]> mj.ucw.cz Git - saga.git/blob - ram.tex
Corrections: Chapter 3.
[saga.git] / ram.tex
1 \ifx\endpart\undefined
2 \input macros.tex
3 \fi
4
5 \chapter{Fine Details of Computation}
6 \id{ramchap}
7
8 \section{Models and machines}
9
10 Traditionally, computer scientists have been using a~variety of computational models
11 as a~formalism in which their algorithms are stated. If we were studying
12 NP-complete\-ness, we could safely assume that all these models are equivalent,
13 possibly up to polynomial slowdown which is negligible. In our case, the
14 differences between good and not-so-good algorithms are on a~much smaller
15 scale. In this chapter, we will replace the usual ``tape measure'' by a~micrometer,
16 state our computation models carefully and develop a repertoire of basic
17 data structures tailor-made for the fine details of the models.
18
19 We would like to keep the formalism close enough to the reality of the contemporary
20 computers. This rules out Turing machines and similar sequentially addressed
21 models, but even the remaining models are subtly different from each other. For example, some of them
22 allow indexing of arrays in constant time, while on the others,
23 arrays have to be emulated with pointer structures, requiring $\Omega(\log n)$
24 time to access a~single element of an~$n$-element array. It is hard to say which
25 way is superior --- while most ``real'' computers have instructions for constant-time
26 indexing, it seems to be physically impossible to fulfil this promise regardless of
27 the size of addressable memory. Indeed, at the level of logical gates inside the computer,
28 the depth of the actual indexing circuits is logarithmic.
29
30 In recent decades, most researchers in the area of combinatorial algorithms
31 have been considering two computational models: the Random Access Machine and the Pointer
32 Machine. The former is closer to the programmer's view of a~real computer,
33 the latter is slightly more restricted and ``asymptotically safe.''
34 We will follow this practice and study our algorithms in both models.
35
36 \para
37 The \df{Random Access Machine (RAM)} is not a~single coherent model, but rather a~family
38 of closely related machines which share the following properties.
39 (See Cook and Reckhow \cite{cook:ram} for one of the usual formal definitions
40 and Hagerup \cite{hagerup:wordram} for a~thorough description of the differences
41 between the RAM variants.)
42
43 The \df{memory} of the machine is represented by an~array of \df{memory cells}
44 addressed by non-negative integers. Each cell contains a~single non-negative integer.
45 The \df{program} is a~finite sequence of \df{instructions} of two basic kinds: calculation
46 instructions and control instructions.
47
48 \df{Calculation instructions} have two source arguments and one destination
49 argument, each \df{argument} being either an~immediate constant (not available
50 as destination), a~directly addressed memory cell (specified by its number)
51 or an~indirectly addressed memory cell (its address is stored in a~directly
52 addressed memory cell).
53
54 \df{Control instructions} include branches (to a~specific instruction in
55 the program), conditional branches (e.g., jump if two arguments specified as
56 in the calculation instructions are equal) and an~instruction to halt the program.
57
58 At the beginning of the computation, the memory contains the input data
59 in specified cells and arbitrary values in all other cells.
60 Then the program is executed one instruction at a~time. When it halts,
61 specified memory cells are interpreted as the program's output.
62
63 \para\id{wordsize}%
64 In the description of the RAM family, we have omitted several details
65 on~purpose, because different members of the family define them differently.
66 These are: the size of the available integers, the time complexity of a~single
67 instruction, the space complexity assigned to a~single memory cell and the set
68 of operations available in calculation instructions.
69
70 If we impose no limits on the magnitude of the numbers and we assume that
71 arithmetic and logical operations work on them in constant time, we get
72 a~very powerful parallel computer --- we can emulate an~exponential number
73 of parallel processors using arithmetics and suddenly almost everything can be
74 computed in constant time, modulo encoding and decoding of input and output.
75 Such models are unrealistic and there are two basic possibilities how to
76 avoid this behavior:
77
78 \numlist\ndotted
79 \:Keep unbounded numbers, but increase costs of instructions: each instruction
80   consumes time proportional to the number of bits of the numbers it processes,
81   including memory addresses. Similarly, space usage is measured in bits,
82   counting not only the values, but also the addresses of the respective memory
83   cells.
84 \:Place a~limit on the size of the numbers ---define the \df{word size~$W$,}
85   the number of bits available in each memory cell--- and keep the cost of
86   instructions and memory cells constant. The word size must not be constant,
87   since we can address only~$2^W$ cells of memory. If the input of the algorithm
88   is stored in~$N$ cells, we need~$W\ge\log N$ just to be able to read the input.
89   On the other hand, we are interested in polynomial-time algorithms only, so $\Theta(\log N)$-bit
90   numbers should be sufficient. In practice, we pick~$W$ to be the larger of
91   $\Theta(\log N)$ and the size of integers used in the algorithm's input and output.
92   We will call an integer that fits in a~single memory cell a~\df{machine word.}
93 \endlist
94
95 Both restrictions easily avoid the problems of unbounded parallelism. The first
96 choice is theoretically cleaner and Cook et al.~show nice correspondences to the
97 standard complexity classes, but the calculations of time and space complexity tend
98 to be somewhat tedious. What more, when compared with the RAM with restricted
99 word size, the complexities are usually exactly $\Theta(W)$ times higher.
100 This does not hold in general (consider a~program that uses many small numbers
101 and $\O(1)$ large ones), but it is true for the algorithms we are interested in.
102 Therefore we will always assume that the operations have unit cost and we make
103 sure that all numbers are limited by the available word size.
104
105 \para
106 As for the choice of RAM operations, the following three instruction sets are often used:
107
108 \itemize\ibull
109 \:\df{Word-RAM} --- allows the ``C-language operators'', i.e., addition,
110   subtraction, multiplication, division, remainder, bitwise $\band$, $\bor$, exclusive
111   $\bor$ ($\bxor$) and negation ($\bnot$), and bitwise shifts ($\shl$ and~$\shr$).
112 \:\df{${\rm AC}^0$-RAM} --- allows all operations from the class ${\rm AC}^0$, i.e.,
113   those computable by constant-depth polynomial-size boolean circuits with unlimited
114   fan-in and fan-out. This includes all operations of the Word-RAM except for multiplication,
115   division and remainders, and also many other operations like computing the Hamming
116   weight (number of bits set in a~given number).
117 \:Both restrictions combined.
118 \endlist
119
120 Thorup \cite{thorup:aczero} discusses the usual techniques employed by RAM algorithms
121 and he shows that they work on both Word-RAM and ${\rm AC}^0$-RAM, but the combination
122 of the two restrictions is too weak. On the other hand, the intersection of~${\rm AC}^0$
123 with the instruction set of modern processors is already strong enough (e.g., when we
124 add some floating-point operations and multimedia instructions available on the Intel's
125 Pentium~4~\cite{intel:pentium}).
126
127 We will therefore use the Word-RAM instruction set, mentioning differences from the
128 ${\rm AC}^0$-RAM where necessary.
129
130 \nota
131 When speaking of the \df{RAM,} we implicitly mean the version with numbers limited
132 by a~specified word size of $W$~bits, unit cost of operations and memory cells and the instruction
133 set of the Word-RAM. This corresponds to the usage in recent algorithmic literature,
134 although the authors rarely mention the details.
135
136 In some cases, a~non-uniform variant
137 of the Word-RAM is considered as well (e.g., by Hagerup \cite{hagerup:dd}):
138
139 \defn\id{nonuniform}%
140 A~Word-RAM is called \df{weakly non-uniform,} if it is equipped with $\O(1)$-time
141 access to a~constant number of word-sized constants, which depend only on the word
142 size. These are called \df{native constants} and they are available in fixed memory
143 cells when the program starts. (By analogy with the high-level programming languages,
144 these constants can be thought of as computed at ``compile time''.)
145
146 \para
147 The \df{Pointer Machine (PM)} also does not seem to have any well established definition. The
148 various kinds of pointer machines are examined by Ben-Amram in~\cite{benamram:pm},
149 but unlike the RAM's they turn out to be equivalent up to constant slowdown.
150 Our definition will be closely related to the \em{linking automaton} proposed
151 by Knuth in~\cite{knuth:fundalg}, we will only adapt it to use RAM-like
152 instructions instead of an~opaque control unit.
153
154 The PM works with two different types of data: \df{symbols} from a~finite alphabet
155 and \df{pointers}. The memory of the machine consists of a~fixed amount of \df{registers}
156 (some of them capable of storing a~single symbol, each of the others holds a~single pointer)
157 and an~arbitrary amount of \df{cells}. The structure of all cells is the same: each cell
158 again contains a~fixed number of fields for symbols and pointers. Registers can be addressed
159 directly, the cells only via pointers --- by using a~pointer stored either in a~register,
160 or in a~cell pointed to by a~register. Longer chains of pointers cannot be followed in
161 constant time.
162
163 We can therefore view the whole memory as a~directed graph, whose vertices
164 correspond to the cells (the registers are stored in a~single special cell).
165 The outgoing edges of each vertex correspond to pointer fields of the cells and they are
166 labeled with distinct labels drawn from a~finite set. In addition to that,
167 each vertex contains a~fixed amount of symbols. The machine can directly access
168 vertices within distance~2 from the register vertex.
169
170 The program is a~finite sequence of instructions of the following kinds:
171
172 \itemize\ibull
173 \:\df{symbol instructions,} which read a~pair of symbols, apply an~arbitrary
174   function to them and write the result to a~symbol register or field;
175 \:\df{pointer instructions} for assignment of pointers to pointer registers/fields
176   and for creation of new memory cells (a~pointer to the new cell is stored into a~register
177   immediately);
178 \:\df{control instructions} --- similarly to the RAM; conditional jumps can decide
179   arbitrary unary relations on symbols and compare pointers for equality.
180 \endlist
181
182 Time and space complexity are defined in the straightforward way: all instructions
183 have unit cost and so do all memory cells.
184
185 Both input and output of the machine are passed in the form of a~linked structure
186 pointed to by a~designated register. For example, we can pass graphs back and forth
187 without having to encode them as strings of numbers or symbols. This is important,
188 because with the finite alphabet of the~PM, symbolic representations of graphs
189 generally require super-linear space and therefore also time.\foot{%
190 The usual representation of edges as pairs of vertex labels uses $\Theta(m\log n)$ bits
191 and as a~simple counting argument shows, this is asymptotically optimal for general
192 sparse graphs. On the other hand, specific families of sparse graphs can be stored
193 more efficiently, e.g., by a~remarkable result of Tur\'an~\cite{turan:succinct},
194 planar graphs can be encoded in~$\O(n)$ bits. Encoding of dense graphs is of
195 course trivial as the adjacency matrix has only~$\Theta(n^2)$ bits.}
196
197 \para
198 Compared to the RAM, the PM lacks two important capabilities: indexing of arrays
199 and arithmetic instructions. We can emulate both with poly-logarithmic slowdown,
200 but it will turn out that they are rarely needed in graph algorithms. We are
201 also going to prove that the RAM is strictly stronger, so we will prefer to
202 formulate our algorithms for the PM and use the RAM only when necessary.
203
204 \thm
205 Every program for the Word-RAM with word size~$W$ can be translated to a~PM program
206 computing the same with $\O(W^2)$ slowdown (given a~suitable encoding of inputs and
207 outputs, of course). If the RAM program does not use multiplication, division
208 and remainder operations, $\O(W)$~slowdown is sufficient.
209
210 \proofsketch
211 Represent the memory of the RAM by a~balanced binary search tree or by a~radix
212 trie of depth~$\O(W)$. Values are encoded as~linked lists of symbols pointed
213 to by the nodes of the tree. Both direct and indirect accesses to the memory
214 can therefore be done in~$\O(W)$ time. Use standard algorithms for arithmetic
215 on big numbers: $\O(W)$ per operation except for multiplication, division and
216 remainders which take $\O(W^2)$.\foot{We could use more efficient arithmetic
217 algorithms, but the quadratic bound is good enough for our purposes.}
218 \qed
219
220 \thm
221 Every program for the PM running in polynomial time can be translated to a~program
222 computing the same on the Word-RAM with only $\O(1)$ slowdown.
223
224 \proofsketch
225 Encode each cell of the PM's memory to $\O(1)$ integers. Store the encoded cells to
226 the memory of the RAM sequentially and use memory addresses as pointers. As the symbols
227 are finite and there is only a~polynomial number of cells allocated during execution
228 of the program, $\O(\log N)$-bit integers suffice ($N$~is the size of the program's input).
229 \qed
230
231 \para
232 There are also \df{randomized} versions of both machines. These are equipped
233 with an~additional instruction for generating a~single random bit. The standard
234 methods of design and analysis of randomized algorithms can be used (see for
235 example Motwani and Raghavan~\cite{motwani:randalg}).
236
237 \rem
238 There is one more interesting machine: the \df{Immutable Pointer Machine} (mentioned for example in
239 the description of LISP machines in \cite{benamram:pm}). It differs from the
240 ordinary PM by the inability to modify existing memory cells. Only the contents
241 of the registers are allowed to change. All cell modifications thus have to
242 be performed by creating a~copy of the particular cell with some fields changed.
243 This in turn requires the pointers to the cell to be updated, possibly triggering
244 a~cascade of further cell copies. For example, when a~node of a~binary search tree is
245 updated, all nodes on the path from that node to the root have to be copied.
246
247 One of the advantages of this model is that the states of the machine are
248 persistent --- it is possible to return to a~previously visited state by recalling
249 the $\O(1)$ values of the registers (everything else could not have changed
250 since that time) and ``fork'' the computations. This corresponds to the semantics
251 of pure functional languages, e.g., of Haskell~\cite{jones:haskell}.
252
253 Unless we are willing to accept a~logarithmic penalty in execution time and space
254 (in fact, our emulation of the Word-RAM on the PM can be easily made immutable),
255 the design of efficient algorithms for the immutable PM requires very different
256 techniques. Therefore, we will be interested in the imperative models only
257 and refer the interested reader to the thorough treatment of purely functional
258 data structures in the Okasaki's monograph~\cite{okasaki:funcds}.
259
260 %--------------------------------------------------------------------------------
261
262 \section{Bucket sorting and unification}\id{bucketsort}%
263
264 The Contractive Bor\o{u}vka's algorithm (\ref{contbor}) needs to contract a~given
265 set of edges in the current graph and then flatten the graph, all this in time $\O(m)$.
266 We have spared the technical details for this section, in which we are going to
267 explain several rather general techniques based on bucket sorting.
268
269 As we have already suggested in the proof of Lemma \ref{contbor}, contractions
270 can be performed in linear time by building an~auxiliary graph and finding its
271 connected components. We will thus take care only of the subsequent flattening.
272
273 \paran{Flattening on RAM}%
274 On the RAM, we can view the edges as ordered pairs of vertex identifiers with the
275 smaller of the identifiers placed first. We sort these pairs lexicographically. This brings
276 parallel edges together, so that a~simple linear scan suffices to find each bunch
277 of parallel edges and to remove all but the lightest one.
278 Lexicographic sorting of pairs can be accomplished in linear time by a~two-pass
279 bucket sort with $n$~buckets corresponding to the vertex identifiers.
280
281 However, there is a~catch. Suppose that we use the standard representation
282 of graphs by adjacency lists whose heads are stored in an array indexed by vertex
283 identifiers. When we contract and flatten the graph, the number of vertices decreases,
284 but if we inherit the original vertex identifiers, the arrays will still have the
285 same size. We could then waste a~super-linear amount of time by scanning the increasingly
286 sparse arrays, most of the time skipping unused entries.
287
288 To avoid this problem, we have to renumber the vertices after each contraction to component
289 identifiers from the auxiliary graph and create a~new vertex array. This helps
290 keep the size of the representation of the graph linear with respect to its current
291 size.
292
293 \paran{Flattening on PM}%
294 The pointer representation of graphs does not suffer from sparsity since the vertices
295 are always identified by pointers to per-vertex structures. Each such structure
296 then contains all attributes associated with the vertex, including the head of its
297 adjacency list. However, we have to find a~way how to perform bucket sorting
298 without indexing of arrays.
299
300 We will keep a~list of the per-vertex structures and we will use it to establish the order of~vertices.
301 Each such structure will be endowed with a~pointer to the head of the list of items in
302 the corresponding bucket. Inserting an~edge to a~bucket can be then done in constant time
303 and scanning the contents of all~$n$ buckets takes $\O(n+m)$ time.
304
305 At last, we must not forget that while it was easy to \df{normalize} the pairs on the RAM
306 by putting the smaller identifier first, this fails on the PM because we can directly
307 compare the identifiers only for equality. We can work around this again by bucket-sorting:
308 we sort the multiset $\{ (x,i) \mid \hbox{$x$~occurs in the $i$-th pair} \}$ on~$x$.
309 Then we reset all pairs and re-insert the values back in their increasing order.
310 This also takes $\O(n+m)$.
311
312 \paran{Tree isomorphism}%
313 Another nice example of pointer-based radix sorting is a~Pointer Machine algorithm for
314 deciding whether two rooted trees are isomorphic. Let us assume for a~moment that
315 the outdegree of each vertex is at most a~fixed constant~$k$. We begin by sorting the subtrees
316 of both trees by their depth. This can be accomplished by running depth-first search to calculate
317 the depths and bucket-sorting them with $n$~buckets afterwards.
318
319 Then we proceed from depth~0 to the maximum depth and for each depth we identify
320 the isomorphism equivalence classes of the particular subtrees. We will assign
321 unique \df{codes} (identifiers) to all such classes; at most~$n+1$ of them are needed as there are
322 $n+1$~subtrees in the tree (including the empty subtree). As the PM does not
323 have numbers as an~elementary type, we create a~``\df{yardstick}'' ---a~list
324 of $n+1$~distinct items--- and we use pointers to these ``ticks'' as identifiers.
325 When we are done, isomorphism of the whole trees can be decided by comparing the
326 codes assigned to their roots.
327
328 Suppose that classes of depths $0,\ldots,d-1$ are already computed and we want
329 to identify those of depth~$d$. We will denote their count of~$n_d$. We take
330 a~root of every such tree and label it with an~ordered $k$-tuple of codes
331 of its subtrees; when it has less than $k$ sons, we pad the tuple with empty
332 subtrees. Tuples corresponding to isomorphic subtrees are identical up to
333 reordering of elements. We therefore sort the codes inside each tuple and then
334 sort the tuples, which brings the equivalent tuples together.
335
336 The first sort (inside the tuples) would be easy on the RAM, but on the PM we
337 have to use the normalization trick mentioned above. The second sort is
338 a~straightforward $k$-pass bucket sort.
339
340 If we are not careful, a~single sorting pass takes $\O(n_d + n)$ time, because
341 while we have only $n_d$~items to sort, we have to scan all $n$~buckets. This can
342 be easily avoided if we realize that the order of the buckets does not need to be
343 fixed --- in every pass, we can use a~completely different order and it still
344 does bring the equivalent tuples together. Thus we can keep a~list of buckets
345 that are used in the current pass and look only inside these buckets. This way,
346 we reduce the time spent in a~single pass to $\O(n_d)$ and the whole algorithm
347 takes just $\O(\sum_d n_d) = \O(n)$.
348
349 Our algorithm can be easily modified for trees with unrestricted degrees.
350 We replace the fixed $d$-tuples by general sequences of codes. The first
351 sort does not need any changes. In the second sort, we proceed from the first
352 position to the last one and after each bucket-sorting pass we put aside the sequences
353 that have just ended. They are obviously not equivalent to any other sequences.
354 The time complexity of the second sort is linear in the sum of the lengths of the sequences, which is
355 $n_{d+1}$ for depth~$d$. We can therefore decide isomorphism of the whole trees
356 in time $\O(\sum_d (n_d + n_{d+1})) = \O(n)$.
357
358 The unification of sequences by bucket sorting will be useful in many
359 other situations, so we will state it as a~separate lemma:
360
361 \lemman{Sequence unification}\id{suniflemma}%
362 Partitioning of a~collection of sequences $S_1,\ldots,S_n$, whose elements are
363 arbitrary pointers and symbols from a~finite alphabet, to equality classes can
364 be performed on the Pointer Machine in time $\O(n + \sum_i \vert S_i \vert)$.
365
366 \rem
367 The first linear-time algorithm that partitions all subtrees to isomorphism equivalence
368 classes is probably due to Zemlayachenko \cite{zemlay:treeiso}, but it lacks many
369 details. Dinitz et al.~\cite{dinitz:treeiso} have recast this algorithm in modern
370 terminology and filled the gaps. Our algorithm is easier to formulate,
371 because it replaces the need for auxiliary data structures by more elaborate bucket
372 sorting.
373
374 \paran{Topological graph computations}%
375 Many graph algorithms are based on the idea of so called \df{micro/macro decomposition:}
376 We decompose a~graph to subgraphs on roughly~$k$ vertices and solve the problem
377 separately inside these ``micrographs'' and in the ``macrograph'' obtained by
378 contraction of the micrographs. If $k$~is small enough, many of the micrographs
379 are isomorphic, so we can compute the result only once for each isomorphism class
380 and recycle it for all micrographs of that class. On the other hand, the macrograph
381 is roughly $k$~times smaller than the original graph, so we can use a~less efficient
382 algorithm and it will still run in linear time with respect to the size of the original
383 graph.
384
385 This kind of decomposition is traditionally used for trees, especially in the
386 algorithms for the Lowest Common Ancestor problem (cf.~Section \ref{verifysect}
387 and the survey paper \cite{alstrup:nca}) and for online maintenance of marked ancestors
388 (cf.~Alstrup et al.~\cite{alstrup:marked}). Let us take a~glimpse at what happens when
389 we decompose a~tree with $k$ set to~$1/4\cdot\log n$. There are at most $2^{2k} = \sqrt n$ non-isomorphic subtrees of size~$k$,
390 because each isomorphism class is uniquely determined by the sequence of $2k$~up/down steps
391 performed by depth-first search of the tree. Suppose that we are able to decompose the input and identify
392 the equivalence classes of microtrees in linear time, then solve the problem in time $\O(\poly(k))$ for
393 each microtree and finally in $\O(n'\log n')$ for the macrotree of size $n'=n/k$. When we put these pieces
394 together, we get an~algorithm for the whole problem which achieves time complexity $\O(n
395 + \sqrt{n}\cdot\poly(\log n) + n/\log n\cdot\log(n/\log n)) = \O(n)$.
396
397 Decompositions are usually implemented on the RAM, because subgraphs can be easily
398 encoded in numbers, and these can be then used to index arrays containing the precomputed
399 results. As the previous algorithm for subtree isomorphism shows, indexing is not strictly
400 required for identifying equivalent microtrees and it can be replaced by bucket
401 sorting on the Pointer Machine. Buchsbaum et al.~\cite{buchsbaum:verify} have extended
402 this technique to general graphs in form of so called topological graph computations.
403 Let us define them.
404
405 \defn
406 A~\df{graph computation} is a~function that takes a~\df{labeled undirected graph} as its input. The labels of
407 vertices and edges can be arbitrary symbols drawn from a~finite alphabet. The output
408 of the computation is another labeling of the same graph. This time, the vertices and
409 edges can be labeled with not only symbols of the alphabet, but also with pointers to the vertices
410 and edges of the input graph, and possibly also with pointers to outside objects.
411 A~graph computation is called \df{topological} if it produces isomorphic
412 outputs for isomorphic inputs. The isomorphism of course has to preserve not only
413 the structure of the graph, but also the labels in the obvious way.
414
415 \obs
416 The topological graph computations cover a~great variety of graph problems, ranging
417 from searching for matchings or Eulerian tours to finding Hamilton circuits.
418 The MST problem itself however does not belong to this class, because we do not have any means
419 of representing the edge weights as labels, unless there is only a~fixed amount
420 of possible values.
421
422 As in the case of tree decompositions, we would like to identify the equivalent subgraphs
423 and process only a~single instance from each equivalence class. The obstacle is that
424 graph isomorphism is known to be computationally hard (it is one of the few
425 problems that are neither known to lie in~$\rm P$ nor to be $\rm NP$-complete;
426 see Arvind and Kurur \cite{arvind:isomorph} for recent results on its complexity).
427 We will therefore manage with a~weaker form of equivalence, based on some sort
428 of graph encodings:
429
430 \defn
431 A~\df{canonical encoding} of a~given labeled graph represented by adjacency lists
432 is obtained by running the depth-first search on the graph and recording its traces.
433 We start with an~empty encoding. When we enter
434 a~vertex, we assign an~identifier to it (again using a~yardstick to represent numbers)
435 and we append the label of this vertex to the encoding. Then we scan all back edges
436 going from this vertex and append the identifiers of their destinations, accompanied
437 by the edges' labels. Finally we append a~special terminator to mark the boundary
438 between the code of this vertex and its successor.
439
440 \obs
441 The canonical encoding is well defined in the sense that non-iso\-morphic graphs always
442 receive different encodings. Obviously, encodings of isomorphic graphs can differ,
443 depending on the order of vertices and also of the adjacency lists. A~graph
444 on~$n$ vertices with $m$~edges is assigned an~encoding of length at most $2n+2m$ ---
445 for each vertex, we record its label and a~single terminator; edges contribute
446 by identifiers and labels. These encodings can be constructed in linear time and
447 in the same time we can also create a~graph corresponding to a~given encoding.
448 We will use the encodings for our unification of graphs:
449
450 \defn
451 For a~collection~$\C$ of graphs, we define $\vert\C\vert$ as the number of graphs in
452 the collection and $\Vert\C\Vert$ as their total size, i.e., $\Vert\C\Vert = \sum_{G\in\C} n(G) + m(G)$.
453
454 \lemman{Graph unification}\id{guniflemma}%
455 A~collection~$\C$ of labeled graphs can be partitioned into classes which share the same
456 canonical encoding in time $\O(\Vert\C\Vert)$ on the Pointer Machine.
457
458 \proof
459 Construct canonical encodings of all the graphs and then apply the Sequence unification lemma
460 (\ref{suniflemma}) on them.
461 \qed
462
463 \para
464 When we want to perform a~topological computation on a~collection~$\C$ of graphs
465 with $k$~vertices, we first precompute its result for a~collection~$\cal G$ of \df{generic graphs}
466 corresponding to all possible canonical encodings on $k$~vertices. Then we use unification to match
467 the \df{actual graphs} in~$\C$ to the generic graphs in~$\cal G$. This gives us the following
468 theorem:
469
470 \thmn{Topological computations, Buchsbaum et al.~\cite{buchsbaum:verify}}\id{topothm}%
471 Suppose that we have a~topological graph computation~$\cal T$ that can be performed in time
472 $T(k)$ for graphs on $k$~vertices. Then we can run~$\cal T$ on a~collection~$\C$
473 of labeled graphs on~$k$ vertices in time $\O(\Vert\C\Vert + (k+s)^{k(k+2)}\cdot (T(k)+k^2))$,
474 where~$s$ is a~constant depending only on the number of symbols used as vertex/edge labels.
475
476 \proof
477 A~graph on~$k$ vertices has less than~$k^2/2$ edges, so the canonical encodings of
478 all such graphs are shorter than $2k + 2k^2/2 = k(k+2)$. Each element of the encoding
479 is either a~vertex identifier, or a~symbol, or a~separator, so it can attain at most $k+s$
480 possible values for some fixed~$s$.
481 We can therefore enumerate all possible encodings and convert them to a~collection $\cal G$
482 of all generic graphs such that $\vert{\cal G}\vert \le (k+s)^{k(k+2)}$ and $\Vert{\cal G}\Vert
483 \le \vert{\cal G}\vert \cdot k^2$.
484
485 We run the computation on all generic graphs in time $\O(\vert{\cal G}\vert \cdot T(k))$
486 and then we use the Unification lemma (\ref{guniflemma}) on the union of the collections
487 $\C$ and~$\cal G$ to match the generic graphs with the equivalent actual graphs in~$\C$
488 in time $\O(\Vert\C\Vert + \Vert{\cal G}\Vert)$.
489 Finally we create a~copy of the generic result for each of the actual graphs.
490 If the computation uses pointers to the input vertices in its output, we have to
491 redirect them to the actual input vertices, which we can do by associating
492 the output vertices that refer to an~input vertex with the corresponding places
493 in the encoding of the input graph. This way, the whole output can be generated in time
494 $\O(\Vert\C\Vert + \Vert{\cal G}\Vert)$.
495 \qed
496
497 \rem
498 The topological computations and the Graph unification lemma will play important
499 roles in Sections \ref{verifysect} and \ref{optalgsect}.
500
501 %--------------------------------------------------------------------------------
502
503 \section{Data structures on the RAM}
504 \id{ramdssect}
505
506 There is a~lot of data structures designed specifically for the RAM. These structures
507 take advantage of both indexing and arithmetics and they often surpass the known
508 lower bounds for the same problem on the~PM. In many cases, they achieve constant time
509 per operation, at least when either the magnitude of the values or the size of
510 the data structure is suitably bounded.
511
512 A~classical result of this type is the tree of van Emde Boas~\cite{boas:vebt}
513 which represent a~subset of the integers $\{0,\ldots,U-1\}$. It allows insertion,
514 deletion and order operations (minimum, maximum, successor etc.) in time $\O(\log\log U)$,
515 regardless of the size of the subset. If we replace the heap used in the Jarn\'\i{}k's
516 algorithm (\ref{jarnik}) by this structure, we immediately get an~algorithm
517 for finding the MST in integer-weighted graphs in time $\O(m\log\log w_{max})$,
518 where $w_{max}$ is the maximum weight.
519
520 A~real breakthrough has however been made by Fredman and Willard who introduced
521 the Fusion trees~\cite{fw:fusion}. They again perform membership and predecessor
522 operation on a~set of $n$~integers, but with time complexity $\O(\log_W n)$
523 per operation on a~Word-RAM with $W$-bit words. This of course assumes that
524 each element of the set fits in a~single word. As $W$ must at least~$\log n$,
525 the operations take $\O(\log n/\log\log n)$ time and thus we are able to sort $n$~integers
526 in time~$o(n\log n)$. This was a~beginning of a~long sequence of faster and
527 faster sorting algorithms, culminating with the work of Thorup and Han.
528 They have improved the time complexity of integer sorting to $\O(n\log\log n)$ deterministically~\cite{han:detsort}
529 and expected $\O(n\sqrt{\log\log n})$ for randomized algorithms~\cite{hanthor:randsort},
530 both in linear space.
531
532 The Fusion trees themselves have very limited use in graph algorithms, but the
533 principles behind them are ubiquitous in many other data structures and these
534 will serve us well and often. We are going to build the theory of Q-heaps in
535 Section \ref{qheaps}, which will later lead to a~linear-time MST algorithm
536 for arbitrary integer weights in Section \ref{iteralg}. Other such structures
537 will help us in building linear-time RAM algorithms for computing the ranks
538 of various combinatorial structures in Chapter~\ref{rankchap}.
539
540 Outside our area, important consequences of RAM data structures include the
541 Thorup's $\O(m)$ algorithm for single-source shortest paths in undirected
542 graphs with positive integer weights \cite{thorup:usssp} and his $\O(m\log\log
543 n)$ algorithm for the same problem in directed graphs \cite{thorup:sssp}. Both
544 algorithms have been then significantly simplified by Hagerup
545 \cite{hagerup:sssp}.
546
547 Despite the progress in the recent years, the corner-stone of all RAM structures
548 is still the representation of combinatorial objects by integers introduced by
549 Fredman and Willard. It will also form a~basis for the rest of this chapter.
550
551 %--------------------------------------------------------------------------------
552
553 \section{Bits and vectors}\id{bitsect}
554
555 In this rather technical section, we will show how the RAM can be used as a~vector
556 computer to operate in parallel on multiple elements, as long as these elements
557 fit in a~single machine word. At the first sight this might seem useless, because we
558 cannot require large word sizes, but surprisingly often the elements are small
559 enough relative to the size of the algorithm's input and thus also relative to
560 the minimum possible word size. Also, as the following lemma shows, we can
561 easily emulate slightly longer words:
562
563 \lemman{Multiple-precision calculations}
564 Given a~RAM with $W$-bit words, we can emulate all calculation and control
565 instructions of a~RAM with word size $kW$ in time depending only on the~$k$.
566 (This is usually called \df{multiple-precision arithmetics.})
567
568 \proof
569 We split each word of the ``big'' machine to $W'$-bit blocks, where $W'=W/2$, and store these
570 blocks in $2k$ consecutive memory cells. Addition, subtraction, comparison and
571 bitwise logical operations can be performed block-by-block. Shifts by a~multiple
572 of~$W'$ are trivial, otherwise we can combine each block of the result from
573 shifted versions of two original blocks.
574 To multiply two numbers, we can use the elementary school algorithm using the $W'$-bit
575 blocks as digits in base $2^{W'}$ --- the product of any two blocks fits
576 in a~single word.
577
578 Division is harder, but Newton-Raphson iteration (see~\cite{ito:newrap})
579 converges to the quotient in a~constant number of iterations, each of them
580 involving $\O(1)$ multiple-precision additions and multiplications. A~good
581 starting approximation can be obtained by dividing the two most-significant
582 (non-zero) blocks of both numbers.
583
584 Another approach to division is using the improved elementary school algorithm as described
585 by Knuth in~\cite{knuth:seminalg}. It uses $\O(k^2)$ steps, but the steps involve
586 calculation of the most significant bit set in a~word. We will show below that it
587 can be done in constant time, but we have to be careful to avoid division instructions in it.
588 \qed
589
590 \notan{Bit strings}\id{bitnota}%
591 We will work with binary representations of natural numbers by strings over the
592 alphabet $\{\0,\1\}$: we will use $\(x)$ for the number~$x$ written in binary,
593 $\(x)_b$ for the same padded to exactly $b$ bits by adding leading zeroes,
594 and $x[k]$ for the value of the $k$-th bit of~$x$ (with a~numbering of bits such that $2^k[k]=1$).
595 The usual conventions for operations on strings will be utilized: When $s$
596 and~$t$ are strings, we write $st$ for their concatenation and
597 $s^k$ for the string~$s$ repeated $k$~times.
598 When the meaning is clear from the context,
599 we will use $x$ and $\(x)$ interchangeably to avoid outbreak of symbols.
600
601 \defn
602 The \df{bitwise encoding} of a~vector ${\bf x}=(x_0,\ldots,x_{d-1})$ of~$b$-bit numbers
603 is an~integer~$x$ such that $\(x)=\(x_{d-1})_b\0\(x_{d-2})_b\0\ldots\0\(x_0)_b$, i.e.,
604 $x = \sum_i 2^{(b+1)i}\cdot x_i$. (We have interspersed the elements with \df{separator bits.})
605
606 \notan{Vectors}\id{vecnota}%
607 We will use boldface letters for vectors and the same letters in normal type
608 for the encodings of these vectors. The elements of a~vector~${\bf x}$ will be written as
609 $x_0,\ldots,x_{d-1}$.
610
611 \para
612 If we want to fit the whole vector in a~single word, the parameters $b$ and~$d$ must satisfy
613 the condition $(b+1)d\le W$.
614 By using multiple-precision arithmetics, we can encode all vectors satisfying $bd=\O(W)$.
615 We will now describe how to translate simple vector manipulations to sequences of $\O(1)$ RAM operations
616 on their codes. As we are interested in asymptotic complexity only, we will prefer clarity
617 of the algorithms over saving instructions. Among other things, we will freely use calculations
618 on words of size $\O(bd)$, assuming that the Multiple-precision lemma comes to save us
619 when necessary.
620
621 \para
622 First of all, let us observe that we can use $\band$ and $\bor$ with suitable constants
623 to write zeroes or ones to an~arbitrary set of bit positions at once. These operations
624 are usually called \df{bit masking}. Also, any element of a~vector can be extracted or
625 replaced by a~different value in $\O(1)$ time by masking and shifts.
626
627 \newdimen\slotwd
628 \def\setslot#1{\setbox0=#1\slotwd=\wd0}
629 \def\slot#1{\hbox to \slotwd{\hfil #1\hfil}}
630 \def\[#1]{\slot{$#1$}}
631 \def\9{\rack{\0}{\hss$\cdot$\hss}}
632
633 \def\alik#1{%
634 \medskip
635 \halign{\hskip 0.15\hsize\hfil $ ##$&\hbox to 0.6\hsize{${}##$ \hss}\cr
636 #1}
637 \medskip
638 }
639
640 \algn{Operations on vectors with $d$~elements of $b$~bits each}\id{vecops}
641
642 \itemize\ibull
643
644 \:$\<Replicate>(\alpha)$ --- Create a~vector $(\alpha,\ldots,\alpha)$:
645
646 \alik{\<Replicate>(\alpha)=\alpha\cdot(\0^b\1)^d. \cr}
647
648 \:$\<Sum>(x)$ --- Calculate the sum of the elements of~${\bf x}$, assuming that
649 the result fits in $b$~bits:
650
651 \alik{\<Sum>(x) = x \bmod \1^{b+1}. \cr}
652
653 This is correct because when we calculate modulo~$\1^{b+1}$, the number $2^{b+1}=\1\0^{b+1}$
654 is congruent to~1 and thus $x = \sum_i 2^{(b+1)i}\cdot x_i \equiv \sum_i 1^i\cdot x_i \equiv \sum_i x_i$.
655 As the result should fit in $b$~bits, the modulo makes no difference.
656
657 If we want to avoid division, we can use double-precision multiplication instead:
658
659 \setslot{\hbox{~$\0x_{d-1}$}}
660 \def\.{\[]}
661 \def\z{\[\0^b\1]}
662 \def\dd{\slot{$\cdots$}}
663 \def\vd{\slot{$\vdots$}}
664 \def\rule{\noalign{\medskip\nointerlineskip}$\hrulefill$\cr\noalign{\nointerlineskip\medskip}}
665
666 \alik{
667 \[\0x_{d-1}] \dd \[\0x_2] \[\0x_1] \[\0x_0] \cr
668 *~~ \z \dd \z\z\z \cr
669 \rule
670 \[x_{d-1}] \dd \[x_2] \[x_1] \[x_0] \cr
671 \[x_{d-1}] \[x_{d-2}] \dd \[x_1] \[x_0] \. \cr
672 \[x_{d-1}] \[x_{d-2}] \[x_{d-3}] \dd \[x_0] \. \. \cr
673 \vd\vd\vd\vd\.\.\.\cr
674 \[x_{d-1}] \dd \[x_2]\[x_1]\[x_0] \. \. \. \. \cr
675 \rule
676 \[r_{d-1}] \dd \[r_2] \[r_1] \[s_d] \dd \[s_3] \[s_2] \[s_1] \cr
677 }
678
679 This way, we also get the vector of all partial sums:
680 $s_k=\sum_{i=0}^{k-1}x_i$, $r_k=\sum_{i=k}^{d-1}x_i$.
681
682 \:$\<Cmp>(x,y)$ --- Compare vectors ${\bf x}$ and~${\bf y}$ element-wise,
683 i.e., make a~vector~${\bf z}$ such that $z_i=1$ if $x_i<y_i$ and $z_i=0$ otherwise.
684
685 We replace the separator zeroes in~$x$ by ones and subtract~$y$. These ones
686 change back to zeroes exactly at the positions where $x_i<y_i$ and they stop
687 carries from propagating, so the fields do not interact with each other:
688
689 \setslot{\vbox{\hbox{~$x_{d-1}$}\hbox{~$y_{d-1}$}}}
690 \def\9{\rack{\0}{\hss ?\hss}}
691 \alik{
692    \1 \[x_{d-1}] \1 \[x_{d-2}] \[\cdots] \1 \[x_1] \1 \[x_0]  \cr
693 -~ \0 \[y_{d-1}] \0 \[y_{d-2}] \[\cdots] \0 \[y_1] \0 \[y_0]  \cr
694 \rule
695    \9 \[\ldots]  \9 \[\ldots]  \[\cdots] \9 \[\ldots] \9 \[\ldots] \cr
696 }
697
698 It only remains to shift the separator bits to the right positions, negate them
699 and mask out all other bits.
700
701 \:$\<Rank>(x,\alpha)$ --- Return the number of elements of~${\bf x}$ which are less than~$\alpha$,
702 assuming that the result fits in~$b$ bits:
703
704 \alik{
705 \<Rank>(x,\alpha) = \<Sum>(\<Cmp>(x,\<Replicate>(\alpha))). \cr
706 }
707
708 \:$\<Insert>(x,\alpha)$ --- Insert~$\alpha$ into a~sorted vector $\bf x$:
709
710 We calculate the rank of~$\alpha$ in~$x$ first, then we insert~$\alpha$ into the particular
711 field of~$\bf x$ using masking operations and shifts.
712
713 \algo
714 \:$k\=\<Rank>(x,\alpha)$.
715 \:$\ell\=x \band \1^{(b+1)(n-k)}\0^{(b+1)k}$. \cmt{``left'' part of the vector}
716 \:$r=x \band \1^{(b+1)k}$. \cmt{``right'' part}
717 \:Return $(\ell\shl (b+1)) \bor (\alpha\shl ((b+1)k)) \bor r$.
718 \endalgo
719
720 \:$\<Unpack>(\alpha)$ --- Create a~vector whose elements are the bits of~$\(\alpha)_d$.
721 In other words, insert blocks~$\0^b$ between the bits of~$\alpha$. Assuming that $b\ge d$,
722 we can do it as follows:
723
724 \algo
725 \:$x\=\<Replicate>(\alpha)$.
726 \:$y\=(2^{b-1},2^{b-2},\ldots,2^0)$. \cmt{bitwise encoding of this vector}
727 \:$z\=x \band y$.
728 \:Return $\<Cmp>(z,y) \bxor (\0^b\1)^d$.
729 \endalgo
730
731 Let us observe that $z_i$ is either zero or equal to~$y_i$ depending on the value
732 of the $i$-th bit of the number~$\alpha$. Comparing it with~$y_i$ normalizes it
733 to either zero or one, but in the opposite way than we need, so we flip the bits
734 by an~additional $\bxor$.
735
736 \:$\<Unpack>_\pi(\alpha)$ --- Like \<Unpack>, but change the order of the
737 bits according to a~fixed permutation~$\pi$: The $i$-th element of the
738 resulting vector is equal to~$\alpha[\pi(i)]$.
739
740 Implemented as above, but with a~mask $y=(2^{\pi(b-1)},\ldots,2^{\pi(0)})$.
741
742 \:$\<Pack>(x)$ --- The inverse of \<Unpack>: given a~vector of zeroes and ones,
743 produce a~number whose bits are the elements of the vector (in other words,
744 it crosses out the $\0^b$ blocks).
745
746 We interpret the~$x$ as an~encoding of a~vector with elements one bit shorter
747 and we sum these elements. For example, when $n=4$ and~$b=4$:
748
749 \setslot{\hbox{$x_3$}}
750 \def\z{\[\0]}
751 \def\|{\hskip1pt\vrule height 10pt depth 4pt\hskip1pt}
752 \def\.{\hphantom{\|}}
753
754 \alik{
755 \|\z\.\z\.\z\.\z\.\[x_3]\|\z\.\z\.\z\.\z\.\[x_2]\|\z\.\z\.\z\.\z\[x_1]\|\z\.\z\.\z\.\z\.\[x_0]\|\cr
756 \|\z\.\z\.\z\.\z\|\[x_3]\.\z\.\z\.\z\|\z\.\[x_2]\.\z\.\z\|\z\.\z\[x_1]\.\z\|\z\.\z\.\z\.\[x_0]\|\cr
757 }
758
759 However, this ``reformatting'' does not produce a~correct encoding of a~vector,
760 because the separator zeroes are missing. For this reason, the implementation
761 of~\<Sum> using modulo does not work correctly (it produces $\0^b$ instead of $\1^b$).
762 We therefore use the technique based on multiplication instead, which does not need
763 the separators. (Alternatively, we can observe that $\1^b$ is the only case
764 affected, so we can handle it separately.)
765
766 \endlist
767
768 \paran{Scalar operations}%
769 We can use the aforementioned tricks to perform interesting operations on individual
770 numbers in constant time, too. Let us assume for a~while that we are
771 operating on $b$-bit numbers and the word size is at least~$b^2$.
772 This enables us to make use of intermediate vectors with $b$~elements
773 of $b$~bits each.
774
775 \algn{Integer operations in quadratic workspace}\id{lsbmsb}
776
777 \itemize\ibull
778
779 \:$\<Weight>(\alpha)$ --- Compute the Hamming weight of~$\alpha$, i.e., the number of ones in~$\(\alpha)$.
780
781 We perform \<Unpack> and then \<Sum>.
782
783 \:$\<Permute>_\pi(\alpha)$ --- Shuffle the bits of~$\alpha$ according
784 to a~fixed permutation~$\pi$.
785
786 We perform $\<Unpack>_\pi$ and \<Pack> back.
787
788 \:$\<LSB>(\alpha)$ --- Find the least significant bit of~$\alpha$,
789 i.e., the smallest~$i$ such that $\alpha[i]=1$.
790
791 By a~combination of subtraction with $\bxor$, we create a~number
792 that contains ones exactly at the position of $\<LSB>(\alpha)$ and below:
793
794 \alik{
795 \alpha&=                        \9\9\9\9\9\1\0\0\0\0\cr
796 \alpha-1&=                      \9\9\9\9\9\0\1\1\1\1\cr
797 \alpha\bxor(\alpha-1)&=         \0\9\9\9\0\1\1\1\1\1\cr
798 }
799
800 Then we calculate the \<Weight> of the result and subtract~1.
801
802 \:$\<MSB>(\alpha)$ --- Find the most significant bit of~$\alpha$ (the position
803 of the highest bit set).
804
805 Reverse the bits of the number~$\alpha$ first by calling \<Permute>, then apply \<LSB>
806 and subtract the result from~$b-1$.
807
808 \endlist
809
810 \paran{LSB and MSB}%
811 As noted by Brodnik~\cite{brodnik:lsb} and others, the space requirements of
812 the \<LSB> operation can be lowered to linear. We split the $w$-bit input to $\sqrt{w}$
813 blocks of $\sqrt{w}$ bits each. Then we determine which blocks are non-zero and
814 identify the lowest such block (this is a~\<LSB> of a~number whose bits
815 correspond to the blocks). Finally we calculate the \<LSB> of this block. In
816 both calls to \<LSB,> we have a $\sqrt{w}$-bit number in a~$w$-bit word, so we
817 can use the previous algorithm. The same trick of course applies to for finding the
818 \<MSB>, too.
819
820 The following algorithm shows the details.
821
822 \algn{LSB in linear workspace}
823
824 \algo\id{lsb}
825 \algin A~$w$-bit number~$\alpha$.
826 \:$b\=\lceil\sqrt{w}\,\rceil$. \cmt{the size of a~block}
827 \:$\ell\=b$. \cmt{the number of blocks is the same}
828 \:$x\=(\alpha \band (\0\1^b)^\ell) \bor ((\alpha \band (\1\0^b)^\ell) \shr 1)$.
829 \hfill\break
830 \cmt{encoding of a~vector~${\bf x}$ such that $x_i\ne 0$ iff the $i$-th block is non-zero}%
831 \foot{Why is this so complicated? It is tempting to take $\alpha$ itself as a~code of this vector,
832 but we must not forget the separator bits between elements, so we create them and
833 relocate the bits we have overwritten.}
834 \:$y\=\<Cmp>(0,x)$. \cmt{$y_i=1$ if the $i$-th block is non-zero, otherwise $y_0=0$}
835 \:$\beta\=\<Pack>(y)$. \cmt{each block compressed to a~single bit}
836 \:$p\=\<LSB>(\beta)$. \cmt{the index of the lowest non-zero block}
837 \:$\gamma\=(\alpha \shr bp) \band \1^b$. \cmt{the contents of that block}
838 \:$q\=\<LSB>(\gamma)$. \cmt{the lowest bit set there}
839 \algout $\<LSB>(\alpha) = bp+q$.
840 \endalgo
841
842 \paran{Constants}%
843 We have used a~plenty of constants that depend on the format of the vectors.
844 Either we can write non-uniform programs (see \ref{nonuniform}) and use native constants,
845 or we can observe that all such constants can be easily manufactured. For example,
846 $(\0^b\1)^d = \1^{(b+1)d} / \1^{b+1} = (2^{(b+1)d}-1)/(2^{b+1}-1) = ((1 \shl (b+1)d)-1) / ((2\shl b) - 1)$. The only exceptions
847 are the~$w$ and~$b$ in the LSB algorithm \ref{lsb}, which we are unable to produce
848 in constant time. In practice we use the ``bit tricks'' as frequently called subroutines
849 in an~encompassing algorithm, so we usually can afford spending a~lot of time on the precalculation
850 of constants performed once during algorithm startup.
851
852 \paran{History}%
853 The history of combining arithmetic and logical operations to obtain fast programs for various
854 interesting functions is blurred. Many of the bit tricks, which we have described, have been
855 discovered independently by numerous people in the early ages of digital computers.
856 Since then, they have become a~part of the computer science folklore. Probably the
857 earliest documented occurrence is in the 1972's memo of the MIT Artificial Intelligence
858 Lab \cite{hakmem}. However, until the work of Fredman and Willard nobody seemed to
859 realize the full consequences.
860
861 %--------------------------------------------------------------------------------
862
863 \section{Q-Heaps}\id{qheaps}%
864
865 We have shown how to perform non-trivial operations on a~set of values
866 in constant time, but so far only under the assumption that the number of these
867 values is small enough and that the values themselves are also small enough
868 (so that the whole set fits in $\O(1)$ machine words). Now we will show how to
869 lift the restriction on the magnitude of the values and still keep constant time
870 complexity. We will describe a~slightly simplified version of the Q-heaps developed by
871 Fredman and Willard in~\cite{fw:transdich}.
872
873 The Q-heap represents a~set of at most~$k$ word-sized integers, where $k\le W^{1/4}$
874 and $W$ is the word size of the machine. It will support insertion, deletion, finding
875 of minimum and maximum, and other operations described below, in constant time, provided that
876 we are willing to spend~$\O(2^{k^4})$ time on preprocessing.
877
878 The exponential-time preprocessing may sound alarming, but a~typical application uses
879 Q-heaps of size $k=\log^{1/4} N$, where $N$ is the size of the algorithm's input.
880 This guarantees that $k\le W^{1/4}$ and $\O(2^{k^4}) = \O(N)$. Let us however
881 remark that the whole construction is primarily of theoretical importance ---
882 the huge multiplicative constants hidden in the~$\O$ make these heaps useless
883 in practical algorithms. Despite this, many of the tricks we develop have proven
884 themselves useful even in real-life data structures.
885
886 Spending so much time on preprocessing makes it possible to precompute tables of
887 almost arbitrary functions and then assume that the functions can be evaluated in
888 constant time:
889
890 \lemma\id{qhprecomp}%
891 When~$f$ is a~function computable in polynomial time, $\O(2^{k^4})$ time is enough
892 to precompute a~table of the values of~$f$ for all arguments whose size is $\O(k^3)$ bits.
893
894 \proof
895 There are $2^{\O(k^3)}$ possible combinations of arguments of the given size and for each of
896 them we spend $\poly(k)$ time on calculating the function. It remains
897 to observe that $2^{\O(k^3)}\cdot \poly(k) = \O(2^{k^4})$.
898 \qed
899
900 \paran{Tries and ranks}%
901 We will first develop an~auxiliary construction based on tries and then derive
902 the real definition of the Q-heap from it.
903
904 \nota
905 \itemize\ibull
906 \:$W$ --- the word size of the RAM,
907 \:$k = \O(W^{1/4})$ --- the limit on the size of the heap,
908 \:$n\le k$ --- the number of elements stored in the heap,
909 \:$X=\{x_1, \ldots, x_n\}$ --- the elements themselves: distinct $W$-bit numbers
910 indexed in a~way that $x_1 < \ldots < x_n$,
911 \:$g_i = \<MSB>(x_i \bxor x_{i+1})$ --- the position of the most significant bit in which $x_i$ and~$x_{i+1}$ differ,
912 \:$R_X(x)$ --- the rank of~$x$ in~$X$, that is the number of elements of~$X$ which are less than~$x$
913 (where $x$~itself need not be an~element of~$X$).\foot{We will dedicate the whole Chapter~\ref{rankchap} to the
914 study of various ranks.}
915 \endlist
916
917 \defn
918 A~\df{trie} for a~set of strings~$S$ over a~finite alphabet~$\Sigma$ is
919 a~rooted tree whose vertices are the prefixes of the strings in~$S$ and there
920 is an~edge going from a~prefix~$\alpha$ to a~prefix~$\beta$ iff $\beta$ can be
921 obtained from~$\alpha$ by appending a~single symbol of the alphabet. The edge
922 will be labeled with that particular symbol. We will also define the~\df{letter depth}
923 of a~vertex as the length of the corresponding prefix. We mark the vertices
924 which match a~string of~$S$.
925
926 A~\df{compressed trie} is obtained by removing the vertices of outdegree~1
927 except for the root and the marked vertices.
928 Wherever there is a~directed path whose internal vertices have outdegree~1 and they carry
929 no mark, we replace this path by a~single edge labeled with the concatenation
930 of the original edges' labels.
931
932 In both kinds of tries, we order the outgoing edges of every vertex by their labels
933 lexicographically.
934
935 \obs
936 In both tries, the root of the tree is the empty word. Generally, the prefix
937 in a~vertex is equal to the concatenation of edge labels on the path
938 leading from the root to that vertex. The letter depth of the vertex is equal to
939 the total size of these labels. All leaves correspond to strings in~$S$, but so can
940 some internal vertices if there are two strings in~$S$ such that one is a~prefix
941 of the other.
942
943 Furthermore, the labels of all edges leaving a~common vertex are always
944 distinct and when we compress the trie, no two such labels share their initial
945 symbols. This allows us to search in the trie efficiently: when looking for
946 a~string~$x$, we follow the path from the root and whenever we visit
947 an~internal vertex of letter depth~$d$, we test the $d$-th character of~$x$,
948 we follow the edge whose label starts with this character, and we check that the
949 rest of the label matches.
950
951 The compressed trie is also efficient in terms of space consumption --- it has
952 $\O(\vert S\vert)$ vertices (this can be easily shown by induction on~$\vert S\vert$)
953 and all edge labels can be represented in space linear in the sum of the
954 lengths of the strings in~$S$.
955
956 \defn
957 For our set~$X$, we define~$T$ as a~compressed trie for the set of binary
958 encodings of the numbers~$x_i$, padded to exactly $W$~bits, i.e., for $S = \{ \(x)_W \mid x\in X \}$.
959
960 \float{\valign{\vfil#\vfil\cr
961 \hbox{\epsfbox{pic/qheap.eps}}\cr
962 \noalign{\qquad\quad}
963   \halign{#\hfil&\quad#\hfil\cr
964     $x_1 = \0\0\0\0\1\1$ & $g_1=3$ \cr
965     $x_2 = \0\0\1\0\1\0$ & $g_2=4$ \cr
966     $x_3 = \0\1\0\0\0\1$ & $g_3=2$ \cr
967     $x_4 = \0\1\0\1\0\1$ & $g_4=5$ \cr
968     $x_5 = \1\0\0\0\0\0$ & $g_5=0$ \cr
969     $x_6 = \1\0\0\0\0\1$ \cr
970   }\cr
971 }}{Six numbers stored in a~compressed trie}
972
973 \obs
974 The trie~$T$ has several interesting properties. Since all words in~$S$ have the same
975 length, the leaves of the trie correspond to these exact words, that is to the numbers~$x_i$.
976 The depth-first traversal of the trie enumerates the words of~$S$ in lexicographic order
977 and therefore also the~$x_i$'s in the order of their values. Between each
978 pair of leaves $x_i$ and~$x_{i+1}$ it visits an~internal vertex whose letter depth
979 is exactly~$W-1-g_i$.
980
981 \para
982 Let us now modify the algorithm for searching in the trie and make it compare
983 only the first symbols of the edges. In other words, we will test only the bits~$g_i$
984 which will be called \df{guides} (as they guide us through the tree). For $x\in
985 X$, the modified algorithm will still return the correct leaf. For all~$x$ outside~$X$
986 it will no longer fail and instead it will land on some leaf~$x_i$. At the
987 first sight the number~$x_i$ may seem unrelated, but we will show that it can be
988 used to determine the rank of~$x$ in~$X$, which will later form a~basis for all
989 Q-heap operations:
990
991 \lemma\id{qhdeterm}%
992 The rank $R_X(x)$ is uniquely determined by a~combination of:
993 \itemize\ibull
994 \:the trie~$T$,
995 \:the index~$i$ of the leaf found when searching for~$x$ in~$T$,
996 \:the relation ($<$, $=$, $>$) between $x$ and $x_i$,
997 \:the bit position $b=\<MSB>(x\bxor x_i)$ of the first disagreement between~$x$ and~$x_i$.
998 \endlist
999
1000 \proof
1001 If $x\in X$, we detect that from $x_i=x$ and the rank is obviously~$i-1$.
1002 Let us assume that $x\not\in X$ and imagine that we follow the same path as when
1003 searching for~$x$,
1004 but this time we check the full edge labels. The position~$b$ is the first position
1005 where~$\(x)$ disagrees with a~label. Before this point, all edges not taken by
1006 the search were leading either to subtrees containing elements all smaller than~$x$
1007 or all larger than~$x$ and the only values not known yet are those in the subtree
1008 below the edge that we currently consider. Now if $x[b]=0$ (and therefore $x<x_i$),
1009 all values in that subtree have $x_j[b]=1$ and thus they are larger than~$x$. In the other
1010 case, $x[b]=1$ and $x_j[b]=0$, so they are smaller.
1011 \qed
1012
1013 \paran{A~better representation}%
1014 The preceding lemma shows that the rank can be computed in polynomial time, but
1015 unfortunately the variables on which it depends are too large for a~table to
1016 be efficiently precomputed. We will carefully choose an~equivalent representation
1017 of the trie which is compact enough.
1018
1019 \lemma\id{citree}%
1020 The compressed trie is uniquely determined by the order of the guides~$g_1,\ldots,g_{n-1}$.
1021
1022 \proof
1023 We already know that the letter depths of the trie vertices are exactly
1024 the numbers~$W-1-g_i$. The root of the trie must have the smallest of these
1025 letter depths, i.e., it must correspond to the highest numbered bit. Let
1026 us call this bit~$g_i$. This implies that the values $x_1,\ldots,x_i$
1027 must lie in the left subtree of the root and $x_{i+1},\ldots,x_n$ in its
1028 right subtree. Both subtrees can be then constructed recursively.\foot{This
1029 construction is also known as the \df{cartesian tree} for the sequence
1030 $g_1,\ldots,g_{n-1}$ and it is useful in many other algorithms as it can be
1031 built in $\O(n)$ time. A~nice application on the Lowest Common Ancestor
1032 and Range Minimum problems has been described by Bender et al.~in \cite{bender:lca}.}
1033 \qed
1034
1035 \para
1036 Unfortunately, the vector of the $g_i$'s is also too long (is has $k\log W$ bits
1037 and we have no upper bound on~$W$ in terms of~$k$), so we will compress it even
1038 further:
1039
1040 \nota\id{qhnota}%
1041 \itemize\ibull
1042 \:$B = \{g_1,\ldots,g_n\}$ --- the set of bit positions of all the guides, stored as a~sorted array,
1043 \:$G : \{1,\ldots,n\} \rightarrow \{1,\ldots,n\}$ --- a~function mapping
1044 the guides to their bit positions in~$B$: $g_i = B[G(i)]$,
1045 \:$x[B]$ --- a~bit string containing the bits of~$x$ originally located
1046 at the positions given by~$B$, i.e., the concatenation of bits $x[B[1]],
1047 x[B[2]],\ldots, x[B[n]]$.
1048 \endlist
1049
1050 \obs\id{qhsetb}%
1051 The set~$B$ has $\O(k\log W)=\O(W)$ bits, so it can be stored in a~constant number
1052 of machine words in the form of a~sorted vector. The function~$G$ can be also stored as a~vector
1053 of $\O(k\log k)$ bits. We can change a~single~$g_i$ in constant time using
1054 vector operations: First we delete the original value of~$g_i$ from~$B$ if it
1055 is not used anywhere else. Then we add the new value to~$B$ if it was not
1056 there yet and we write its position in~$B$ to~$G(i)$. Whenever we insert
1057 or delete a~value in~$B$, the values at the higher positions shift one position
1058 up or down and we have to update the pointers in~$G$. This can be fortunately
1059 accomplished by adding or subtracting a~result of vector comparison.
1060
1061 In this representation, we can reformulate our lemma on ranks as follows:
1062
1063 \lemma\id{qhrank}%
1064 The rank $R_X(x)$ can be computed in constant time from:
1065 \itemize\ibull
1066 \:the function~$G$,
1067 \:the values $x_1,\ldots,x_n$,
1068 \:the bit string~$x[B]$,
1069 \:$x$ itself.
1070 \endlist
1071
1072 \proof
1073 Let us prove that all ingredients of Lemma~\ref{qhdeterm} are either small
1074 enough or computable in constant time.
1075
1076 We know that the shape of the trie~$T$ is uniquely determined by the order of the $g_i$'s
1077 and therefore by the function~$G$ since the array~$B$ is sorted. The shape of
1078 the trie together with the bits in $x[B]$ determine the leaf~$x_i$ found when searching
1079 for~$x$ using only the guides. This can be computed in polynomial time and it
1080 depends on $\O(k\log k)$ bits of input, so according to Lemma~\ref{qhprecomp}
1081 we can look it up in a~precomputed table.
1082
1083 The relation between $x$ and~$x_i$ can be obtained directly as we know the~$x_i$.
1084 The bit position of the first disagreement can be calculated in constant time
1085 using the Brodnik's LSB/MSB algorithm (\ref{lsb}).
1086
1087 All these ingredients can be stored in $\O(k\log k)$ bits, so we may assume
1088 that the rank can be looked up in constant time as well.
1089 \qed
1090
1091 \para
1092 We would like to store the set~$X$ as a~sorted array together
1093 with the corresponding trie, which will allow us to determine the position
1094 for a~newly inserted element in constant time. However, the set is too large
1095 to fit in a~vector and we cannot perform insertion on an~ordinary array in
1096 constant time. This can be worked around by keeping the set in an~unsorted
1097 array and storing a~separate vector containing the permutation that sorts the array.
1098 We can then insert a~new element at an~arbitrary place in the array and just
1099 update the permutation to reflect the correct order.
1100
1101 \paran{The Q-heap}%
1102 We are now ready for the real definition of the Q-heap and for the description
1103 of the basic operations on it.
1104
1105 \defn
1106 A~\df{Q-heap} consists of:
1107 \itemize\ibull
1108 \:$k$, $n$ --- the capacity of the heap and the current number of elements (word-sized integers),
1109 \:$X$ --- the set of word-sized elements stored in the heap (an~array of words in an~arbitrary order),
1110 \:$\varrho$ --- a~permutation on~$\{1,\ldots,n\}$ such that $X[\varrho(1)] < \ldots < X[\varrho(n)]$
1111 (a~vector of $\O(n\log k)$ bits; we will write $x_i$ for $X[\varrho(i)]$),
1112 \:$B$ --- a~set of ``interesting'' bit positions
1113 (a~sorted vector of~$\O(n\log W)$ bits),
1114 \:$G$ --- the function that maps the guides to the bit positions in~$B$
1115 (a~vector of~$\O(n\log k)$ bits),
1116 \:precomputed tables of various functions.
1117 \endlist
1118
1119 \algn{Search in the Q-heap}\id{qhfirst}%
1120 \algo
1121 \algin A~Q-heap and an~integer~$x$ to search for.
1122 \:$i\=R_X(x)+1$, using Lemma~\ref{qhrank} to calculate the rank.
1123 \:If $i\le n$ return $x_i$, otherwise return {\sc undefined.}
1124 \algout The smallest element of the heap which is greater or equal to~$x$.
1125 \endalgo
1126
1127 \algn{Insertion to the Q-heap}
1128 \algo
1129 \algin A~Q-heap and an~integer~$x$ to insert.
1130 \:$i\=R_X(x)+1$, using Lemma~\ref{qhrank} to calculate the rank.
1131 \:If $x=x_i$, return immediately (the value is already present).
1132 \:Insert the new value to~$X$:
1133 \::$n\=n+1$.
1134 \::$X[n]\=x$.
1135 \::Insert~$n$ at the $i$-th position in the permutation~$\varrho$.
1136 \:Update the $g_j$'s:
1137 \::Move all~$g_j$ for $j\ge i$ one position up. \hfil\break
1138    This translates to insertion in the vector representing~$G$.
1139 \::Recalculate $g_{i-1}$ and~$g_i$ according to the definition.
1140    \hfil\break Update~$B$ and~$G$ as described in~\ref{qhsetb}.
1141 \algout The updated Q-heap.
1142 \endalgo
1143
1144 \algn{Deletion from the Q-heap}
1145 \algo
1146 \algin A~Q-heap and an~integer~$x$ to be deleted from it.
1147 \:$i\=R_X(x)+1$, using Lemma~\ref{qhrank} to calculate the rank.
1148 \:If $i>n$ or $x_i\ne x$, return immediately (the value is not in the heap).
1149 \:Delete the value from~$X$:
1150 \::$X[\varrho(i)]\=X[n]$.
1151 \::Find $j$ such that~$\varrho(j)=n$ and set $\varrho(j)\=\varrho(i)$.
1152 \::$n\=n-1$.
1153 \:Update the $g_j$'s like in the previous algorithm.
1154 \algout The updated Q-heap.
1155 \endalgo
1156
1157 \algn{Finding the $i$-th smallest element in the Q-heap}\id{qhlast}%
1158 \algo
1159 \algin A~Q-heap and an~index~$i$.
1160 \:If $i<1$ or $i>n$, return {\sc undefined.}
1161 \:Return~$x_i$.
1162 \algout The $i$-th smallest element in the heap.
1163 \endalgo
1164
1165 \paran{Extraction}%
1166 The heap algorithms we have just described have been built from primitives
1167 operating in constant time, with one notable exception: the extraction
1168 $x[B]$ of all bits of~$x$ at positions specified by the set~$B$. This cannot be done
1169 in~$\O(1)$ time on the Word-RAM, but we can implement it with ${\rm AC}^0$
1170 instructions as suggested by Andersson in \cite{andersson:fusion} or even
1171 with those ${\rm AC}^0$ instructions present on real processors (see Thorup
1172 \cite{thorup:aczero}). On the Word-RAM, we need to make use of the fact
1173 that the set~$B$ is not changing too much --- there are $\O(1)$ changes
1174 per Q-heap operation. As Fredman and Willard have shown, it is possible
1175 to maintain a~``decoder'', whose state is stored in $\O(1)$ machine words
1176 and which helps us to extract $x[B]$ in a~constant number of operations:
1177
1178 \lemman{Extraction of bits}\id{qhxtract}%
1179 Under the assumptions on~$k$, $W$ and the preprocessing time as in the Q-heaps,\foot{%
1180 Actually, this is the only place where we need~$k$ to be as low as $W^{1/4}$.
1181 In the ${\rm AC}^0$ implementation, it is enough to ensure $k\log k\le W$.
1182 On the other hand, we need not care about the exponent because it can
1183 be increased arbitrarily using the Q-heap trees described below.}
1184 it is possible to maintain a~data structure for a~set~$B$ of bit positions,
1185 which allows~$x[B]$ to be extracted in $\O(1)$ time for an~arbitrary~$x$.
1186 When a~single element is inserted to~$B$ or deleted from~$B$, the structure
1187 can be updated in constant time, as long as $\vert B\vert \le k$.
1188
1189 \proof
1190 See Fredman and Willard \cite{fw:transdich}.
1191 \qed
1192
1193 \para
1194 This was the last missing bit of the mechanics of the Q-heaps. We are
1195 therefore ready to conclude this section by the following theorem
1196 and its consequences:
1197
1198 \thmn{Q-heaps, Fredman and Willard \cite{fw:transdich}}\id{qh}%
1199 Let $W$ and~$k$ be positive integers such that $k=\O(W^{1/4})$. Let~$Q$
1200 be a~Q-heap of at most $k$-elements of $W$~bits each. Then the Q-heap
1201 operations \ref{qhfirst} to \ref{qhlast} on~$Q$ (insertion, deletion,
1202 search for a~given value and search for the $i$-th smallest element)
1203 run in constant time on a~Word-RAM with word size~$W$, after spending
1204 time $\O(2^{k^4})$ on the same RAM on precomputing of tables.
1205
1206 \proof
1207 Every operation on the Q-heap can be performed in a~constant number of
1208 vector operations and calculations of ranks. The ranks are computed
1209 in $\O(1)$ steps involving again $\O(1)$ vector operations, binary
1210 logarithms and bit extraction. All these can be calculated in constant
1211 time using the results of section \ref{bitsect} and Lemma \ref{qhxtract}.
1212 \qed
1213
1214 \paran{Combining Q-heaps}%
1215 We can also use the Q-heaps as building blocks of more complex structures
1216 like Atomic heaps and AF-heaps (see once again \cite{fw:transdich}). We will
1217 show a~simpler, but often sufficient construction, sometimes called the \df{Q-heap tree.}
1218 Suppose we have a~Q-heap of capacity~$k$ and a~parameter $d\in{\bb N}^+$. We
1219 can build a~balanced $k$-ary tree of depth~$d$ such that its leaves contain
1220 a~given set and every internal vertex keeps the minimum value in the subtree
1221 rooted in it, together with a~Q-heap containing the values in all its sons.
1222 This allows minimum to be extracted in constant time (it is placed in the root)
1223 and when any element is changed, it is sufficient to recalculate the values
1224 from the path from this element to the root, which takes $\O(d)$ Q-heap
1225 operations.
1226
1227 \corn{Q-heap trees}\id{qhtree}%
1228 For every positive integer~$r$ and $\delta>0$ there exists a~data structure
1229 capable of maintaining the minimum of a~set of at most~$r$ word-sized numbers
1230 under insertions and deletions. Each operation takes $\O(1)$ time on a~Word-RAM
1231 with word size $W=\Omega(r^{\delta})$, after spending time
1232 $\O(2^{r^\delta})$ on precomputing of tables.
1233
1234 \proof
1235 Choose $\delta' \le \delta$ such that $r^{\delta'} = \O(W^{1/4})$. Build
1236 a~Q-heap tree of depth $d=\lceil \delta/\delta'\rceil$ containing Q-heaps of
1237 size $k=r^{\delta'}$. \qed
1238
1239 \rem\id{qhtreerem}%
1240 When we have an~algorithm with input of size~$N$, the word size is at least~$\log N$
1241 and we can spend time $\O(N)$ on preprocessing, so we can choose $r=\log N$ and
1242 $\delta=1$ in the above corollary and get a~heap of size $\log N$ working in
1243 constant time per operation.
1244
1245 \endpart