]> mj.ucw.cz Git - saga.git/blob - mst.tex
fe6c3e34546ac2d5291eee38cf1b205f40421cdc
[saga.git] / mst.tex
1 \ifx\endpart\undefined
2 \input macros.tex
3 \fi
4
5 \chapter{Minimum Spanning Trees}
6
7 \section{The Problem}
8
9 The problem of finding a minimum spanning tree of a weighted graph is one of the
10 best studied problems in the area of combinatorial optimization since its birth.
11 Its colorful history (see \cite{graham:msthistory} and \cite{nesetril:history} for the full account)
12 begins in~1926 with the pioneering work of Bor\o{u}vka
13 \cite{boruvka:ojistem}\foot{See \cite{nesetril:boruvka} for an English translation with commentary.},
14 who studied primarily an Euclidean version of the problem related to planning
15 of electrical transmission lines (see \cite{boruvka:networks}), but gave an efficient
16 algorithm for the general version of the problem. As it was well before the dawn of graph
17 theory, the language of his paper was complicated, so we will better state the problem
18 in contemporary terminology:
19
20 \proclaim{Problem}Given an undirected graph~$G$ with weights $w:E(G)\rightarrow {\bb R}$,
21 find its minimum spanning tree, defined as follows:
22
23 \defn\id{mstdef}%
24 For a given graph~$G$ with weights $w:E(G)\rightarrow {\bb R}$:
25 \itemize\ibull
26 \:A~subgraph $H\subseteq G$ is called a \df{spanning subgraph} if $V(H)=V(G)$.
27 \:A~\df{spanning tree} of $G$ is any its spanning subgraph which is a tree.
28 \:For any subgraph $H\subseteq G$ we define its \df{weight} $w(H):=\sum_{e\in E(H)} w(e)$.
29   When comparing two weights, we will use the terms \df{lighter} and \df{heavier} in the
30   obvious sense.
31 \:A~\df{minimum spanning tree (MST)} of~$G$ is a spanning tree~$T$ such that its weight $w(T)$
32   is the smallest possible of all the spanning trees of~$G$.
33 \:For a disconnected graph, a \df{(minimum) spanning forest (MSF)} is defined as
34   a union of (minimum) spanning trees of its connected components.
35 \endlist
36
37 Bor\o{u}vka's work was further extended by Jarn\'\i{}k \cite{jarnik:ojistem}, again in
38 mostly geometric setting, giving another efficient algorithm. However, when
39 computer science and graph theory started forming in the 1950's and the
40 spanning tree problem was one of the central topics of the flourishing new
41 disciplines, the previous work was not well known and the algorithms had to be
42 rediscovered several times.
43
44 Recently, several significantly faster algorithms were discovered, most notably the
45 $\O(m\beta(m,n))$-time algorithm by Fredman and Tarjan \cite{ft:fibonacci} and
46 algorithms with inverse-Ackermann type complexity by Chazelle \cite{chazelle:ackermann}
47 and Pettie \cite{pettie:ackermann}.
48
49 \FIXME{Write the rest of the history.}
50
51 This chapter attempts to survery the important algorithms for finding the MST and it
52 also presents several new ones.
53
54 \section{Basic Properties}
55
56 In this section, we will examine the basic properties of spanning trees and prove
57 several important theorems to base the algorithms upon. We will follow the theory
58 developed by Tarjan in~\cite{tarjan:dsna}.
59
60 For the whole section, we will fix a graph~$G$ with edge weights~$w$ and all
61 other graphs will be spanning subgraphs of~$G$. We will use the same notation
62 for the subgraphs as for the corresponding sets of edges.
63
64 First of all, let us show that the weights on edges are not necessary for the
65 definition of the MST. We can formulate an equivalent characterization using
66 an ordering of edges instead.
67
68 \defnn{Heavy and light edges}\id{heavy}%
69 Let~$T$ be a~spanning tree. Then:
70 \itemize\ibull
71 \:For vertices $x$ and $y$, let $T[x,y]$ denote the (unique) path in~$T$ joining $x$ and~$y$.
72 \:For an edge $e=xy$ we will call $T[e]:=T[x,y]$ the \df{path covered by~$e$} and
73   the edges of this path \df{edges covered by~$e$}.
74 \:An edge~$e$ is called \df{light with respect to~$T$} (or just \df{$T$-light}) if it covers a heavier edge, i.e., if there
75   is an edge $f\in T[e]$ such that $w(f) > w(e)$.
76 \:An edge~$e$ is called \df{$T$-heavy} if it is not $T$-light.
77 \endlist
78
79 \rem
80 Please note that the above properties also apply to tree edges
81 which by definition cover only themselves and therefore they are always heavy.
82
83 \lemman{Light edges}\id{lightlemma}%
84 Let $T$ be a spanning tree. If there exists a $T$-light edge, then~$T$
85 is not minimum.
86
87 \proof
88 If there is a $T$-light edge~$e$, then there exists an edge $e'\in T[e]$ such
89 that $w(e')>w(e)$. Now $T-e'$ is a forest of two trees with endpoints of~$e$
90 located in different components, so adding $e$ to this forest must restore
91 connectivity and $T':=T-e'+e$ is another spanning tree with weight $w(T')
92 = w(T)-w(e')+w(e) < w(T)$. Hence $T$ could not have been minimum.
93 \qed
94
95 \figure{mst2.eps}{278pt}{An edge exchange as in the proof of Lemma~\ref{lightlemma}}
96
97 The converse of this lemma is also true and to prove it, we will once again use
98 technique of transforming trees by \df{exchanges} of edges. In the proof of the
99 lemma, we have made use of the fact that whenever we exchange an edge~$e$ of
100 a spanning tree for another edge~$f$ covered by~$e$, the result is again
101 a spanning tree. In fact, it is possible to transform any spanning tree
102 to any other spanning tree by a sequence of exchanges.
103
104 \lemman{Exchange property for trees}\id{xchglemma}%
105 Let $T$ and $T'$ be spanning trees of a common graph. Then there exists
106 a sequence of edge exchanges which transforms $T$ to~$T'$. More formally,
107 there exists a sequence of spanning trees $T=T_0,T_1,\ldots,T_k=T'$ such that
108 $T_{i+1}=T_i - e_i + e_i^\prime$ where $e_i\in T_i$ and $e_i^\prime\in T'$.
109
110 \proof
111 By induction on $d(T,T'):=\vert T\symdiff T'\vert$. When $d(T,T')=0$,
112 both trees are identical and no exchanges are needed. Otherwise, the trees are different,
113 but as they are of the same size, there must exist an edge $e'\in T'\setminus T$.
114 The cycle $T[e']+e'$ cannot be wholly contained in~$T'$, so there also must
115 exist an edge $e\in T[e']\setminus T'$. Exchanging $e$ for~$e'$ yields a spanning
116 tree $T^*:=T-e+e'$ such that $d(T^*,T')=d(T,T')-2$ and we can apply the induction
117 hypothesis to $T^*$ and $T'$ to get the rest of the exchange sequence.
118 \qed
119
120 \figure{mst1.eps}{295pt}{One step of the proof of Lemma~\ref{xchglemma}}
121
122 \lemman{Monotone exchanges}\id{monoxchg}%
123 Let $T$ be a spanning tree such that there are no $T$-light edges and $T'$
124 be an arbitrary spanning tree. Then there exists a sequence of edge exchanges
125 transforming $T$ to~$T'$ such that the weight does not increase in any step.
126
127 \proof
128 We improve the argument from the previous proof, refining the induction step.
129 When we exchange $e\in T$ for $e'\in T'\setminus T$ such that $e\in T[e']$,
130 the weight never drops, since $e'$ is not a $T$-light edge and therefore
131 $w(e') \ge w(e)$, so $w(T^*)=w(T)-w(e)+w(e')\ge w(T)$.
132
133 To keep the induction going, we have to make sure that there are still no light
134 edges with respect to~$T^*$. In fact, it is enough to avoid such edges in
135 $T'\setminus T^*$, since these are the only edges considered by the induction
136 steps. To accomplish that, we replace the so far arbitrary choice of $e'\in T'\setminus T$
137 by picking the lightest such edge.
138
139 Now consider an edge $f\in T'\setminus T^*$. We want to show that $f$ is not
140 $T^*$-light, i.e., that it is heavier than all edges on $T^*[f]$. The path $T^*[f]$ is
141 either equal to the original path $T[f]$ (if $e\not\in T[f]$) or to $T[f] \symdiff C$,
142 where $C$ is the cycle $T[e']+e'$. The former case is trivial, in the latter one
143 $w(f)\ge w(e')$ due to the choice of $e'$ and all other edges on~$C$ are lighter
144 than~$e'$ as $e'$ was not $T$-light.
145 \qed
146
147 \thmn{Minimality by order}\id{mstthm}%
148 A~spanning tree~$T$ is minimum iff there is no $T$-light edge.
149
150 \proof
151 If~$T$ is minimum, then by Lemma~\ref{lightlemma} there are no $T$-light
152 edges.
153 Conversely, when $T$ is a spanning tree without $T$-light edges
154 and $T_{min}$ is an arbitrary minimum spanning tree, then according to the Monotone
155 exchange lemma (\ref{monoxchg}) there exists a non-decreasing sequence
156 of exchanges transforming $T$ to $T_{min}$, so $w(T)\le w(T_{min})$
157 and thus $T$~is also minimum.
158 \qed
159
160 In general, a single graph can have many minimum spanning trees (for example
161 a complete graph on~$n$ vertices and unit edge weights has $n^{n-2}$
162 minimum spanning trees according to the Cayley's formula \cite{cayley:trees}).
163 However, as the following theorem shows, this is possible only if the weight
164 function is not injective.
165
166 \thmn{MST uniqueness}%
167 If all edge weights are distinct, then the minimum spanning tree is unique.
168
169 \proof
170 Consider two minimum spanning trees $T_1$ and~$T_2$. According to the previous
171 theorem, there are no light edges with respect to neither of them, so by the
172 Monotone exchange lemma (\ref{monoxchg}) there exists a sequence of non-decreasing
173 edge exchanges going from $T_1$ to $T_2$. As all edge weights all distinct,
174 these edge exchanges must be in fact strictly increasing. On the other hand,
175 we know that $w(T_1)=w(T_2)$, so the exchange sequence must be empty and indeed
176 $T_1$ and $T_2$ must be identical.
177 \qed
178
179 \rem\id{edgeoracle}%
180 To simplify the description of MST algorithms, we will expect that the weights
181 of all edges are distinct and that instead of numeric weights (usually accompanied
182 by problems with representation of real numbers in algorithms) we will be given
183 a comparison oracle, that is a function which answers questions ``$w(e)<w(f)$?'' in
184 constant time. In case the weights are not distinct, we can easily break ties by
185 comparing some unique edge identifiers and according to our characterization of
186 minimum spanning trees, the unique MST of the new graph will still be a MST of the
187 original graph. In the few cases where we need a more concrete input, we will
188 explicitly state so.
189
190 \nota\id{mstnota}%
191 When $G$ is a graph with distinct edge weights, we will use $\mst(G)$ to denote
192 its unique minimum spanning tree.
193
194 Another useful consequence is that whenever two graphs are isomorphic and the
195 isomorphism preserves weight order, the isomorphism applies to their MST's
196 as well:
197
198 \defn
199 A~\df{monotone isomorphism} of two weighted graphs $G_1=(V_1,E_1,w_1)$ and
200 $G_2=(V_2,E_2,w_2)$ is a bijection $\pi: V_1\rightarrow V_2$ such that
201 for each $u,v\in V_1: uv\in E_1 \Leftrightarrow \pi(u)\pi(v)\in E_2$ and
202 for each $e,f\in E_1: w_1(e)<w_1(f) \Leftrightarrow w_2(\pi[e]) < w_2(\pi[f])$.
203
204 \lemman{MST of isomorphic graphs}\id{mstiso}%
205 Let~$G_1$ and $G_2$ be two weighted graphs with unique edge weights and $\pi$
206 their monotone isomorphism. Then $\mst(G_2) = \pi[\mst(G_1)]$.
207
208 \proof
209 The isomorphism~$\pi$ maps spanning trees onto spanning trees and it preserves
210 the relation of covering. Since it is monotone, it preserves the property of
211 being a light edge (an~edge $e\in E(G_1)$ is $T$-light $\Leftrightarrow$
212 the edge $\pi[e]\in E(G_2)$ is~$f[T]$-light). Therefore by Theorem~\ref{mstthm}, $T$
213 is the MST of~$G_1$ if and only if $\pi[T]$ is the MST of~$G_2$.
214 \qed
215
216 \section{The Red-Blue Meta-Algorithm}
217
218 Most MST algorithms can be described as special cases of the following procedure
219 (again following \cite{tarjan:dsna}):
220
221 \algn{Red-Blue Meta-Algorithm}\id{rbma}%
222 \algo
223 \algin A~graph $G$ with an edge comparison oracle (see \ref{edgeoracle})
224 \:In the beginning, all edges are colored black.
225 \:Apply rules as long as possible:
226 \::Either pick a cut~$C$ such that its lightest edge is not blue \hfil\break and color this edge blue, \cmt{Blue rule}
227 \::Or pick a cycle~$C$ such that its heaviest edge is not red \hfil\break and color this edge \hphantas{red.}{blue.} \cmt{Red rule}
228 \algout Minimum spanning tree of~$G$ consisting of edges colored blue.
229 \endalgo
230
231 \rem
232 This procedure is not a proper algorithm, since it does not specify how to choose
233 the rule to apply. We will however prove that no matter how the rules are applied,
234 the procedure always stops and gives the correct result. Also, it will turn out
235 that each of the classical MST algorithms can be described as a specific way
236 of choosing the rules in this procedure, which justifies the name meta-algorithm.
237
238 \nota
239 We will denote the unique minimum spanning tree of the input graph by~$T_{min}$.
240 We intend to prove that this is also the output of the procedure.
241
242 \lemman{Blue lemma}%
243 When an edge is colored blue in any step of the procedure, it is contained in the minimum spanning tree.
244
245 \proof
246 By contradiction. Let $e$ be an edge painted blue as the lightest edge of a cut~$C$.
247 If $e\not\in T_{min}$, then there must exist an edge $e'\in T_{min}$ which is
248 contained in~$C$ (take any pair of vertices separated by~$C$, the path
249 in~$T_{min}$ joining these vertices must cross~$C$ at least once). Exchanging
250 $e$ for $e'$ in $T_{min}$ yields an even lighter spanning tree since
251 $w(e)<w(e')$. \qed
252
253 \lemman{Red lemma}%
254 When an edge is colored red in any step of the procedure, it is not contained in the minimum spanning tree.
255
256 \proof
257 Again by contradiction. Assume that $e$ is an edge painted red as the heaviest edge
258 of a cycle~$C$ and that $e\in T_{min}$. Removing $e$ causes $T_{min}$ to split to two
259 components, let us call them $T_x$ and $T_y$. Some vertices of~$C$ now lie in $T_x$,
260 the others in $T_y$, so there must exist in edge $e'\ne e$ such that its endpoints
261 lie in different components. Since $w(e')<w(e)$, exchanging $e$ for~$e'$ yields
262 a lighter spanning tree than $T_{min}$.
263 \qed
264
265 \figure{mst-rb.eps}{289pt}{Proof of the Blue (left) and Red (right) lemma}
266
267 \lemman{Black lemma}%
268 As long as there exists a black edge, at least one rule can be applied.
269
270 \proof
271 Assume that $e=xy$ be a black edge. Let us denote $M$ the set of vertices
272 reachable from~$x$ using only blue edges. If $y$~lies in~$M$, then $e$ together
273 with some blue path between $x$ and $y$ forms a cycle and it must be the heaviest
274 edge on this cycle. This holds because all blue edges have been already proven
275 to be in $T_{min}$ and there can be no $T_{min}$-light edges (see Theorem~\ref{mstthm}).
276 In this case we can apply the red rule.
277
278 On the other hand, if $y\not\in M$, then the cut formed by all edges between $M$
279 and $V(G)\setminus M$ contains no blue edges, therefore we can use the blue rule.
280 \qed
281
282 \figure{mst-bez.eps}{295pt}{Configurations in the proof of the Black lemma}
283
284 \thmn{Red-Blue correctness}%
285 For any selection of rules, the Red-Blue procedure stops and the blue edges form
286 the minimum spanning tree of the input graph.
287
288 \proof
289 To prove that the procedure stops, let us notice that no edge is ever recolored,
290 so we must run out of black edges after at most~$m$ steps. Recoloring
291 to the same color is avoided by the conditions built in the rules, recoloring to
292 a different color would mean that the an edge would be both inside and outside~$T_{min}$
293 due to our Red and Blue lemmata.
294
295 When no further rules can be applied, the Black lemma guarantees that all edges
296 are colored, so by the Blue lemma all blue edges are in~$T_{min}$ and by the Red
297 lemma all other (red) edges are outside~$T_{min}$, so the blue edges are exactly~$T_{min}$.
298 \qed
299
300 \section{Classical algorithms}
301
302 The three classical MST algorithms can be easily stated in terms of the Red-Blue meta-algorithm.
303 For each of them, we first show the general version of the algorithm, then we prove that
304 it gives the correct result and finally we discuss the time complexity of various
305 implementations.
306
307 \algn{Bor\o{u}vka \cite{boruvka:ojistem}, Choquet \cite{choquet:mst}, Sollin \cite{sollin:mst} and others}
308 \algo
309 \algin A~graph~$G$ with an edge comparison oracle.
310 \:$T\=$ a forest consisting of vertices of~$G$ and no edges.
311 \:While $T$ is not connected:
312 \::For each component $T_i$ of~$T$, choose the lightest edge $e_i$ from the cut
313    separating $T_i$ from the rest of~$T$.
314 \::Add all $e_i$'s to~$T$.
315 \algout Minimum spanning tree~$T$.
316 \endalgo
317
318 \lemma\id{boruvkadrop}%
319 In each iteration of the algorithm, the number of trees in~$T$ drops at least twice.
320
321 \proof
322 Each tree gets merged with at least one of its neighbors, so each of the new trees
323 contains two or more original trees.
324 \qed
325
326 \cor
327 The algorithm stops in $\O(\log n)$ iterations.
328
329 \lemma
330 Bor\o{u}vka's algorithm outputs the MST of the input graph.
331
332 \proof
333 In every iteration of the algorithm, $T$ is a blue subgraph,
334 because every addition of some edge~$e_i$ to~$T$ is a straightforward
335 application of the Blue rule. We stop when the blue subgraph is connected, so
336 we do not need the Red rule to explicitly exclude edges.
337
338 It remains to show that adding the edges simultaneously does not
339 produce a cycle. Consider the first iteration of the algorithm where $T$ contains a~cycle~$C$. Without
340 loss of generality we can assume that $C=T_1[u_1v_1]\,v_1u_2\,T_2[u_2v_2]\,v_2u_3\,T_3[u_3v_3]\, \ldots \,T_k[u_kv_k]\,v_ku_1$.
341 Each component $T_i$ has chosen its lightest incident edge~$e_i$ as either the edge $v_iu_{i+1}$
342 or $v_{i-1}u_i$ (indexing cyclically). Assume that $e_1=v_1u_2$ (otherwise we reverse the orientation
343 of the cycle). Then $e_2=v_2u_3$ and $w(e_2)<w(e_1)$ and we can continue in the same way,
344 getting $w(e_1)>w(e_2)>\ldots>w(e_k)>w(e_1)$, which is a contradiction.
345 (Note that distinctness of edge weights was crucial here.)
346 \qed
347
348 \lemma\id{boruvkaiter}%
349 Each iteration can be carried out in time $\O(m)$.
350
351 \proof
352 We assign a label to each tree and we keep a mapping from vertices to the
353 labels of the trees they belong to. We scan all edges, map their endpoints
354 to the particular trees and for each tree we maintain the lightest incident edge
355 so far encountered. Instead of merging the trees one by one (which would be too
356 slow), we build an auxilliary graph whose vertices are the labels of the original
357 trees and edges correspond to the chosen lightest inter-tree edges. We find connected
358 components of this graph, these determine how are the original labels translated
359 to the new labels.
360 \qed
361
362 \thm
363 Bor\o{u}vka's algorithm finds the MST in time $\O(m\log n)$.
364
365 \proof
366 Follows from the previous lemmata.
367 \qed
368
369 \algn{Jarn\'\i{}k \cite{jarnik:ojistem}, Prim \cite{prim:mst}, Dijkstra \cite{dijkstra:mst}}
370 \algo
371 \algin A~graph~$G$ with an edge comparison oracle.
372 \:$T\=$ a single-vertex tree containing an~arbitrary vertex of~$G$.
373 \:While there are vertices outside $T$:
374 \::Pick the lightest edge $uv$ such that $u\in V(T)$ and $v\not\in V(T)$.
375 \::$T\=T+uv$.
376 \algout Minimum spanning tree~$T$.
377 \endalgo
378
379 \lemma
380 Jarn\'\i{}k's algorithm computers the MST of the input graph.
381
382 \proof
383 If~$G$ is connected, the algorithm always stops. Let us prove that in every step of
384 the algorithm, $T$ is always a blue tree. Step~4 corresponds to applying
385 the Blue rule to the cut $\delta(T)$ separating~$T$ from the rest of the given graph. We need not care about
386 the remaining edges, since for a connected graph the algorithm always stops with the right
387 number of blue edges.
388 \qed
389
390 \impl
391 The most important part of the algorithm is finding \em{neighboring edges,} i.e., edges
392 of the cut $\delta(T)$. In a~straightforward implementation,
393 searching for the lightest neighboring edge takes $\Theta(m)$ time, so the whole
394 algorithm runs in time $\Theta(mn)$.
395
396 We can do much better by using a binary
397 heap to hold all neighboring edges. In each iteration, we find and delete the
398 minimum edge from the heap and once we expand the tree, we insert the newly discovered
399 neighboring edges to the heap while deleting the neighboring edges which become
400 internal to the new tree. Since there are always at most~$m$ edges in the heap,
401 each heap operation takes $\O(\log m)=\O(\log n)$ time. For every edge, we perform
402 at most one insertion and at most one deletion, so we spend $\O(m\log n)$ time in total.
403 From this, we can conclude:
404
405 \thm
406 Jarn\'\i{}k's algorithm finds the MST of a~given graph in time $\O(m\log n)$.
407
408 \rem
409 We will show several faster implementations in section \ref{fibonacci}.
410
411 \algn{Kruskal \cite{kruskal:mst}, the Greedy algorithm}
412 \algo
413 \algin A~graph~$G$ with an edge comparison oracle.
414 \:Sort edges of~$G$ by their increasing weight.
415 \:$T\=\emptyset$. \cmt{an empty spanning subgraph}
416 \:For all edges $e$ in their sorted order:
417 \::If $T+e$ is acyclic, add~$e$ to~$T$.
418 \::Otherwise drop~$e$.
419 \algout Minimum spanning tree~$T$.
420 \endalgo
421
422 \lemma
423 Kruskal's algorithm returns the MST of the input graph.
424
425 \proof
426 In every step, $T$ is a forest of blue trees. Adding~$e$ to~$T$
427 in step~4 applies the Blue rule on the cut separating some pair of components of~$T$ ($e$ is the lightest,
428 because all other edges of the cut have not been considered yet). Dropping~$e$ in step~5 corresponds
429 to the Red rule on the cycle found ($e$~must be the heaviest, since all other edges of the
430 cycle have been already processed). At the end of the algorithm, all edges are colored,
431 so~$T$ must be the~MST.
432 \qed
433
434 \impl
435 Except for the initial sorting, which in general takes $\Theta(m\log m)$ time, the only
436 other non-trivial operation is the detection of cycles. What we need is a data structure
437 for maintaining connected components, which supports queries and edge insertion.
438 (This is also known under the name Disjoint Set Union problem, i.e., maintenance
439 of an~equivalence relation on a~set with queries on whether two elements are equivalent
440 and the operation of joining two equivalence classes into one.)
441 The following theorem shows that it can be done with surprising efficiency.
442
443 \thmn{Incremental connectivity}%
444 When only edge insertions and connectivity queries are allowed, connected components
445 can be maintained in $\O(\alpha(n))$ time amortized per operation.
446
447 \proof
448 Proven by Tarjan and van Leeuwen in \cite{tarjan:setunion}.
449 \qed
450
451 \FIXME{Define Ackermann's function. Use $\alpha(m,n)$?}
452
453 \rem
454 The cost of the operations on components is of course dwarfed by the complexity
455 of sorting, so a much simpler (at least in terms of its analysis) data
456 structure would be sufficient, as long as it has $\O(\log n)$ amortized complexity
457 per operation. For example, we can label vertices with identifiers of the
458 corresponding components and always recolor the smaller of the two components.
459
460 \thm
461 Kruskal's algorithm finds the MST of a given graph in time $\O(m\log n)$
462 or $\O(m\timesalpha(n))$ if the edges are already sorted by their weights.
463
464 \proof
465 Follows from the above analysis.
466 \qed
467
468 \section{Contractive algorithms}
469
470 While the classical algorithms are based on growing suitable trees, they
471 can be also reformulated in terms of edge contraction. Instead of keeping
472 a forest of trees, we can keep each tree contracted to a single vertex.
473 This replaces the relatively complex tree-edge incidencies by simple
474 vertex-edge incidencies, potentially speeding up the calculation at the
475 expense of having to perform the contractions.
476
477 We will show a contractive version of the Bor\o{u}vka's algorithm
478 in which these costs are carefully balanced, leading for example to
479 a linear-time algorithm for MST in planar graphs.
480
481 There are two definitions of edge contraction which differ when an edge of a
482 triangle is contracted. Either we unify the other two edges to a single edge
483 or we keep them as two parallel edges, leaving us with a~multigraph. We will
484 use the multigraph version and we will show that we can easily reduce the multigraph
485 to a simple graph later. (See \ref{contract} for the exact definitions.)
486
487 We only need to be able to map edges of the contracted graph to the original
488 edges, so each edge will carry a unique label $\ell(e)$ that will be preserved by
489 contractions.
490
491 \lemman{Flattening a multigraph}\id{flattening}%
492 Let $G$ be a multigraph and $G'$ its subgraph such that all loops have been
493 removed and each bundle of parallel edges replaced by its lightest edge.
494 Then $G'$~has the same MST as~$G$.
495
496 \proof
497 Every spanning tree of~$G'$ is a spanning tree of~$G$. In the other direction:
498 Loops can be never contained in a spanning tree. If there is a spanning tree~$T$
499 containing a removed edge~$e$ parallel to an edge~$e'\in G'$, exchaning $e'$
500 for~$e$ makes~$T$ lighter. \qed
501
502 \rem Removal of the heavier of a pair of parallel edges can be also viewed
503 as an application of the Red rule on a two-edge cycle. And indeed it is, the
504 Red-Blue procedure works on multigraphs as well as on simple graphs and all the
505 classical algorithms also do. We would only have to be more careful in the
506 formulations and proofs, which we preferred to avoid.
507
508 \algn{Contractive version of Bor\o{u}vka's algorithm}\id{contbor}
509 \algo
510 \algin A~graph~$G$ with an edge comparison oracle.
511 \:$T\=\emptyset$.
512 \:$\ell(e)\=e$ for all edges~$e$. \cmt{Initialize the labels.}
513 \:While $n(G)>1$:
514 \::For each vertex $v_i$ of~$G$, let $e_i$ be the lightest edge incident to~$v_i$.
515 \::$T\=T\cup \{ \ell(e_i) \}$. \cmt{Remember labels of all selected edges.}
516 \::Contract $G$ along all edges $e_i$, inheriting labels and weights.\foot{In other words, we ask the comparison oracle for the edge $\ell(e)$ instead of~$e$.}
517 \::Flatten $G$, removing parallel edges and loops.
518 \algout Minimum spanning tree~$T$.
519 \endalgo
520
521 \lemma\id{contiter}%
522 Each iteration of the algorithm can be carried out in time~$\O(m)$.
523
524 \proof
525 The only non-trivial parts are steps 6 and~7. Contractions can be handled similarly
526 to the unions in the original Bor\o{u}vka's algorithm (see \ref{boruvkaiter}):
527 We build an auxillary graph containing only the selected edges~$e_i$, find
528 connected components of this graph and renumber vertices in each component to
529 the identifier of the component. This takes $\O(m)$ time.
530
531 Flattening is performed by first removing the loops and then bucket-sorting the edges
532 (as ordered pairs of vertex identifiers) lexicographically, which brings parallel
533 edges together. The bucket sort uses two passes with $n$~buckets, so it takes
534 $\O(n+m)=\O(m)$.
535 \qed
536
537 \thm
538 The Contractive Bor\o{u}vka's algorithm finds the MST in time $\O(m\log n)$.
539
540 \proof
541 As in the original Bor\o{u}vka's algorithm, the number of iterations is $\O(\log n)$.
542 Then apply the previous lemma.
543 \qed
544
545 \thmn{\cite{mm:mst}}\id{planarbor}%
546 When the input graph is planar, the Contractive Bor\o{u}vka's algorithm runs in
547 time $\O(n)$.
548
549 \proof
550 Let us denote the graph considered by the algorithm at the beginning of the $i$-th
551 iteration by $G_i$ (starting with $G_0=G$) and its number of vertices and edges
552 by $n_i$ and $m_i$ respectively. As we already know from the previous lemma,
553 the $i$-th iteration takes $\O(m_i)$ time. We are going to prove that the
554 $m_i$'s are decreasing geometrically.
555
556 The number of trees in the non-contracting version of the algorithm drops
557 at least by a factor of two in each iteration (Lemma \ref{boruvkadrop}) and the
558 same must hold for the number of vertices in the contracting version.
559 Therefore $n_i\le n/2^i$.
560
561 However, every $G_i$ is planar, because the class of planar graphs is closed
562 under edge deletion and contraction. The~$G_i$ is also simple as we explicitly removed multiple edges and
563 loops at the end of the previous iteration. Hence we can use the standard theorem on
564 the number of edges of planar simple graphs (see for example \cite{diestel:gt}) to get $m_i\le 3n_i \le 3n/2^i$.
565 From this we get that the total time complexity is $\O(\sum_i m_i)=\O(\sum_i n/2^i)=\O(n)$.
566 \qed
567
568 \rem
569 There are several other possibilities how to find the MST of a planar graph in linear time.
570 For example, Matsui \cite{matsui:planar} has described an algorithm based on simultaneously
571 working on the graph and its topological dual. We will show one more linear algorithm soon. The advantage
572 of our approach is that we do not need to construct the planar embedding explicitly.
573
574 \rem
575 To achieve the linear time complexity, the algorithm needs a very careful implementation.
576 Specifically, when we represent the graph using adjacency lists, whose heads are stored
577 in an array indexed by vertex identifiers, we must renumber the vertices in each iteration.
578 Otherwise, unused elements could end up taking most of the space in the arrays and the scans of these
579 arrays would have super-linear cost with respect to the size of the current graph~$G_i$.
580
581 \rem
582 The algorithm can be also implemented on the pointer machine. Representation of graphs
583 by pointer structures easily avoids the aforementioned problems with sparse arrays,
584 but we need to handle the bucket sorting somehow. We can create a small data structure
585 for every vertex and use a pointer to this structure as a unique identifier of the vertex.
586 We will also keep a list of all vertex structures. During the bucket sort, each vertex
587 structure will contain a pointer to the corresponding bucket and the vertex list will
588 define the order of vertices (which can be arbitrary).
589
590 Graph contractions are indeed a~very powerful tool and they can be used in other MST
591 algorithms as well. The following lemma shows the gist:
592
593 \lemman{Contraction of MST edges}\id{contlemma}%
594 Let $G$ be a weighted graph, $e$~an arbitrary edge of~$\mst(G)$, $G/e$ the multigraph
595 produced by contracting $G$ along~$e$, and $\pi$ the bijection between edges of~$G-e$ and
596 their counterparts in~$G/e$. Then: $$\mst(G) = \pi^{-1}[\mst(G/e)] + e.$$
597
598 \proof
599 % We seem not to need this lemma for multigraphs...
600 %If there are any loops or parallel edges in~$G$, we can flatten the graph. According to the
601 %Flattening lemma (\ref{flattening}), the MST stays the same and if we remove a parallel edge
602 %or loop~$f$, then $\pi(f)$ would be removed when flattening~$G/e$, so $f$ never participates
603 %in a MST.
604 The right-hand side of the equality is a spanning tree of~$G$, let us denote it by~$T$ and
605 the MST of $G/e$ by~$T'$. If $T$ were not minimum, there would exist a $T$-light edge~$f$ in~$G$
606 (by Theorem \ref{mstthm}). If the path $T[f]$ covered by~$f$ does not contain~$e$,
607 then $\pi[T[f]]$ is a path covered by~$\pi(f)$ in~$T'$. Otherwise $\pi(T[f]-e)$ is such a path.
608 In both cases, $f$ is $T'$-light, which contradicts the minimality of~$T'$. (We do not have
609 a~multigraph version of the theorem, but the side we need is a~straightforward edge exchange,
610 which obviously works in multigraphs as well.)
611 \qed
612
613 \rem
614 In the previous algorithm, the role of the mapping~$\pi^{-1}$ is of course played by the edge labels~$\ell$.
615
616 Finally, we will show a family of graphs where the $\O(m\log n)$ bound on time complexity
617 is tight. The graphs do not have unique weights, but they are constructed in a way that
618 the algorithm never compares two edges with the same weight. Therefore, when two such
619 graphs are monotonely isomorphic (see~\ref{mstiso}), the algorithm processes them in the same way.
620
621 \defn
622 A~\df{distractor of order~$k$,} denoted by~$D_k$, is a path on $n=2^k$~vertices $v_1,\ldots,v_n$
623 where each edge $v_iv_{i+1}$ has its weight equal to the number of trailing zeroes in the binary
624 representation of the number~$i$. The vertex $v_1$ is called a~\df{base} of the distractor.
625
626 \rem
627 Alternatively, we can use a recursive definition: $D_0$ is a single vertex, $D_k$ consists
628 of two disjoint copies of $D_{k-1}$ joined by an edge of weight~$k$.
629
630 \figure{distractor.eps}{\epsfxsize}{A~distractor $D_3$ and its evolution (bold edges are contracted)}
631
632 \lemma
633 A~single iteration of the contractive algorithm reduces~$D_k$ to a graph isomorphic with~$D_{k-1}$.
634
635 \proof
636 Each vertex~$v$ of~$D_k$ is incident with a single edge of weight~1. The algorithm therefore
637 selects all weight~1 edges and contracts them. This produces a graph which is
638 exactly $D_{k-1}$ with all weights increased by~1, which does not change the relative order of edges.
639 \qed
640
641 \defn
642 A~\df{hedgehog}~$H_{a,k}$ is a graph consisting of $a$~distractors $D_k^1,\ldots,D_k^a$ of order~$k$
643 together with edges of a complete graph on the bases of the distractors. These additional edges
644 have arbitrary weights, but heavier than the edges of all distractors.
645
646 \figure{hedgehog.eps}{\epsfxsize}{A~hedgehog $H_{5,2}$ (quills bent to fit in the picture)}
647
648 \lemma
649 A~single iteration of the contractive algorithm reduces~$H_{a,k}$ to a graph isomorphic with $H_{a,k-1}$.
650
651 \proof
652 Each vertex is incident with an edge of some distractor, so the algorithm does not select
653 any edge of the complete graph. Contraction therefore reduces each distractor to a smaller
654 distractor (modulo an additive factor in weight) and leaves the complete graph intact.
655 This is monotonely isomorphic to $H_{a,k-1}$.
656 \qed
657
658 \thmn{Lower bound for Contractive Bor\o{u}vka}%
659 For each $n$ there exists a graph on $\Theta(n)$ vertices and $\Theta(n)$ edges
660 such that the Contractive Bor\o{u}vka's algorithm spends time $\Omega(n\log n)$ on it.
661
662 \proof
663 Consider the hedgehog $H_{a,k}$ for $a=\lceil\sqrt n\rceil$ and $k=\lceil\log_2 a\rceil$.
664 It has $a\cdot 2^k = \Theta(n)$ vertices and ${a \choose 2} + a\cdot 2^k = \Theta(a^2) + \Theta(a^2) = \Theta(n)$ edges
665 as we wanted.
666
667 By the previous lemma, the algorithm proceeds through a sequence of hedgehogs $H_{a,k},
668 H_{a,k-1}, \ldots, H_{a,0}$ (up to monotone isomorphism), so it needs a logarithmic number of iterations plus some more
669 to finish on the remaining complete graph. Each iteration runs on a graph with $\Omega(n)$
670 edges as every $H_{a,k}$ contains a complete graph on~$a$ vertices.
671 \qed
672
673 \section{Minor-closed graph classes}
674
675 The contracting algorithm given in the previous section has been found to perform
676 well on planar graphs, but in the general case its time complexity was not linear.
677 Can we find any broader class of graphs where the algorithm is still efficient?
678 The right context turns out to be the minor-closed graph classes, which are
679 closed under contractions and have bounded density.
680
681 \defn
682 A~graph~$H$ is a \df{minor} of a~graph~$G$ iff it can be obtained
683 from a subgraph of~$G$ by a sequence of simple graph contractions (see \ref{simpcont}).
684
685 \defn
686 A~class~$\cal C$ of graphs is \df{minor-closed}, when for every $G\in\cal C$ and
687 its every minor~$H$, the graph~$H$ lies in~$\cal C$ as well. A~class~$\cal C$ is called
688 \df{non-trivial} if at least one graph lies in~$\cal C$ and at least one lies outside~$\cal C$.
689
690 \example
691 Non-trivial minor-closed classes include planar graphs and more generally graphs
692 embeddable in any fixed surface. Many nice properties of planar graphs extend
693 to these classes, too, most notably the linearity of the number of edges.
694
695 \defn\id{density}%
696 Let $\cal C$ be a class of graphs. We define its \df{edge density} $\varrho(\cal C)$
697 to be the infimum of all~$\varrho$'s such that $m(G) \le \varrho\cdot n(G)$
698 holds for every $G\in\cal C$.
699
700 \thmn{Density of minor-closed classes}
701 A~minor-closed class of graphs has finite edge density if and only if it is
702 a non-trivial class.
703
704 \proof
705 See Theorem 6.1 in \cite{nesetril:minors}, which also lists some other equivalent conditions.
706 \qed
707
708 \thmn{MST on minor-closed classes \cite{mm:mst}}\id{mstmcc}%
709 For any fixed non-trivial minor-closed class~$\cal C$ of graphs, Algorithm \ref{contbor} finds
710 the MST of any graph in this class in time $\O(n)$. (The constant hidden in the~$\O$
711 depends on the class.)
712
713 \proof
714 Following the proof for planar graphs (\ref{planarbor}), we denote the graph considered
715 by the algorithm at the beginning of the $i$-th iteration by~$G_i$ and its number of vertices
716 and edges by $n_i$ and $m_i$ respectively. Again the $i$-th phase runs in time $\O(m_i)$
717 and $n_i \le n/2^i$, so it remains to show a linear bound for the $m_i$'s.
718
719 Since each $G_i$ is produced from~$G_{i-1}$ by a sequence of edge contractions,
720 all $G_i$'s are minors of~$G$.\foot{Technically, these are multigraph contractions,
721 but followed by flattening, so they are equivalent to contractions on simple graphs.}
722 So they also belong to~$\cal C$ and by the previous theorem $m_i\le \varrho({\cal C})\cdot n_i$.
723 \qed
724
725 \rem\id{nobatch}%
726 The contractive algorithm uses ``batch processing'' to perform many contractions
727 in a single step. It is also possible to perform contractions one edge at a~time,
728 batching only the flattenings. A~contraction of an edge~$uv$ can be done
729 in time~$\O(\deg(u))$ by removing all edges incident with~$u$ and inserting them back
730 with $u$ replaced by~$v$. Therefore we need to find a lot of vertices with small
731 degrees. The following lemma shows that this is always the case in minor-closed
732 classes.
733
734 \lemman{Low-degree vertices}\id{lowdeg}%
735 Let $\cal C$ be a graph class with density~$\varrho$ and $G\in\cal C$ a~graph
736 with $n$~vertices. Then at least $n/2$ vertices of~$G$ have degree at most~$4\varrho$.
737
738 \proof
739 Assume the contrary: Let there be at least $n/2$ vertices with degree
740 greater than~$4\varrho$.  Then $\sum_v \deg(v) > n/2
741 \cdot 4\varrho = 2\varrho n$, which is in contradiction with the number
742 of edges being at most $\varrho n$.
743 \qed
744
745 \rem
746 The proof can be also viewed
747 probabilistically: let $X$ be the degree of a vertex of~$G$ chosen uniformly at
748 random. Then ${\bb E}X \le 2\varrho$, hence by the Markov's inequality
749 ${\rm Pr}[X > 4\varrho] < 1/2$, so for at least $n/2$ vertices~$v$ we have
750 $\deg(v)\le 4\varrho$.
751
752 \algn{Local Bor\o{u}vka's Algorithm \cite{mm:mst}}%
753 \algo
754 \algin A~graph~$G$ with an edge comparison oracle and a~parameter~$t\in{\bb N}$.
755 \:$T\=\emptyset$.
756 \:$\ell(e)\=e$ for all edges~$e$.
757 \:While $n(G)>1$:
758 \::While there exists a~vertex~$v$ such that $\deg(v)\le t$:
759 \:::Select the lightest edge~$e$ incident with~$v$.
760 \:::Contract~$G$ along~$e$.
761 \:::$T\=T + \ell(e)$.
762 \::Flatten $G$, removing parallel edges and loops.
763 \algout Minimum spanning tree~$T$.
764 \endalgo
765
766 \thm
767 When $\cal C$ is a minor-closed class of graphs with density~$\varrho$, the
768 Local Bor\o{u}vka's Algorithm with the parameter~$t$ set to~$4\varrho$ 
769 finds the MST of any graph from this class in time $\O(n)$. (The constant
770 in the~$\O$ depends on~the class.)
771
772 \proof
773 Let us denote by $G_i$, $n_i$ and $m_i$ the graph considered by the
774 algorithm at the beginning of the $i$-th iteration of the outer loop,
775 and the number of its vertices and edges respectively. As in the proof
776 of the previous algorithm (\ref{mstmcc}), we observe that all the $G_i$'s
777 are minors of the graph~$G$ given as the input.
778
779 For the choice $t=4\varrho$, the Lemma on low-degree vertices (\ref{lowdeg})
780 guarantees that at least $n_i/2$ edges get selected in the $i$-th iteration.
781 Hence at least a half of the vertices participates in contractions, so
782 $n_i\le 3/4\cdot n_{i-1}$. Therefore $n_i\le n\cdot (3/4)^i$ and the algorithm terminates
783 after $\O(\log n)$ iterations.
784
785 Each selected edge belongs to $\mst(G)$, because it is the lightest edge of
786 the trivial cut $\delta(v)$ (see the Blue Rule in \ref{rbma}).
787 The steps 6 and~7 therefore correspond to the operation
788 described by the Lemma on contraction of MST edges (\ref{contlemma}) and when
789 the algorithm stops, $T$~is indeed the minimum spanning tree.
790
791 It remains to analyse the time complexity of the algorithm. Since $G_i\in{\cal C}$, we have
792 $m_i\le \varrho n_i \le \varrho n/2^i$.
793 We will show that the $i$-th iteration is carried out in time $\O(m_i)$.
794 Steps 5 and~6 run in time $\O(\deg(v))=\O(t)$ for each~$v$, so summed
795 over all $v$'s they take $\O(tn_i)$, which is linear for a fixed class~$\cal C$.
796 Flattening takes $\O(m_i)$, as already noted in the analysis of the Contracting
797 Bor\o{u}vka's Algorithm (see \ref{contiter}).
798
799 The whole algorithm therefore runs in time $\O(\sum_i m_i) = \O(\sum_i n/2^i) = \O(n)$.
800 \qed
801
802 \rem
803 For planar graphs, we can get a sharper version of the low-degree lemma,
804 showing that the algorithm works with $t=8$ as well (we had $t=12$ as
805 $\varrho=3$). While this does not change the asymptotic time complexity
806 of the algorithm, the constant-factor speedup can still delight the hearts of
807 its practical users.
808
809 \lemman{Low-degree vertices in planar graphs}%
810 Let $G$ be a planar graph with $n$~vertices. Then at least $n/2$ vertices of~$v$
811 have degree at most~8.
812
813 \proof
814 It suffices to show that the lemma holds for triangulations (if there
815 are any edges missing, the situation can only get better) with at
816 least 3 vertices. Since $G$ is planar, $\sum_v \deg(v) < 6n$.
817 The numbers $d(v):=\deg(v)-3$ are non-negative and $\sum_v d(v) < 3n$,
818 so by the same argument as in the proof of the general lemma, for at least $n/2$
819 vertices~$v$ it holds that $d(v) < 6$, hence $\deg(v) \le 8$.
820 \qed
821
822 \rem\id{hexa}%
823 The constant~8 in the previous lemma is the best we can have.
824 Consider a $k\times k$ triangular grid. It has $n=k^2$ vertices, $\O(k)$ of them
825 lie on the outer face and have degrees at most~6, the remaining $n-\O(k)$ interior
826 vertices have degree exactly~6. Therefore the number of faces~$f$ is $6/3\cdot n=2n$,
827 ignoring terms of order $\O(k)$. All interior triangles can be properly colored with
828 two colors, black and white. Now add a~new vertex inside each white face and connect
829 it to all three vertices on the boundary of that face. This adds $f/2 \approx n$
830 vertices of degree~3 and it increases the degrees of the original $\approx n$ interior
831 vertices to~9, therefore about a half of the vertices of the new planar graph
832 has degree~9.
833
834 \figure{hexangle.eps}{\epsfxsize}{The construction from Remark~\ref{hexa}}
835
836
837 \section{Using Fibonacci heaps}
838 \id{fibonacci}
839
840 % G has to be connected, so m=O(n)
841 % mention Steiner trees
842 % mention matroids
843 % sorted weights
844 % \O(...) as a set?
845 % impedance mismatch in terminology: contraction of G along e vs. contraction of e.
846 % use \delta(X) notation
847 % mention disconnected graphs
848 %%% fix off by 1 errors in the distractors
849
850 \endpart