can be translated to a~PM program
206 computing the same with $\O(W^2)$ slowdown (given a~suitable encoding of inputs and
207 outputs, of course). If the RAM program does not use multiplication, division
208 and remainder operations, $\O(W)$~slowdown is sufficient.
209
210 \proofsketch
211 Represent the memory of the RAM by a~balanced binary search tree or by a~radix
212 trie of depth~$\O(W)$. Values are encoded as~linked lists of symbols pointed
213 to by the nodes of the tree. Both direct and indirect accesses to the memory
214 can therefore be done in~$\O(W)$ time. Use standard algorithms for arithmetic
215 on big numbers: $\O(W)$ per operation except for multiplication, division and
216 remainders which take $\O(W^2)$.\foot{We could use more efficient arithmetic
217 algorithms, but the quadratic bound is good enough for our purposes.}
218 \qed
219
220 \thm
221 Every program for the PM running in polynomial time can be translated to a~program
222 computing the same on the Word-RAM with only $\O(1)$ slowdown.
223
224 \proofsketch
225 Encode each cell of the PM's memory to $\O(1)$ integers. Store the encoded cells to
226 the memory of the RAM sequentially and use memory addresses as pointers. As the symbols
227 are finite and there is only a~polynomial number of cells allocated during execution
228 of the program, $\O(\log N)$-bit integers suffice ($N$~is the size of the program's input).
229 \qed
230
231 \para
232 There are also \df{randomized} versions of both machines. These are equipped
233 with an~additional instruction for generating a~single random bit. The standard
234 methods of design and analysis of randomized algorithms can be used (see for
235 example Motwani and Raghavan~\cite{motwani:randalg}).
236
237 \rem
238 There is one more interesting machine: the \df{Immutable Pointer Machine} (mentioned for example in
239 the description of LISP machines in \cite{benamram:pm}). It differs from the
240 ordinary PM by the inability to modify existing memory cells. Only the contents
241 of the registers are allowed to change. All cell modifications thus have to
242 be performed by creating a~copy of the particular cell with some fields changed.
243 This in turn requires the pointers to the cell to be updated, possibly triggering
244 a~cascade of further cell copies. For example, when a~node of a~binary search tree is
245 updated, all nodes on the path from that node to the root have to be copied.
246
247 One of the advantages of this model is that the states of the machine are
248 persistent --- it is possible to return to a~previously visited state by recalling
249 the $\O(1)$ values of the registers (everything else could not have changed
250 since that time) and ``fork'' the computations. This corresponds to the semantics
251 of pure functional languages, e.g., of Haskell~\cite{jones:haskell}.
252
253 Unless we are willing to accept a~logarithmic penalty in execution time and space
254 (in fact, our emulation of the Word-RAM on the PM can be easily made immutable),
255 the design of efficient algorithms for the immutable PM requires very different
256 techniques. Therefore, we will be interested in the imperative models only
257 and refer the interested reader to the thorough treatment of purely functional
258 data structures in the Okasaki's monograph~\cite{okasaki:funcds}.
259
260 %--------------------------------------------------------------------------------
261
262 \section{Bucket sorting and unification}\id{bucketsort}%
263
264 The Contractive Bor\o{u}vka's algorithm (\ref{contbor}) needs to contract a~given
265 set of edges in the current graph and then flatten the graph, all this in time $\O(m)$.
266 We have spared the technical details for this section, in which we are going to
267 explain several rather general techniques based on bucket sorting.
268
269 As we have already suggested in the proof of Lemma \ref{contbor}, contractions
270 can be performed in linear time by building an~auxiliary graph and finding its
271 connected components. We will thus take care only of the subsequent flattening.
272
273 \paran{Flattening on RAM}%
274 On the RAM, we can view the edges as ordered pairs of vertex identifiers with the
275 smaller of the identifiers placed first. We sort these pairs lexicographically. This brings
276 parallel edges together, so that a~simple linear scan suffices to find each bunch
277 of parallel edges and to remove all but the lightest one.
278 Lexicographic sorting of pairs can be accomplished in linear time by a~two-pass
279 bucket sort with $n$~buckets corresponding to the vertex identifiers.
280
281 However, there is a~catch. Suppose that we use the standard representation
282 of graphs by adjacency lists whose heads are stored in an array indexed by vertex
283 identifiers. When we contract and flatten the graph, the number of vertices decreases,
284 but if we inherit the original vertex identifiers, the arrays will still have the
285 same size. We could then waste a~super-linear amount of time by scanning the increasingly
286 sparse arrays, most of the time skipping unused entries.
287
288 To avoid this problem, we have to renumber the vertices after each contraction to component
289 identifiers from the auxiliary graph and create a~new vertex array. This helps
290 keep the size of the representation of the graph linear with respect to its current
291 size.
292
293 \paran{Flattening on PM}%
294 The pointer representation of graphs does not suffer from sparsity since the vertices
295 are always identified by pointers to per-vertex structures. Each such structure
296 then contains all attributes associated with the vertex, including the head of its
297 adjacency list. However, we have to find a~way how to perform bucket sorting
298 without indexing of arrays.
299
300 We will keep a~list of the per-vertex structures and we will use it to establish the order of~vertices.
301 Each such structure will be endowed with a~pointer to the head of the list of items in
302 the corresponding bucket. Inserting an~edge to a~bucket can be then done in constant time
303 and scanning the contents of all~$n$ buckets takes $\O(n+m)$ time.
304
305 At last, we must not forget that while it was easy to \df{normalize} the pairs on the RAM
306 by putting the smaller identifier first, this fails on the PM because we can directly
307 compare the identifiers only for equality. We can work around this again by bucket-sorting:
308 we sort the multiset $\{ (x,i) \mid \hbox{$x$~occurs in the $i$-th pair} \}$ on~$x$.
309 Then we reset all pairs and re-insert the values back in their increasing order.
310 This also takes $\O(n+m)$.
311
312 \paran{Tree isomorphism}%
313 Another nice example of pointer-based radix sorting is a~Pointer Machine algorithm for
314 deciding whether two rooted trees are isomorphic. Let us assume for a~moment that
315 the outdegree of each vertex is at most a~fixed constant~$k$. We begin by sorting the subtrees
316 of both trees by their depth. This can be accomplished by running depth-first search to calculate
317 the depths and bucket-sorting them with $n$~buckets afterwards.
318
319 Then we proceed from depth~0 to the maximum depth and for each depth we identify
320 the isomorphism equivalence classes of the particular subtrees. We will assign
321 unique \df{codes} (identifiers) to all such classes; at most~$n+1$ of them are needed as there are
322 $n+1$~subtrees in the tree (including the empty subtree). As the PM does not
323 have numbers as an~elementary type, we create a~``\df{yardstick}'' ---a~list
324 of $n+1$~distinct items--- and we use pointers to these ``ticks'' as identifiers.
325 When we are done, isomorphism of the whole trees can be decided by comparing the
326 codes assigned to their roots.
327
328 Suppose that classes of depths $0,\ldots,d-1$ are already computed and we want
329 to identify those of depth~$d$. We will denote their count of~$n_d$. We take
330 a~root of every such tree and label it with an~ordered $k$-tuple of codes
331 of its subtrees; when it has less than $k$ sons, we pad the tuple with empty
332 subtrees. Tuples corresponding to isomorphic subtrees are identical up to
333 reordering of elements. We therefore sort the codes inside each tuple and then
334 sort the tuples, which brings the equivalent tuples together.
335
336 The first sort (inside the tuples) would be easy on the RAM, but on the PM we
337 have to use the normalization trick mentioned above. The second sort is
338 a~straightforward $k$-pass bucket sort.
339
340 If we are not careful, a~single sorting pass takes $\O(n_d + n)$ time, because
341 while we have only $n_d$~items to sort, we have to scan all $n$~buckets. This can
342 be easily avoided if we realize that the order of the buckets does not need to be
343 fixed --- in every pass, we can use a~completely different order and it still
344 does bring the equivalent tuples together. Thus we can keep a~list of buckets
345 that are used in the current pass and look only inside these buckets. This way,
346 we reduce the time spent in a~single pass to $\O(n_d)$ and the whole algorithm
347 takes just $\O(\sum_d n_d) = \O(n)$.
348
349 Our algorithm can be easily modified for trees with unrestricted degrees.
350 We replace the fixed $d$-tuples by general sequences of codes. The first
351 sort does not need any changes. In the second sort, we proceed from the first
352 position to the last one and after each bucket-sorting pass we put aside the sequences
353 that have just ended. They are obviously not equivalent to any other sequences.
354 The time complexity of the second sort is linear in the sum of the lengths of the sequences, which is
355 $n_{d+1}$ for depth~$d$. We can therefore decide isomorphism of the whole trees
356 in time $\O(\sum_d (n_d + n_{d+1})) = \O(n)$.
357
358 The unification of sequences by bucket sorting will be useful in many
359 other situations, so we will state it as a~separate lemma:
360
361 \lemman{Sequence unification}\id{suniflemma}%
362 Partitioning of a~collection of sequences $S_1,\ldots,S_n$, whose elements are
363 arbitrary pointers and symbols from a~finite alphabet, to equality classes can
364 be performed on the Pointer Machine in time $\O(n + \sum_i \vert S_i \vert)$.
365
366 \rem
367 The first linear-time algorithm that partitions all subtrees to isomorphism equivalence
368 classes is probably due to Zemlayachenko \cite{zemlay:treeiso}, but it lacks many
369 details. Dinitz et al.~\cite{dinitz:treeiso} have recast this algorithm in modern
370 terminology and filled the gaps. Our algorithm is easier to formulate than those,
371 because it replaces the need for auxiliary data structures by more elaborate bucket
372 sorting.
373
374 \paran{Topological graph computations}%
375 Many graph algorithms are based on the idea of so called \df{micro/macro decomposition:}
376 We decompose a~graph to subgraphs on roughly~$k$ vertices and solve the problem
377 separately inside these ``micrographs'' and in the ``macrograph'' obtained by
378 contraction of the micrographs. If $k$~is small enough, many of the micrographs
379 are isomorphic, so we can compute the result only once for each isomorphism class
380 and recycle it for all micrographs of that class. On the other hand, the macrograph
381 is roughly $k$~times smaller than the original graph, so we can use a~less efficient
382 algorithm and it will still run in linear time with respect to the size of the original
383 graph.
384
385 This kind of decomposition is traditionally used for trees, especially in the
386 algorithms for the Lowest Common Ancestor problem (cf.~Section \ref{verifysect}
387 and the survey paper \cite{alstrup:nca}) and for online maintenance of marked ancestors
388 (cf.~Alstrup et al.~\cite{alstrup:marked}). Let us take a~glimpse at what happens when
389 we decompose a~tree with $k$ set to~$1/4\cdot\log n$. There are at most $2^{2k} = \sqrt n$ non-isomorphic subtrees of size~$k$,
390 because each isomorphism class is uniquely determined by the sequence of $2k$~up/down steps
391 performed by depth-first search of the tree. Suppose that we are able to decompose the input and identify
392 the equivalence classes of microtrees in linear time, then solve the problem in time $\O(\poly(k))$ for
393 each microtree and finally in $\O(n'\log n')$ for the macrotree of size $n'=n/k$. When we put these pieces
394 together, we get an~algorithm for the whole problem which achieves time complexity $\O(n
395 + \sqrt{n}\cdot\poly(\log n) + n/\log n\cdot\log(n/\log n)) = \O(n)$.
396
397 Decompositions are usually implemented on the RAM, because subgraphs can be easily
398 encoded in numbers, and these can be then used to index arrays containing the precomputed
399 results. As the previous algorithm for subtree isomorphism shows, indexing is not strictly
400 required for identifying equivalent microtrees and it can be replaced by bucket
401 sorting on the Pointer Machine. Buchsbaum et al.~\cite{buchsbaum:verify} have extended
402 this technique to general graphs in form of so called topological graph computations.
403 Let us define them.
404
405 \defn
406 A~\df{graph computation} is a~function that takes a~\df{labeled undirected graph} as its input. The labels of
407 vertices and edges can be arbitrary symbols drawn from a~finite alphabet. The output
408 of the computation is another labeling of the same graph. This time, the vertices and
409 edges can be labeled with not only symbols of the alphabet, but also with pointers to the vertices
410 and edges of the input graph, and possibly also with pointers to outside objects.
411 A~graph computation is called \df{topological} if it produces isomorphic
412 outputs for isomorphic inputs. The isomorphism of course has to preserve not only
413 the structure of the graph, but also the labels in the obvious way.
414
415 \obs
416 The topological graph computations cover a~great variety of graph problems, ranging
417 from searching for matchings or Eulerian tours to finding Hamilton circuits.
418 The MST problem itself however does not belong to this class, because we do not have any means
419 of representing the edge weights as labels, unless there is only a~fixed amount
420 of possible values.
421
422 As in the case of tree decompositions, we would like to identify the equivalent subgraphs
423 and process only a~single instance from each equivalence class. We need to be careful
424 with the definition of the equivalence classes, because
425 graph isomorphism is known to be computationally hard (it is one of the few
426 problems that are neither known to lie in~$\rm P$ nor to be $\rm NP$-complete;
427 see Arvind and Kurur \cite{arvind:isomorph} for recent results on its complexity).
428 We will therefore manage with a~weaker form of equivalence, based on some sort
429 of graph encodings:
430
431 \defn
432 A~\df{canonical encoding} of a~given labeled graph represented by adjacency lists
433 is obtained by running the depth-first search on the graph and recording its traces.
434 We start with an~empty encoding. When we enter
435 a~vertex, we assign an~identifier to it (again using a~yardstick to represent numbers)
436 and we append the label of this vertex to the encoding. Then we scan all back edges
437 going from this vertex and append the identifiers of their destinations, accompanied
438 by the edges' labels. Finally we append a~special terminator to mark the boundary
439 between the code of this vertex and its successor.
440
441 \obs
442 The canonical encoding is well defined in the sense that non-iso\-morphic graphs always
443 receive different encodings. Obviously, encodings of isomorphic graphs can differ,
444 depending on the order of vertices and also of the adjacency lists. A~graph
445 on~$n$ vertices with $m$~edges is assigned an~encoding of length at most $2n+2m$ ---
446 for each vertex, we record its label and a~single terminator; edges contribute
447 by identifiers and labels. These encodings can be constructed in linear time and
448 in the same time we can also create a~graph corresponding to a~given encoding.
449 We will use the encodings for our unification of graphs:
450
451 \defn
452 For a~collection~$\C$ of graphs, we define $\vert\C\vert$ as the number of graphs in
453 the collection and $\Vert\C\Vert$ as their total size, i.e., $\Vert\C\Vert = \sum_{G\in\C} n(G) + m(G)$.
454
455 \lemman{Graph unification}\id{guniflemma}%
456 A~collection~$\C$ of labeled graphs can be partitioned into classes which share the same
457 canonical encoding in time $\O(\Vert\C\Vert)$ on the Pointer Machine.
458
459 \proof
460 Construct canonical encodings of all the graphs and then apply the Sequence unification lemma
461 (\ref{suniflemma}) on them.
462 \qed
463
464 \para
465 When we want to perform a~topological computation on a~collection~$\C$ of graphs
466 with $k$~vertices, we first precompute its result for a~collection~$\cal G$ of \df{generic graphs}
467 corresponding to all possible canonical encodings on $k$~vertices. Then we use unification to match
468 the \df{actual graphs} in~$\C$ to the generic graphs in~$\cal G$. This gives us the following
469 theorem:
470
471 \thmn{Topological computations, Buchsbaum et al.~\cite{buchsbaum:verify}}\id{topothm}%
472 Suppose that we have a~topological graph computation~$\cal T$ that can be performed in time
473 $T(k)$ for graphs on $k$~vertices. Then we can run~$\cal T$ on a~collection~$\C$
474 of labeled graphs on~$k$ vertices in time $\O(\Vert\C\Vert + (k+s)^{k(k+2)}\cdot (T(k)+k^2))$,
475 where~$s$ is a~constant depending only on the number of symbols used as vertex/edge labels.
476
477 \proof
478 A~graph on~$k$ vertices has less than~$k^2/2$ edges, so the canonical encodings of
479 all such graphs are shorter than $2k + 2k^2/2 = k(k+2)$. Each element of the encoding
480 is either a~vertex identifier, or a~symbol, or a~separator, so it can attain at most $k+s$
481 possible values for some fixed~$s$.
482 We can therefore enumerate all possible encodings and convert them to a~collection $\cal G$
483 of all generic graphs such that $\vert{\cal G}\vert \le (k+s)^{k(k+2)}$ and $\Vert{\cal G}\Vert
484 \le \vert{\cal G}\vert \cdot k^2$.
485
486 We run the computation on all generic graphs in time $\O(\vert{\cal G}\vert \cdot T(k))$
487 and then we use the Unification lemma (\ref{guniflemma}) on the union of the collections
488 $\C$ and~$\cal G$ to match the generic graphs with the equivalent actual graphs in~$\C$
489 in time $\O(\Vert\C\Vert + \Vert{\cal G}\Vert)$.
490 Finally we create a~copy of the generic result for each of the actual graphs.
491 If the computation uses pointers to the input vertices in its output, we have to
492 redirect them to the actual input vertices, which we can do by associating
493 the output vertices that refer to an~input vertex with the corresponding places
494 in the encoding of the input graph. This way, the whole output can be generated in time
495 $\O(\Vert\C\Vert + \Vert{\cal G}\Vert)$.
496 \looseness=1 %%HACK%%
497 \qed
498
499 \rem
500 The topological computations and the Graph unification lemma will play important
501 roles in Sections \ref{verifysect} and \ref{optalgsect}.
502
503 %--------------------------------------------------------------------------------
504
505 \section{Data structures on the RAM}
506 \id{ramdssect}
507
508 There is a~lot of data structures designed specifically for the RAM. These structures
509 take advantage of both indexing and arithmetics and they often surpass the known
510 lower bounds for the same problem on the~PM. In many cases, they achieve constant time
511 per operation, at least when either the magnitude of the values or the size of
512 the data structure is suitably bounded.
513
514 A~classical result of this type is the tree of van Emde Boas~\cite{boas:vebt}
515 which represents a~subset of the integers $\{0,\ldots,U-1\}$. It allows insertion,
516 deletion and order operations (minimum, maximum, successor etc.) in time $\O(\log\log U)$,
517 regardless of the size of the subset. If we replace the heap used in the Jarn\'\i{}k's
518 algorithm (\ref{jarnik}) by this structure, we immediately get an~algorithm
519 for finding the MST in integer-weighted graphs in time $\O(m\log\log w_{max})$,
520 where $w_{max}$ is the maximum weight.
521
522 A~real breakthrough has however been made by Fredman and Willard who introduced
523 the Fusion trees~\cite{fw:fusion}. They again perform membership and predecessor
524 operation on a~set of $n$~integers, but with time complexity $\O(\log_W n)$
525 per operation on a~Word-RAM with $W$-bit words. This of course assumes that
526 each element of the set fits in a~single word. As $W$ must at least~$\log n$,
527 the operations take $\O(\log n/\log\log n)$ time and thus we are able to sort $n$~integers
528 in time~$o(n\log n)$. This was a~beginning of a~long sequence of faster and
529 faster sorting algorithms, culminating with the work of Thorup and Han.
530 They have improved the time complexity of integer sorting to $\O(n\log\log n)$ deterministically~\cite{han:detsort}
531 and expected $\O(n\sqrt{\log\log n})$ for randomized algorithms~\cite{hanthor:randsort},
532 both in linear space.
533
534 The Fusion trees themselves have very limited use in graph algorithms, but the
535 principles behind them are ubiquitous in many other data structures and these
536 will serve us well and often. We are going to build the theory of Q-heaps in
537 Section \ref{qheaps}, which will later lead to a~linear-time MST algorithm
538 for arbitrary integer weights in Section \ref{iteralg}. Other such structures
539 will help us in building linear-time RAM algorithms for computing the ranks
540 of various combinatorial structures in Chapter~\ref{rankchap}.
541
542 Outside our area, important consequences of RAM data structures include the
543 Thorup's $\O(m)$ algorithm for single-source shortest paths in undirected
544 graphs with positive integer weights \cite{thorup:usssp} and his $\O(m\log\log
545 n)$ algorithm for the same problem in directed graphs \cite{thorup:sssp}. Both
546 algorithms have been then significantly simplified by Hagerup
547 \cite{hagerup:sssp}.
548
549 Despite the progress in the recent years, the corner-stone of all RAM structures
550 is still the representation of combinatorial objects by integers introduced by
551 Fredman and Willard. It will also form a~basis for the rest of this chapter.
552
553 %--------------------------------------------------------------------------------
554
555 \section{Bits and vectors}\id{bitsect}
556
557 In this rather technical section, we will show how the RAM can be used as a~vector
558 computer to operate in parallel on multiple elements, as long as these elements
559 fit in a~single machine word. At the first sight this might seem useless, because we
560 cannot require large word sizes, but surprisingly often the elements are small
561 enough relative to the size of the algorithm's input and thus also relative to
562 the minimum possible word size. Also, as the following lemma shows, we can
563 easily emulate slightly longer words:
564
565 \lemman{Multiple-precision calculations}
566 Given a~RAM with $W$-bit words, we can emulate all calculation and control
567 instructions of a~RAM with word size $kW$ in time depending only on the~$k$.
568 (This is usually called \df{multiple-precision arithmetics.})
569
570 \proof
571 We split each word of the ``big'' machine to $W'$-bit blocks, where $W'=W/2$, and store these
572 blocks in $2k$ consecutive memory cells. Addition, subtraction, comparison and
573 bitwise logical operations can be performed block-by-block. Shifts by a~multiple
574 of~$W'$ are trivial, otherwise we can combine each block of the result from
575 shifted versions of two original blocks.
576 To multiply two numbers, we can use the elementary school algorithm using the $W'$-bit
577 blocks as digits in base $2^{W'}$ --- the product of any two blocks fits
578 in a~single word.
579
580 Division is harder, but Newton-Raphson iteration (see~\cite{ito:newrap})
581 converges to the quotient in a~constant number of iterations, each of them
582 involving $\O(1)$ multiple-precision additions and multiplications. A~good
583 starting approximation can be obtained by dividing the two most-significant
584 (non-zero) blocks of both numbers.
585
586 Another approach to division is using the improved elementary school algorithm as described
587 by Knuth in~\cite{knuth:seminalg}. It uses $\O(k^2)$ steps, but the steps involve
588 calculation of the most significant bit set in a~word. We will show below that it
589 can be done in constant time, but we have to be careful to avoid division instructions in it.
590 \qed
591
592 \notan{Bit strings}\id{bitnota}%
593 We will work with binary representations of natural numbers by strings over the
594 alphabet $\{\0,\1\}$: we will use $\(x)$ for the number~$x$ written in binary,
595 $\(x)_b$ for the same padded to exactly $b$ bits by adding leading zeroes,
596 and $x[k]$ for the value of the $k$-th bit of~$x$ (with a~numbering of bits such that $2^k[k]=1$).
597 The usual conventions for operations on strings will be utilized: When $s$
598 and~$t$ are strings, we write $st$ for their concatenation and
599 $s^k$ for the string~$s$ repeated $k$~times.
600 When the meaning is clear from the context,
601 we will use $x$ and $\(x)$ interchangeably to avoid outbreak of symbols.
602
603 \defn
604 The \df{bitwise encoding} of a~vector ${\bf x}=(x_0,\ldots,x_{d-1})$ of~$b$-bit numbers
605 is an~integer~$x$ such that $\(x)=\(x_{d-1})_b\0\(x_{d-2})_b\0\ldots\0\(x_0)_b$. In other
606 words, $x = \sum_i 2^{(b+1)i}\cdot x_i$. (We have interspersed the elements with \df{separator bits.})
607
608 \notan{Vectors}\id{vecnota}%
609 We will use boldface letters for vectors and the same letters in normal type
610 for the encodings of these vectors. The elements of a~vector~${\bf x}$ will be written as
611 $x_0,\ldots,x_{d-1}$.
612
613 \para
614 If we want to fit the whole vector in a~single word, the parameters $b$ and~$d$ must satisfy
615 the condition $(b+1)d\le W$.
616 By using multiple-precision arithmetics, we can encode all vectors satisfying $bd=\O(W)$.
617 We will now describe how to translate simple vector manipulations to sequences of $\O(1)$ RAM operations
618 on their codes. As we are interested in asymptotic complexity only, we will prefer clarity
619 of the algorithms over saving instructions. Among other things, we will freely use calculations
620 on words of size $\O(bd)$, assuming that the Multiple-precision lemma comes to save us
621 when necessary.
622
623 \para
624 First of all, let us observe that we can use $\band$ and $\bor$ with suitable constants
625 to write zeroes or ones to an~arbitrary set of bit positions at once. These operations
626 are usually called \df{bit masking}. Also, any element of a~vector can be extracted or
627 replaced by a~different value in $\O(1)$ time by masking and shifts.
628
629 \newdimen\slotwd
630 \def\setslot#1{\setbox0=#1\slotwd=\wd0}
631 \def\slot#1{\hbox to \slotwd{\hfil #1\hfil}}
632 \def\[#1]{\slot{$#1$}}
633 \def\9{\rack{\0}{\hss$\cdot$\hss}}
634
635 \def\alik#1{%
636 \medskip
637 \halign{\hskip 0.15\hsize\hfil $ ##$&\hbox to 0.6\hsize{${}##$ \hss}\cr
638 #1}
639 \medskip
640 }
641
642 \algn{Operations on vectors with $d$~elements of $b$~bits each}\id{vecops}
643
644 \itemize\ibull
645
646 \:$\<Replicate>(\alpha)$ --- Create a~vector $(\alpha,\ldots,\alpha)$:
647
648 \alik{\<Replicate>(\alpha)=\alpha\cdot(\0^b\1)^d. \cr}
649
650 \:$\<Sum>(x)$ --- Calculate the sum of the elements of~${\bf x}$, assuming that
651 the result fits in $b$~bits:
652
653 \alik{\<Sum>(x) = x \bmod \1^{b+1}. \cr}
654
655 This is correct because when we calculate modulo~$\1^{b+1}$, the number $2^{b+1}=\1\0^{b+1}$
656 is congruent to~1 and thus $x = \sum_i 2^{(b+1)i}\cdot x_i \equiv \sum_i 1^i\cdot x_i \equiv \sum_i x_i$.
657 As the result should fit in $b$~bits, the modulo makes no difference.
658
659 If we want to avoid division, we can use double-precision multiplication instead:
660
661 \setslot{\hbox{~$\0x_{d-1}$}}
662 \def\.{\[]}
663 \def\z{\[\0^b\1]}
664 \def\dd{\slot{$\cdots$}}
665 \def\vd{\slot{$\vdots$}}
666 \def\rule{\noalign{\medskip\nointerlineskip}$\hrulefill$\cr\noalign{\nointerlineskip\medskip}}
667
668 \alik{
669 \[\0x_{d-1}] \dd \[\0x_2] \[\0x_1] \[\0x_0] \cr
670 *~~ \z \dd \z\z\z \cr
671 \rule
672 \[x_{d-1}] \dd \[x_2] \[x_1] \[x_0] \cr
673 \[x_{d-1}] \[x_{d-2}] \dd \[x_1] \[x_0] \. \cr
674 \[x_{d-1}] \[x_{d-2}] \[x_{d-3}] \dd \[x_0] \. \. \cr
675 \vd\vd\vd\vd\.\.\.\cr
676 \[x_{d-1}] \dd \[x_2]\[x_1]\[x_0] \. \. \. \. \cr
677 \rule
678 \[r_{d-1}] \dd \[r_2] \[r_1] \[s_d] \dd \[s_3] \[s_2] \[s_1] \cr
679 }
680
681 This way, we also get all partial sums:
682 $s_k=\sum_{i=0}^{k-1}x_i$, $r_k=\sum_{i=k}^{d-1}x_i$.
683
684 \:$\<Cmp>(x,y)$ --- Compare vectors ${\bf x}$ and~${\bf y}$ element-wise,
685 i.e., make a~vector~${\bf z}$ such that $z_i=1$ if $x_i<y_i$ and $z_i=0$ otherwise.
686
687 We replace the separator zeroes in~$x$ by ones and subtract~$y$. These ones
688 change back to zeroes exactly at the positions where $x_i<y_i$ and they stop
689 carries from propagating, so the fields do not interact with each other:
690
691 \setslot{\vbox{\hbox{~$x_{d-1}$}\hbox{~$y_{d-1}$}}}
692 \def\9{\rack{\0}{\hss ?\hss}}
693 \alik{
694    \1 \[x_{d-1}] \1 \[x_{d-2}] \[\cdots] \1 \[x_1] \1 \[x_0]  \cr
695 -~ \0 \[y_{d-1}] \0 \[y_{d-2}] \[\cdots] \0 \[y_1] \0 \[y_0]  \cr
696 \rule
697    \9 \[\ldots]  \9 \[\ldots]  \[\cdots] \9 \[\ldots] \9 \[\ldots] \cr
698 }
699
700 It only remains to shift the separator bits to the right positions, negate them
701 and mask out all other bits.
702
703 \:$\<Rank>(x,\alpha)$ --- Return the number of elements of~${\bf x}$ which are less than~$\alpha$,
704 assuming that the result fits in~$b$ bits:
705
706 \alik{
707 \<Rank>(x,\alpha) = \<Sum>(\<Cmp>(x,\<Replicate>(\alpha))). \cr
708 }
709
710 \:$\<Insert>(x,\alpha)$ --- Insert~$\alpha$ into a~sorted vector $\bf x$:
711
712 We calculate the rank of~$\alpha$ in~$x$ first, then we insert~$\alpha$ into the particular
713 field of~$\bf x$ using masking operations and shifts.
714
715 \algo
716 \:$k\=\<Rank>(x,\alpha)$.
717 \:$\ell\=x \band \1^{(b+1)(n-k)}\0^{(b+1)k}$. \cmt{``left'' part of the vector}
718 \:$r=x \band \1^{(b+1)k}$. \cmt{``right'' part}
719 \:Return $(\ell\shl (b+1)) \bor (\alpha\shl ((b+1)k)) \bor r$.
720 \endalgo
721
722 \:$\<Unpack>(\alpha)$ --- Create a~vector whose elements are the bits of~$\(\alpha)_d$.
723 In other words, insert blocks~$\0^b$ between the bits of~$\alpha$. Assuming that $b\ge d$,
724 we can do it as follows:
725
726 \algo
727 \:$x\=\<Replicate>(\alpha)$.
728 \:$y\=(2^{b-1},2^{b-2},\ldots,2^0)$. \cmt{bitwise encoding of this vector}
729 \:$z\=x \band y$.
730 \:Return $\<Cmp>(z,y) \bxor (\0^b\1)^d$.
731 \endalgo
732
733 Let us observe that $z_i$ is either zero or equal to~$y_i$ depending on the value
734 of the $i$-th bit of the number~$\alpha$. Comparing it with~$y_i$ normalizes it
735 to either zero or one, but in the opposite way than we need, so we flip the bits
736 by an~additional $\bxor$.
737
738 \:$\<Unpack>_\pi(\alpha)$ --- Like \<Unpack>, but change the order of the
739 bits according to a~fixed permutation~$\pi$: The $i$-th element of the
740 resulting vector is equal to~$\alpha[\pi(i)]$.
741
742 Implemented as above, but with a~mask $y=(2^{\pi(b-1)},\ldots,2^{\pi(0)})$.
743
744 \:$\<Pack>(x)$ --- The inverse of \<Unpack>: given a~vector of zeroes and ones,
745 produce a~number whose bits are the elements of the vector (in other words,
746 it crosses out the $\0^b$ blocks).
747
748 We interpret the~$x$ as an~encoding of a~vector with elements one bit shorter
749 and we sum these elements. For example, when $n=4$ and~$b=4$:
750
751 \setslot{\hbox{$x_3$}}
752 \def\z{\[\0]}
753 \def\|{\hskip1pt\vrule height 10pt depth 4pt\hskip1pt}
754 \def\.{\hphantom{\|}}
755
756 \alik{
757 \|\z\.\z\.\z\.\z\.\[x_3]\|\z\.\z\.\z\.\z\.\[x_2]\|\z\.\z\.\z\.\z\[x_1]\|\z\.\z\.\z\.\z\.\[x_0]\|\cr
758 \|\z\.\z\.\z\.\z\|\[x_3]\.\z\.\z\.\z\|\z\.\[x_2]\.\z\.\z\|\z\.\z\[x_1]\.\z\|\z\.\z\.\z\.\[x_0]\|\cr
759 }
760
761 However, this ``reformatting'' does not produce a~correct encoding of a~vector,
762 because the separator zeroes are missing. For this reason, the implementation
763 of~\<Sum> using modulo does not work correctly (it produces $\0^b$ instead of $\1^b$).
764 We therefore use the technique based on multiplication instead, which does not need
765 the separators. (Alternatively, we can observe that $\1^b$ is the only case
766 affected, so we can handle it separately.)
767
768 \endlist
769
770 \paran{Scalar operations}%
771 We can use the aforementioned tricks to perform interesting operations on individual
772 numbers in constant time, too. Let us assume for a~while that we are
773 operating on $b$-bit numbers and the word size is at least~$b^2$.
774 This enables us to make use of intermediate vectors with $b$~elements
775 of $b$~bits each.
776
777 \algn{Integer operations in quadratic workspace}\id{lsbmsb}
778
779 \itemize\ibull
780
781 \:$\<Weight>(\alpha)$ --- Compute the Hamming weight of~$\alpha$, i.e., the number of ones in~$\(\alpha)$.
782
783 We perform \<Unpack> and then \<Sum>.
784
785 \:$\<Permute>_\pi(\alpha)$ --- Shuffle the bits of~$\alpha$ according
786 to a~fixed permutation~$\pi$.
787
788 We perform $\<Unpack>_\pi$ and \<Pack> back.
789
790 \:$\<LSB>(\alpha)$ --- Find the least significant bit of~$\alpha$,
791 i.e., the smallest~$i$ such that $\alpha[i]=1$.
792
793 By a~combination of subtraction with $\bxor$, we create a~number
794 that contains ones exactly at the position of $\<LSB>(\alpha)$ and below:
795
796 \alik{
797 \alpha&=                        \9\9\9\9\9\1\0\0\0\0\cr
798 \alpha-1&=                      \9\9\9\9\9\0\1\1\1\1\cr
799 \alpha\bxor(\alpha-1)&=         \0\9\9\9\0\1\1\1\1\1\cr
800 }
801
802 Then we calculate the \<Weight> of the result and subtract~1.
803
804 \:$\<MSB>(\alpha)$ --- Find the most significant bit of~$\alpha$ (the position
805 of the highest bit set).
806
807 Reverse the bits of the number~$\alpha$ first by calling \<Permute>, then apply \<LSB>
808 and subtract the result from~$b-1$.
809
810 \endlist
811
812 \paran{LSB and MSB}%
813 As noted by Brodnik~\cite{brodnik:lsb} and others, the space requirements of
814 the \<LSB> operation can be lowered to linear. We split the $w$-bit input to $\sqrt{w}$
815 blocks of $\sqrt{w}$ bits each. Then we determine which blocks are non-zero and
816 identify the lowest such block (this is a~\<LSB> of a~number whose bits
817 correspond to the blocks). Finally we calculate the \<LSB> of this block. In
818 both calls to \<LSB,> we have a $\sqrt{w}$-bit number in a~$w$-bit word, so we
819 can use the previous algorithm. The same trick of course applies to for finding the
820 \<MSB>, too.
821
822 The following algorithm shows the details:
823
824 \algn{LSB in linear workspace}
825
826 \algo\id{lsb}
827 \algin A~$w$-bit number~$\alpha$.
828 \:$b\=\lceil\sqrt{w}\,\rceil$. \cmt{the size of a~block}
829 \:$\ell\=b$. \cmt{the number of blocks is the same}
830 \:$x\=(\alpha \band (\0\1^b)^\ell) \bor ((\alpha \band (\1\0^b)^\ell) \shr 1)$.
831 \hfill\break
832 \cmt{encoding of a~vector~${\bf x}$ such that $x_i\ne 0$ iff the $i$-th block is non-zero}%
833 \foot{Why is this so complicated? It is tempting to take $\alpha$ itself as a~code of this vector,
834 but we must not forget the separator bits between elements, so we create them and
835 relocate the bits we have overwritten.}
836 \:$y\=\<Cmp>(0,x)$. \cmt{$y_i=1$ if the $i$-th block is non-zero, otherwise $y_0=0$}
837 \:$\beta\=\<Pack>(y)$. \cmt{each block compressed to a~single bit}
838 \:$p\=\<LSB>(\beta)$. \cmt{the index of the lowest non-zero block}
839 \:$\gamma\=(\alpha \shr bp) \band \1^b$. \cmt{the contents of that block}
840 \:$q\=\<LSB>(\gamma)$. \cmt{the lowest bit set there}
841 \algout $\<LSB>(\alpha) = bp+q$.
842 \endalgo
843
844 \paran{Constants}%
845 We have used a~plenty of constants that depend on the format of the vectors.
846 Either we can write non-uniform programs (see \ref{nonuniform}) and use native constants,
847 or we can observe that all such constants can be easily manufactured. For example,
848 $(\0^b\1)^d = \1^{(b+1)d} / \1^{b+1} = (2^{(b+1)d}-1)/(2^{b+1}-1) = ((1 \shl (b+1)d)-1) / ((2\shl b) - 1)$. The only exceptions
849 are the~$w$ and~$b$ in the LSB algorithm \ref{lsb}, which we are unable to produce
850 in constant time. In practice we use the ``bit tricks'' as frequently called subroutines
851 in an~encompassing algorithm, so we usually can afford spending a~lot of time on the precalculation
852 of constants performed once during algorithm startup.
853
854 \paran{History}%
855 The history of combining arithmetic and logical operations to obtain fast programs for various
856 interesting functions is blurred. Many of the bit tricks, which we have described, have been
857 discovered independently by numerous people in the early ages of digital computers.
858 Since then, they have become a~part of the computer science folklore. Probably the
859 earliest documented occurrence is in the 1972's memo of the MIT Artificial Intelligence
860 Lab \cite{hakmem}. However, until the work of Fredman and Willard nobody seemed to
861 realize the full consequences.
862
863 %--------------------------------------------------------------------------------
864
865 \section{Q-Heaps}\id{qheaps}%
866
867 We have shown how to perform non-trivial operations on a~set of values
868 in constant time, but so far only under the assumption that the number of these
869 values is small enough and that the values themselves are also small enough
870 (so that the whole set fits in $\O(1)$ machine words). Now we will show how to
871 lift the restriction on the magnitude of the values and still keep constant time
872 complexity. We will describe a~slightly simplified version of the Q-heaps developed by
873 Fredman and Willard in~\cite{fw:transdich}.
874
875 The Q-heap represents a~set of at most~$k$ word-sized integers, where $k\le W^{1/4}$
876 and $W$ is the word size of the machine. It will support insertion, deletion, finding
877 of minimum and maximum, and other operations described below, in constant time, provided that
878 we are willing to spend~$\O(2^{k^4})$ time on preprocessing.
879
880 The exponential-time preprocessing may sound alarming, but a~typical application uses
881 Q-heaps of size $k=\log^{1/4} N$, where $N$ is the size of the algorithm's input.
882 This guarantees that $k\le W^{1/4}$ and $\O(2^{k^4}) = \O(N)$. Let us however
883 remark that the whole construction is primarily of theoretical importance ---
884 the huge multiplicative constants hidden in the~$\O$ make these heaps useless
885 in practical algorithms. Despite this, many of the tricks we develop have proven
886 themselves useful even in real-life data structures.
887
888 Spending so much time on preprocessing makes it possible to precompute tables of
889 almost arbitrary functions and then assume that the functions can be evaluated in
890 constant time:
891
892 \lemma\id{qhprecomp}%
893 When~$f$ is a~function computable in polynomial time, $\O(2^{k^4})$ time is enough
894 to precompute a~table of the values of~$f$ for all arguments whose size is $\O(k^3)$ bits.
895
896 \proof
897 There are $2^{\O(k^3)}$ possible combinations of arguments of the given size and for each of
898 them we spend $\poly(k)$ time on calculating the function. It remains
899 to observe that $2^{\O(k^3)}\cdot \poly(k) = \O(2^{k^4})$.
900 \qed
901
902 \paran{Tries and ranks}%
903 We will first develop an~auxiliary construction based on tries and then derive
904 the real definition of the Q-heap from it.
905
906 \nota
907 \itemize\ibull
908 \:$W$ --- the word size of the RAM,
909 \:$k = \O(W^{1/4})$ --- the limit on the size of the heap,
910 \:$n\le k$ --- the number of elements stored in the heap,
911 \:$X=\{x_1, \ldots, x_n\}$ --- the elements themselves: distinct $W$-bit numbers
912 indexed in a~way that $x_1 < \ldots < x_n$,
913 \:$g_i = \<MSB>(x_i \bxor x_{i+1})$ --- the position of the most significant bit in which $x_i$ and~$x_{i+1}$ differ,
914 \:$R_X(x)$ --- the rank of~$x$ in~$X$, that is the number of elements of~$X$ which are less than~$x$
915 (where $x$~itself need not be an~element of~$X$).\foot{We will dedicate the whole Chapter~\ref{rankchap} to the
916 study of various ranks.}
917 \endlist
918
919 \defn
920 A~\df{trie} for a~set of strings~$S$ over a~finite alphabet~$\Sigma$ is
921 a~rooted tree whose vertices are the prefixes of the strings in~$S$ and there
922 is an~edge going from a~prefix~$\alpha$ to a~prefix~$\beta$ iff $\beta$ can be
923 obtained from~$\alpha$ by appending a~single symbol of the alphabet. The edge
924 will be labeled with that particular symbol. We will also define the~\df{letter depth}
925 of a~vertex as the length of the corresponding prefix. We mark the vertices
926 which match a~string of~$S$.
927
928 A~\df{compressed trie} is obtained by removing the vertices of outdegree~1
929 except for the root and the marked vertices.
930 Wherever there is a~directed path whose internal vertices have outdegree~1 and they carry
931 no mark, we replace this path by a~single edge labeled with the concatenation
932 of the original edges' labels.
933
934 In both kinds of tries, we order the outgoing edges of every vertex by their labels
935 lexicographically.
936
937 \obs
938 In both tries, the root of the tree is the empty word. Generally, the prefix
939 in a~vertex is equal to the concatenation of edge labels on the path
940 leading from the root to that vertex. The letter depth of the vertex is equal to
941 the total size of these labels. All leaves correspond to strings in~$S$, but so can
942 some internal vertices if there are two strings in~$S$ such that one is a~prefix
943 of the other.
944
945 Furthermore, the labels of all edges leaving a~common vertex are always
946 distinct and when we compress the trie, no two such labels share their initial
947 symbols. This allows us to search in the trie efficiently: when looking for
948 a~string~$x$, we follow the path from the root and whenever we visit
949 an~internal vertex of letter depth~$d$, we test the $d$-th character of~$x$,
950 we follow the edge whose label starts with this character, and we check that the
951 rest of the label matches.
952
953 The compressed trie is also efficient in terms of space consumption --- it has
954 $\O(\vert S\vert)$ vertices (this can be easily shown by induction on~$\vert S\vert$)
955 and all edge labels can be represented in space linear in the sum of the
956 lengths of the strings in~$S$.
957
958 \defn
959 For our set~$X$, we define~$T$ as a~compressed trie for the set of binary
960 encodings of the numbers~$x_i$, padded to exactly $W$~bits, i.e., for $S = \{ \(x)_W \mid x\in X \}$.
961
962 \float{\valign{\vfil#\vfil\cr
963 \hbox{\epsfbox{pic/qheap.eps}}\cr
964 \noalign{\qquad\quad}
965   \halign{#\hfil&\quad#\hfil\cr
966     $x_1 = \0\0\0\0\1\1$ & $g_1=3$ \cr
967     $x_2 = \0\0\1\0\1\0$ & $g_2=4$ \cr
968     $x_3 = \0\1\0\0\0\1$ & $g_3=2$ \cr
969     $x_4 = \0\1\0\1\0\1$ & $g_4=5$ \cr
970     $x_5 = \1\0\0\0\0\0$ & $g_5=0$ \cr
971     $x_6 = \1\0\0\0\0\1$ \cr
972   }\cr
973 }}{Six numbers stored in a~compressed trie}
974
975 \obs
976 The trie~$T$ has several interesting properties. Since all words in~$S$ have the same
977 length, the leaves of the trie correspond to these exact words, that is to the numbers~$x_i$.
978 The depth-first traversal of the trie enumerates the words of~$S$ in lexicographic order
979 and therefore also the~$x_i$'s in the order of their values. Between each
980 pair of leaves $x_i$ and~$x_{i+1}$ it visits an~internal vertex whose letter depth
981 is exactly~$W-1-g_i$.
982
983 \para
984 Let us now modify the algorithm for searching in the trie and make it compare
985 only the first symbols of the edges. In other words, we will test only the bits~$g_i$
986 which will be called \df{guides} (as they guide us through the tree). For $x\in
987 X$, the modified algorithm will still return the correct leaf. For all~$x$ outside~$X$
988 it will no longer fail and instead it will land on some leaf~$x_i$. At the
989 first sight the number~$x_i$ may seem unrelated, but we will show that it can be
990 used to determine the rank of~$x$ in~$X$, which will later form a~basis for all
991 Q-heap operations:
992
993 \lemma\id{qhdeterm}%
994 The rank $R_X(x)$ is uniquely determined by a~combination of:
995 \itemize\ibull
996 \:the trie~$T$,
997 \:the index~$i$ of the leaf found when searching for~$x$ in~$T$,
998 \:the relation ($<$, $=$, $>$) between $x$ and $x_i$,
999 \:the bit position $b=\<MSB>(x\bxor x_i)$ of the first disagreement between~$x$ and~$x_i$.
1000 \endlist
1001
1002 \proof
1003 If $x\in X$, we detect that from $x_i=x$ and the rank is obviously~$i-1$.
1004 Let us assume that $x\not\in X$ and imagine that we follow the same path as when
1005 searching for~$x$,
1006 but this time we check the full edge labels. The position~$b$ is the first position
1007 where~$\(x)$ disagrees with a~label. Before this point, all edges not taken by
1008 the search were leading either to subtrees containing elements all smaller than~$x$
1009 or all larger than~$x$ and the only values not known yet are those in the subtree
1010 below the edge that we currently consider. Now if $x[b]=0$ (and therefore $x<x_i$),
1011 all values in that subtree have $x_j[b]=1$ and thus they are larger than~$x$. In the other
1012 case, $x[b]=1$ and $x_j[b]=0$, so they are smaller.
1013 \qed
1014
1015 \paran{A~better representation}%
1016 The preceding lemma shows that the rank can be computed in polynomial time, but
1017 unfortunately the variables on which it depends are too large for a~table to
1018 be efficiently precomputed. We will carefully choose an~equivalent representation
1019 of the trie which is compact enough.
1020
1021 \lemma\id{citree}%
1022 The compressed trie is uniquely determined by the order of the guides~$g_1,\ldots,g_{n-1}$.
1023
1024 \proof
1025 We already know that the letter depths of the trie vertices are exactly
1026 the numbers~$W-1-g_i$. The root of the trie must have the smallest of these
1027 letter depths, i.e., it must correspond to the highest numbered bit. Let
1028 us call this bit~$g_i$. This implies that the values $x_1,\ldots,x_i$
1029 must lie in the left subtree of the root and $x_{i+1},\ldots,x_n$ in its
1030 right subtree. Both subtrees can be then constructed recursively.\foot{This
1031 construction is also known as the \df{cartesian tree} for the sequence
1032 $g_1,\ldots,g_{n-1}$ and it is useful in many other algorithms as it can be
1033 built in $\O(n)$ time. A~nice application on the Lowest Common Ancestor
1034 and Range Minimum problems has been described by Bender et al.~in \cite{bender:lca}.}
1035 \qed
1036
1037 \para
1038 Unfortunately, the vector of the $g_i$'s is also too long (is has $k\log W$ bits
1039 and we have no upper bound on~$W$ in terms of~$k$), so we will compress it even
1040 further:
1041
1042 \nota\id{qhnota}%
1043 \itemize\ibull
1044 \:$B = \{g_1,\ldots,g_n\}$ --- the set of bit positions of all the guides, stored as a~sorted array,
1045 \:$G : \{1,\ldots,n\} \rightarrow \{1,\ldots,n\}$ --- a~function mapping
1046 the guides to their bit positions in~$B$: $g_i = B[G(i)]$,
1047 \:$x[B]$ --- a~bit string containing the bits of~$x$ originally located
1048 at the positions given by~$B$, i.e., the concatenation of bits $x[B[1]],
1049 x[B[2]],\ldots, x[B[n]]$.
1050 \endlist
1051
1052 \obs\id{qhsetb}%
1053 The set~$B$ has $\O(k\log W)=\O(W)$ bits, so it can be stored in a~constant number
1054 of machine words in the form of a~sorted vector. The function~$G$ can be also stored as a~vector
1055 of $\O(k\log k)$ bits. We can change a~single~$g_i$ in constant time using
1056 vector operations: First we delete the original value of~$g_i$ from~$B$ if it
1057 is not used anywhere else. Then we add the new value to~$B$ if it was not
1058 there yet and we write its position in~$B$ to~$G(i)$. Whenever we insert
1059 or delete a~value in~$B$, the values at the higher positions shift one position
1060 up or down and we have to update the pointers in~$G$. This can be fortunately
1061 accomplished by adding or subtracting a~result of vector comparison.
1062
1063 In this representation, we can reformulate our lemma on ranks as follows:
1064
1065 \lemma\id{qhrank}%
1066 The rank $R_X(x)$ can be computed in constant time from:
1067 \itemize\ibull
1068 \:the function~$G$,
1069 \:the values $x_1,\ldots,x_n$,
1070 \:the bit string~$x[B]$,
1071 \:$x$ itself.
1072 \endlist
1073
1074 \proof
1075 Let us prove that all ingredients of Lemma~\ref{qhdeterm} are either small
1076 enough or computable in constant time.
1077
1078 We know that the shape of the trie~$T$ is uniquely determined by the order of the $g_i$'s
1079 and therefore by the function~$G$ since the array~$B$ is sorted. The shape of
1080 the trie together with the bits in $x[B]$ determine the leaf~$x_i$ found when searching
1081 for~$x$ using only the guides. This can be computed in polynomial time and it
1082 depends on $\O(k\log k)$ bits of input, so according to Lemma~\ref{qhprecomp}
1083 we can look it up in a~precomputed table.
1084
1085 The relation between $x$ and~$x_i$ can be obtained directly as we know the~$x_i$.
1086 The bit position of the first disagreement can be calculated in constant time
1087 using the Brodnik's LSB/MSB algorithm (\ref{lsb}).
1088
1089 All these ingredients can be stored in $\O(k\log k)$ bits, so we may assume
1090 that the rank can be looked up in constant time as well.
1091 \qed
1092
1093 \para
1094 We would like to store the set~$X$ as a~sorted array together
1095 with the corresponding trie, which will allow us to determine the position
1096 for a~newly inserted element in constant time. However, the set is too large
1097 to fit in a~vector and we cannot perform insertion on an~ordinary array in
1098 constant time. This can be worked around by keeping the set in an~unsorted
1099 array and storing a~separate vector containing the permutation that sorts the array.
1100 We can then insert a~new element at an~arbitrary place in the array and just
1101 update the permutation to reflect the correct order.
1102
1103 \paran{The Q-heap}%
1104 We are now ready for the real definition of the Q-heap and for the description
1105 of the basic operations on it.
1106
1107 \defn
1108 A~\df{Q-heap} consists of:
1109 \itemize\ibull
1110 \:$k$, $n$ --- the capacity of the heap and the current number of elements (word-sized integers),
1111 \:$X$ --- the set of word-sized elements stored in the heap (an~array of words in an~arbitrary order),
1112 \:$\varrho$ --- a~permutation on~$\{1,\ldots,n\}$ such that $X[\varrho(1)] < \ldots < X[\varrho(n)]$
1113 (a~vector of $\O(n\log k)$ bits; we will write $x_i$ for $X[\varrho(i)]$),
1114 \:$B$ --- a~set of ``interesting'' bit positions
1115 (a~sorted vector of~$\O(n\log W)$ bits),
1116 \:$G$ --- the function that maps the guides to the bit positions in~$B$
1117 (a~vector of~$\O(n\log k)$ bits),
1118 \:precomputed tables of various functions.
1119 \endlist
1120
1121 \algn{Search in the Q-heap}\id{qhfirst}%
1122 \algo
1123 \algin A~Q-heap and an~integer~$x$ to search for.
1124 \:$i\=R_X(x)+1$, using Lemma~\ref{qhrank} to calculate the rank.
1125 \:If $i\le n$ return $x_i$, otherwise return {\sc undefined.}
1126 \algout The smallest element of the heap which is greater or equal to~$x$.
1127 \endalgo
1128
1129 \algn{Insertion to the Q-heap}
1130 \algo
1131 \algin A~Q-heap and an~integer~$x$ to insert.
1132 \:$i\=R_X(x)+1$, using Lemma~\ref{qhrank} to calculate the rank.
1133 \:If $x=x_i$, return immediately (the value is already present).
1134 \:Insert the new value to~$X$:
1135 \::$n\=n+1$.
1136 \::$X[n]\=x$.
1137 \::Insert~$n$ at the $i$-th position in the permutation~$\varrho$.
1138 \:Update the $g_j$'s:
1139 \::Move all~$g_j$ for $j\ge i$ one position up. \hfil\break
1140    This translates to insertion in the vector representing~$G$.
1141 \::Recalculate $g_{i-1}$ and~$g_i$ according to the definition.
1142    \hfil\break Update~$B$ and~$G$ as described in~\ref{qhsetb}.
1143 \algout The updated Q-heap.
1144 \endalgo
1145
1146 \algn{Deletion from the Q-heap}
1147 \algo
1148 \algin A~Q-heap and an~integer~$x$ to be deleted from it.
1149 \:$i\=R_X(x)+1$, using Lemma~\ref{qhrank} to calculate the rank.
1150 \:If $i>n$ or $x_i\ne x$, return immediately (the value is not in the heap).
1151 \:Delete the value from~$X$:
1152 \::$X[\varrho(i)]\=X[n]$.
1153 \::Find $j$ such that~$\varrho(j)=n$ and set $\varrho(j)\=\varrho(i)$.
1154 \::$n\=n-1$.
1155 \:Update the $g_j$'s like in the previous algorithm.
1156 \algout The updated Q-heap.
1157 \endalgo
1158
1159 \algn{Finding the $i$-th smallest element in the Q-heap}\id{qhlast}%
1160 \algo
1161 \algin A~Q-heap and an~index~$i$.
1162 \:If $i<1$ or $i>n$, return {\sc undefined.}
1163 \:Return~$x_i$.
1164 \algout The $i$-th smallest element in the heap.
1165 \endalgo
1166
1167 \paran{Extraction}%
1168 The heap algorithms we have just described have been built from primitives
1169 operating in constant time, with one notable exception: the extraction
1170 $x[B]$ of all bits of~$x$ at positions specified by the set~$B$. This cannot be done
1171 in~$\O(1)$ time on the Word-RAM, but we can implement it with ${\rm AC}^0$
1172 instructions as suggested by Andersson in \cite{andersson:fusion} or even
1173 with those ${\rm AC}^0$ instructions present on real processors (see Thorup
1174 \cite{thorup:aczero}). On the Word-RAM, we need to make use of the fact
1175 that the set~$B$ is not changing too much --- there are $\O(1)$ changes
1176 per Q-heap operation. As Fredman and Willard have shown, it is possible
1177 to maintain a~``decoder'', whose state is stored in $\O(1)$ machine words
1178 and which helps us to extract $x[B]$ in a~constant number of operations:
1179
1180 \lemman{Extraction of bits}\id{qhxtract}%
1181 Under the assumptions on~$k$, $W$ and the preprocessing time as in the Q-heaps,\foot{%
1182 Actually, this is the only place where we need~$k$ to be as low as $W^{1/4}$.
1183 In the ${\rm AC}^0$ implementation, it is enough to ensure $k\log k\le W$.
1184 On the other hand, we need not care about the exponent because it can
1185 be increased arbitrarily using the Q-heap trees described below.}
1186 it is possible to maintain a~data structure for a~set~$B$ of bit positions,
1187 which allows~$x[B]$ to be extracted in $\O(1)$ time for an~arbitrary~$x$.
1188 When a~single element is inserted to~$B$ or deleted from~$B$, the structure
1189 can be updated in constant time, as long as $\vert B\vert \le k$.
1190
1191 \proof
1192 See Fredman and Willard \cite{fw:transdich}.
1193 \qed
1194
1195 \para
1196 This was the last missing bit of the mechanics of the Q-heaps. We are
1197 therefore ready to conclude this section by the following theorem
1198 and its consequences:
1199
1200 \thmn{Q-heaps, Fredman and Willard \cite{fw:transdich}}\id{qh}%
1201 Let $W$ and~$k$ be positive integers such that $k=\O(W^{1/4})$. Let~$Q$
1202 be a~Q-heap of at most $k$-elements of $W$~bits each. Then the Q-heap
1203 operations \ref{qhfirst} to \ref{qhlast} on~$Q$ (insertion, deletion,
1204 search for a~given value and search for the $i$-th smallest element)
1205 run in constant time on a~Word-RAM with word size~$W$, after spending
1206 time $\O(2^{k^4})$ on the same RAM on precomputing of tables.
1207
1208 \proof
1209 Every operation on the Q-heap can be performed in a~constant number of
1210 vector operations and calculations of ranks. The ranks are computed
1211 in $\O(1)$ steps involving again $\O(1)$ vector operations, binary
1212 logarithms and bit extraction. All these can be calculated in constant
1213 time using the results of Section \ref{bitsect} and Lemma \ref{qhxtract}.
1214 \qed
1215
1216 \paran{Combining Q-heaps}%
1217 We can also use the Q-heaps as building blocks of more complex structures
1218 like Atomic heaps and AF-heaps (see once again \cite{fw:transdich}). We will
1219 show a~simpler, but often sufficient construction, sometimes called the \df{\hbox{Q-heap} tree.}
1220 Suppose we have a~Q-heap of capacity~$k$ and a~parameter $d\in{\bb N}^+$. We
1221 can build a~balanced $k$-ary tree of depth~$d$ such that its leaves contain
1222 a~given set and every internal vertex keeps the minimum value in the subtree
1223 rooted in it, together with a~Q-heap containing the values in all its sons.
1224 This allows minimum to be extracted in constant time (it is placed in the root)
1225 and when any element is changed, it is sufficient to recalculate the values
1226 from the path from this element to the root, which takes $\O(d)$ Q-heap
1227 operations.
1228
1229 \corn{Q-heap trees}\id{qhtree}%
1230 For every positive integer~$r$ and $\delta>0$ there exists a~data structure
1231 capable of maintaining the minimum of a~set of at most~$r$ word-sized numbers
1232 under insertions and deletions. Each operation takes $\O(1)$ time on a~Word-RAM
1233 with word size $W=\Omega(r^{\delta})$, after spending time
1234 $\O(2^{r^\delta})$ on precomputing of tables.
1235
1236 \proof
1237 Choose $\delta' \le \delta$ such that $r^{\delta'} = \O(W^{1/4})$. Build
1238 a~Q-heap tree of depth $d=\lceil \delta/\delta'\rceil$ containing Q-heaps of
1239 size $k=r^{\delta'}$. \qed
1240
1241 \rem\id{qhtreerem}%
1242 When we have an~algorithm with input of size~$N$, the word size is at least~$\log N$
1243 and we can spend time $\O(N)$ on preprocessing, so we can choose $r=\log N$ and
1244 $\delta=1$ in the above corollary and get a~heap of size $\log N$ working in
1245 constant time per operation.
1246
1247 \endpart