]> mj.ucw.cz Git - saga.git/blob - mst.tex
e8ec543820b21349c3af79902711d716420eb8e1
[saga.git] / mst.tex
1 \ifx\endpart\undefined
2 \input macros.tex
3 \fi
4
5 \chapter{Minimum Spanning Trees}
6
7 \section{The Problem}
8
9 The problem of finding a minimum spanning tree of a weighted graph is one of the
10 best studied problems in the area of combinatorial optimization since its birth.
11 Its colorful history (see \cite{graham:msthistory} and \cite{nesetril:history} for the full account)
12 begins in~1926 with the pioneering work of Bor\o{u}vka
13 \cite{boruvka:ojistem}\foot{See \cite{nesetril:boruvka} for an English translation with commentary.},
14 who studied primarily an Euclidean version of the problem related to planning
15 of electrical transmission lines (see \cite{boruvka:networks}), but gave an efficient
16 algorithm for the general version of the problem. As it was well before the dawn of graph
17 theory, the language of his paper was complicated, so we will better state the problem
18 in contemporary terminology:
19
20 \proclaim{Problem}Given an undirected graph~$G$ with weights $w:E(G)\rightarrow {\bb R}$,
21 find its minimum spanning tree, defined as follows:
22
23 \defn\id{mstdef}%
24 For a given graph~$G$ with weights $w:E(G)\rightarrow {\bb R}$:
25 \itemize\ibull
26 \:A~subgraph $H\subseteq G$ is called a \df{spanning subgraph} if $V(H)=V(G)$.
27 \:A~\df{spanning tree} of $G$ is any its spanning subgraph which is a tree.
28 \:For any subgraph $H\subseteq G$ we define its \df{weight} $w(H):=\sum_{e\in E(H)} w(e)$.
29   When comparing two weights, we will use the terms \df{lighter} and \df{heavier} in the
30   obvious sense.
31 \:A~\df{minimum spanning tree (MST)} of~$G$ is a spanning tree~$T$ such that its weight $w(T)$
32   is the smallest possible of all the spanning trees of~$G$.
33 \:For a disconnected graph, a \df{(minimum) spanning forest (MSF)} is defined as
34   a union of (minimum) spanning trees of its connected components.
35 \endlist
36
37 Bor\o{u}vka's work was further extended by Jarn\'\i{}k \cite{jarnik:ojistem}, again in
38 mostly geometric setting, giving another efficient algorithm. However, when
39 computer science and graph theory started forming in the 1950's and the
40 spanning tree problem was one of the central topics of the flourishing new
41 disciplines, the previous work was not well known and the algorithms had to be
42 rediscovered several times.
43
44 Recently, several significantly faster algorithms were discovered, most notably the
45 $\O(m\beta(m,n))$-time algorithm by Fredman and Tarjan \cite{ft:fibonacci} and
46 algorithms with inverse-Ackermann type complexity by Chazelle \cite{chazelle:ackermann}
47 and Pettie \cite{pettie:ackermann}.
48
49 \FIXME{Write the rest of the history.}
50
51 This chapter attempts to survery the important algorithms for finding the MST and it
52 also presents several new ones.
53
54 \section{Basic Properties}
55
56 In this section, we will examine the basic properties of spanning trees and prove
57 several important theorems to base the algorithms upon. We will follow the theory
58 developed by Tarjan in~\cite{tarjan:dsna}.
59
60 For the whole section, we will fix a graph~$G$ with edge weights~$w$ and all
61 other graphs will be spanning subgraphs of~$G$. We will use the same notation
62 for the subgraphs as for the corresponding sets of edges.
63
64 First of all, let us show that the weights on edges are not necessary for the
65 definition of the MST. We can formulate an equivalent characterization using
66 an ordering of edges instead.
67
68 \defnn{Heavy and light edges}\id{heavy}%
69 Let~$T$ be a~spanning tree. Then:
70 \itemize\ibull
71 \:For vertices $x$ and $y$, let $T[x,y]$ denote the (unique) path in~$T$ joining $x$ and~$y$.
72 \:For an edge $e=xy$ we will call $T[e]:=T[x,y]$ the \df{path covered by~$e$} and
73   the edges of this path \df{edges covered by~$e$}.
74 \:An edge~$e$ is called \df{light with respect to~$T$} (or just \df{$T$-light}) if it covers a heavier edge, i.e., if there
75   is an edge $f\in T[e]$ such that $w(f) > w(e)$.
76 \:An edge~$e$ is called \df{$T$-heavy} if it is not $T$-light.
77 \endlist
78
79 \rem
80 Please note that the above properties also apply to tree edges
81 which by definition cover only themselves and therefore they are always heavy.
82
83 \lemman{Light edges}\id{lightlemma}%
84 Let $T$ be a spanning tree. If there exists a $T$-light edge, then~$T$
85 is not minimum.
86
87 \proof
88 If there is a $T$-light edge~$e$, then there exists an edge $e'\in T[e]$ such
89 that $w(e')>w(e)$. Now $T-e'$ is a forest of two trees with endpoints of~$e$
90 located in different components, so adding $e$ to this forest must restore
91 connectivity and $T':=T-e'+e$ is another spanning tree with weight $w(T')
92 = w(T)-w(e')+w(e) < w(T)$. Hence $T$ could not have been minimum.
93 \qed
94
95 \figure{mst2.eps}{278pt}{An edge exchange as in the proof of Lemma~\ref{lightlemma}}
96
97 The converse of this lemma is also true and to prove it, we will once again use
98 technique of transforming trees by \df{exchanges} of edges. In the proof of the
99 lemma, we have made use of the fact that whenever we exchange an edge~$e$ of
100 a spanning tree for another edge~$f$ covered by~$e$, the result is again
101 a spanning tree. In fact, it is possible to transform any spanning tree
102 to any other spanning tree by a sequence of exchanges.
103
104 \lemman{Exchange property for trees}\id{xchglemma}%
105 Let $T$ and $T'$ be spanning trees of a common graph. Then there exists
106 a sequence of edge exchanges which transforms $T$ to~$T'$. More formally,
107 there exists a sequence of spanning trees $T=T_0,T_1,\ldots,T_k=T'$ such that
108 $T_{i+1}=T_i - e_i + e_i^\prime$ where $e_i\in T_i$ and $e_i^\prime\in T'$.
109
110 \proof
111 By induction on $d(T,T'):=\vert T\symdiff T'\vert$. When $d(T,T')=0$,
112 both trees are identical and no exchanges are needed. Otherwise, the trees are different,
113 but as they are of the same size, there must exist an edge $e'\in T'\setminus T$.
114 The cycle $T[e']+e'$ cannot be wholly contained in~$T'$, so there also must
115 exist an edge $e\in T[e']\setminus T'$. Exchanging $e$ for~$e'$ yields a spanning
116 tree $T^*:=T-e+e'$ such that $d(T^*,T')=d(T,T')-2$ and we can apply the induction
117 hypothesis to $T^*$ and $T'$ to get the rest of the exchange sequence.
118 \qed
119
120 \figure{mst1.eps}{295pt}{One step of the proof of Lemma~\ref{xchglemma}}
121
122 \lemman{Monotone exchanges}\id{monoxchg}%
123 Let $T$ be a spanning tree such that there are no $T$-light edges and $T'$
124 be an arbitrary spanning tree. Then there exists a sequence of edge exchanges
125 transforming $T$ to~$T'$ such that the weight does not increase in any step.
126
127 \proof
128 We improve the argument from the previous proof, refining the induction step.
129 When we exchange $e\in T$ for $e'\in T'\setminus T$ such that $e\in T[e']$,
130 the weight never drops, since $e'$ is not a $T$-light edge and therefore
131 $w(e') \ge w(e)$, so $w(T^*)=w(T)-w(e)+w(e')\ge w(T)$.
132
133 To keep the induction going, we have to make sure that there are still no light
134 edges with respect to~$T^*$. In fact, it is enough to avoid such edges in
135 $T'\setminus T^*$, since these are the only edges considered by the induction
136 steps. To accomplish that, we replace the so far arbitrary choice of $e'\in T'\setminus T$
137 by picking the lightest such edge.
138
139 Now consider an edge $f\in T'\setminus T^*$. We want to show that $f$ is not
140 $T^*$-light, i.e., that it is heavier than all edges on $T^*[f]$. The path $T^*[f]$ is
141 either equal to the original path $T[f]$ (if $e\not\in T[f]$) or to $T[f] \symdiff C$,
142 where $C$ is the cycle $T[e']+e'$. The former case is trivial, in the latter one
143 $w(f)\ge w(e')$ due to the choice of $e'$ and all other edges on~$C$ are lighter
144 than~$e'$ as $e'$ was not $T$-light.
145 \qed
146
147 \thmn{Minimality by order}\id{mstthm}%
148 A~spanning tree~$T$ is minimum iff there is no $T$-light edge.
149
150 \proof
151 If~$T$ is minimum, then by Lemma~\ref{lightlemma} there are no $T$-light
152 edges.
153 Conversely, when $T$ is a spanning tree without $T$-light edges
154 and $T_{min}$ is an arbitrary minimum spanning tree, then according to the Monotone
155 exchange lemma (\ref{monoxchg}) there exists a non-decreasing sequence
156 of exchanges transforming $T$ to $T_{min}$, so $w(T)\le w(T_{min})$
157 and thus $T$~is also minimum.
158 \qed
159
160 In general, a single graph can have many minimum spanning trees (for example
161 a complete graph on~$n$ vertices and unit edge weights has $n^{n-2}$
162 minimum spanning trees according to the Cayley's formula \cite{cayley:trees}).
163 However, as the following theorem shows, this is possible only if the weight
164 function is not injective.
165
166 \thmn{MST uniqueness}%
167 If all edge weights are distinct, then the minimum spanning tree is unique.
168
169 \proof
170 Consider two minimum spanning trees $T_1$ and~$T_2$. According to the previous
171 theorem, there are no light edges with respect to neither of them, so by the
172 Monotone exchange lemma (\ref{monoxchg}) there exists a sequence of non-decreasing
173 edge exchanges going from $T_1$ to $T_2$. As all edge weights all distinct,
174 these edge exchanges must be in fact strictly increasing. On the other hand,
175 we know that $w(T_1)=w(T_2)$, so the exchange sequence must be empty and indeed
176 $T_1$ and $T_2$ must be identical.
177 \qed
178
179 \rem\id{edgeoracle}%
180 To simplify the description of MST algorithms, we will expect that the weights
181 of all edges are distinct and that instead of numeric weights (usually accompanied
182 by problems with representation of real numbers in algorithms) we will be given
183 a comparison oracle, that is a function which answers questions ``$w(e)<w(f)$?'' in
184 constant time. In case the weights are not distinct, we can easily break ties by
185 comparing some unique edge identifiers and according to our characterization of
186 minimum spanning trees, the unique MST of the new graph will still be a MST of the
187 original graph. In the few cases where we need a more concrete input, we will
188 explicitly state so.
189
190 \nota\id{mstnota}%
191 When $G$ is a graph with distinct edge weights, we will use $\mst(G)$ to denote
192 its unique minimum spanning tree.
193
194 Another useful consequence is that whenever two graphs are isomorphic and the
195 isomorphism preserves weight order, the isomorphism applies to their MST's
196 as well:
197
198 \defn
199 A~\df{monotone isomorphism} of two weighted graphs $G_1=(V_1,E_1,w_1)$ and
200 $G_2=(V_2,E_2,w_2)$ is a bijection $\pi: V_1\rightarrow V_2$ such that
201 for each $u,v\in V_1: uv\in E_1 \Leftrightarrow \pi(u)\pi(v)\in E_2$ and
202 for each $e,f\in E_1: w_1(e)<w_1(f) \Leftrightarrow w_2(\pi[e]) < w_2(\pi[f])$.
203
204 \lemman{MST of isomorphic graphs}\id{mstiso}%
205 Let~$G_1$ and $G_2$ be two weighted graphs with unique edge weights and $\pi$
206 their monotone isomorphism. Then $\mst(G_2) = \pi[\mst(G_1)]$.
207
208 \proof
209 The isomorphism~$\pi$ maps spanning trees onto spanning trees and it preserves
210 the relation of covering. Since it is monotone, it preserves the property of
211 being a light edge (an~edge $e\in E(G_1)$ is $T$-light $\Leftrightarrow$
212 the edge $\pi[e]\in E(G_2)$ is~$f[T]$-light). Therefore by Theorem~\ref{mstthm}, $T$
213 is the MST of~$G_1$ if and only if $\pi[T]$ is the MST of~$G_2$.
214 \qed
215
216 \section{The Red-Blue Meta-Algorithm}
217
218 Most MST algorithms can be described as special cases of the following procedure
219 (again following \cite{tarjan:dsna}):
220
221 \algn{Red-Blue Meta-Algorithm}
222 \algo
223 \algin A~graph $G$ with an edge comparison oracle (see \ref{edgeoracle})
224 \:In the beginning, all edges are colored black.
225 \:Apply rules as long as possible:
226 \::Either pick a cut~$C$ such that its lightest edge is not blue \hfil\break and color this edge blue, \cmt{Blue rule}
227 \::Or pick a cycle~$C$ such that its heaviest edge is not red \hfil\break and color this edge \hphantas{red.}{blue.} \cmt{Red rule}
228 \algout Minimum spanning tree of~$G$ consisting of edges colored blue.
229 \endalgo
230
231 \rem
232 This procedure is not a proper algorithm, since it does not specify how to choose
233 the rule to apply. We will however prove that no matter how the rules are applied,
234 the procedure always stops and gives the correct result. Also, it will turn out
235 that each of the classical MST algorithms can be described as a specific way
236 of choosing the rules in this procedure, which justifies the name meta-algorithm.
237
238 \nota
239 We will denote the unique minimum spanning tree of the input graph by~$T_{min}$.
240 We intend to prove that this is also the output of the procedure.
241
242 \lemman{Blue lemma}%
243 When an edge is colored blue in any step of the procedure, it is contained in the minimum spanning tree.
244
245 \proof
246 By contradiction. Let $e$ be an edge painted blue as the lightest edge of a cut~$C$.
247 If $e\not\in T_{min}$, then there must exist an edge $e'\in T_{min}$ which is
248 contained in~$C$ (take any pair of vertices separated by~$C$, the path
249 in~$T_{min}$ joining these vertices must cross~$C$ at least once). Exchanging
250 $e$ for $e'$ in $T_{min}$ yields an even lighter spanning tree since
251 $w(e)<w(e')$. \qed
252
253 \lemman{Red lemma}%
254 When an edge is colored red in any step of the procedure, it is not contained in the minimum spanning tree.
255
256 \proof
257 Again by contradiction. Assume that $e$ is an edge painted red as the heaviest edge
258 of a cycle~$C$ and that $e\in T_{min}$. Removing $e$ causes $T_{min}$ to split to two
259 components, let us call them $T_x$ and $T_y$. Some vertices of~$C$ now lie in $T_x$,
260 the others in $T_y$, so there must exist in edge $e'\ne e$ such that its endpoints
261 lie in different components. Since $w(e')<w(e)$, exchanging $e$ for~$e'$ yields
262 a lighter spanning tree than $T_{min}$.
263 \qed
264
265 \figure{mst-rb.eps}{289pt}{Proof of the Blue (left) and Red (right) lemma}
266
267 \lemman{Black lemma}%
268 As long as there exists a black edge, at least one rule can be applied.
269
270 \proof
271 Assume that $e=xy$ be a black edge. Let us denote $M$ the set of vertices
272 reachable from~$x$ using only blue edges. If $y$~lies in~$M$, then $e$ together
273 with some blue path between $x$ and $y$ forms a cycle and it must be the heaviest
274 edge on this cycle. This holds because all blue edges have been already proven
275 to be in $T_{min}$ and there can be no $T_{min}$-light edges (see Theorem~\ref{mstthm}).
276 In this case we can apply the red rule.
277
278 On the other hand, if $y\not\in M$, then the cut formed by all edges between $M$
279 and $V(G)\setminus M$ contains no blue edges, therefore we can use the blue rule.
280 \qed
281
282 \figure{mst-bez.eps}{295pt}{Configurations in the proof of the Black lemma}
283
284 \thmn{Red-Blue correctness}%
285 For any selection of rules, the Red-Blue procedure stops and the blue edges form
286 the minimum spanning tree of the input graph.
287
288 \proof
289 To prove that the procedure stops, let us notice that no edge is ever recolored,
290 so we must run out of black edges after at most~$m$ steps. Recoloring
291 to the same color is avoided by the conditions built in the rules, recoloring to
292 a different color would mean that the an edge would be both inside and outside~$T_{min}$
293 due to our Red and Blue lemmata.
294
295 When no further rules can be applied, the Black lemma guarantees that all edges
296 are colored, so by the Blue lemma all blue edges are in~$T_{min}$ and by the Red
297 lemma all other (red) edges are outside~$T_{min}$, so the blue edges are exactly~$T_{min}$.
298 \qed
299
300 \section{Classical algorithms}
301
302 The three classical MST algorithms can be easily stated in terms of the Red-Blue meta-algorithm.
303 For each of them, we first state the general version of the algorithm, then we prove that
304 it gives the correct result and finally we discuss the time complexity of various
305 implementations.
306
307 \algn{Bor\o{u}vka \cite{boruvka:ojistem}, Choquet \cite{choquet:mst}, Sollin \cite{sollin:mst} and others}
308 \algo
309 \algin A~graph~$G$ with an edge comparison oracle.
310 \:$T\=$ a forest consisting of vertices of~$G$ and no edges.
311 \:While $T$ is not connected:
312 \::For each component $T_i$ of~$T$, choose the lightest edge $e_i$ from the cut
313    separating $T_i$ from the rest of~$T$.
314 \::Add all $e_i$'s to~$T$.
315 \algout Minimum spanning tree~$T$.
316 \endalgo
317
318 \lemma
319 Bor\o{u}vka's algorithm returns the MST of the input graph.
320
321 \proof
322 In every iteration of the algorithm, $T$ is a blue subgraph,
323 because every addition of some edge~$e_i$ to~$T$ is a straightforward
324 application of the Blue rule. We stop when the blue subgraph is connected, so
325 we do not need the Red rule to explicitly exclude edges.
326
327 It remains to show that adding the edges simultaneously does not
328 produce a cycle. Consider the first iteration of the algorithm where $T$ contains some cycle~$C$. Without
329 loss of generality we can assume that $C=T_1[u_1v_1]\,v_1u_2\,T_2[u_2v_2]\,v_2u_3\,T_3[u_3v_3]\, \ldots \,T_k[u_kv_k]\,v_ku_1$.
330 Each component $T_i$ has chosen its lightest incident edge~$e_i$ as either the edge $v_iu_{i+1}$
331 or $v_{i-1}u_i$ (indexing cyclically). Assume that $e_1=v_1u_2$ (otherwise we reverse the orientation
332 of the cycle). Then $e_2=v_2u_3$ and $w(e_2)<w(e_1)$ and so on, giving $w(e_1)>w(e_2)>\ldots>w(e_k)>w(e_1)$,
333 which is a contradiction. (Note that distinctness of edge weights was crucial here.)
334 \qed
335
336 \lemma\id{boruvkadrop}%
337 In each iteration of the algorithm, the number of trees in~$T$ drops at least twice.
338
339 \proof
340 Each tree gets merged with at least one neighboring trees, so each of the new trees
341 consists of at least two original trees.
342 \qed
343
344 \cor
345 The algorithm stops in $\O(\log n)$ iterations.
346
347 \lemma\id{boruvkaiter}%
348 Each iteration can be carried out in time $\O(m)$.
349
350 \proof
351 Following \cite{mm:mst},
352 we assign a label to each tree and we keep a mapping from vertices to the
353 labels of the trees they belong to. We scan all edges, map their endpoints
354 to the particular trees and for each tree we maintain the lightest incident edge
355 so far encountered. Instead of merging the trees one by one (which would be too
356 slow), we build an auxilliary graph whose vertices are labels of the original
357 trees and edges correspond to the chosen lightest inter-tree edges. We find connected
358 components of this graph, these determine how the original labels are translated
359 to the new labels.
360 \qed
361
362 \thm
363 Bor\o{u}vka's algorithm finds the MST in time $\O(m\log n)$.
364
365 \proof
366 Follows from the previous lemmata.
367 \qed
368
369 \algn{Jarn\'\i{}k \cite{jarnik:ojistem}, Prim \cite{prim:mst}, Dijkstra \cite{dijkstra:mst}}
370 \algo
371 \algin A~graph~$G$ with an edge comparison oracle.
372 \:$T\=$ a single-vertex tree containing any vertex of~$G$.
373 \:While there are vertices outside $T$:
374 \::Pick the lightest edge $uv$ such that $u\in V(T)$ and $v\not\in V(T)$.
375 \::$T\=T+uv$.
376 \algout Minimum spanning tree~$T$.
377 \endalgo
378
379 \lemma
380 Jarn\'\i{}k's algorithm returns the MST of the input graph.
381
382 \proof
383 During the course of the algorithm, $T$ is always a blue tree. Step~4 corresponds to applying
384 the Blue rule to a cut between~$T$ and the rest of the given graph. We need not care about
385 the remaining edges, since for a connected graph the algorithm always stops with the right
386 number of blue edges.
387 \qed
388
389 \impl
390 The most important part of the algorithm is finding \em{neighboring edges,} i.e., edges
391 going between $T$ and $V(G)\setminus T$. In the straightforward implementation,
392 searching for the lightest neighboring edge takes $\Theta(m)$ time, so the whole
393 algorithm runs in time $\Theta(mn)$.
394
395 We can do much better by using a binary
396 heap to hold all neighboring edges. In each iteration, we find and delete the
397 minimum edge from the heap and once we expand the tree, we insert the newly discovered
398 neighboring edges to the heap while deleting the neighboring edges which become
399 internal to the new tree. Since there are always at most~$m$ edges in the heap,
400 each heap operation takes $\O(\log m)=\O(\log n)$ time. For every edge, we perform
401 at most one insertion and at most one deletion, so we spend $\O(m\log n)$ time in total.
402 From this, we can conclude:
403
404 \thm
405 Jarn\'\i{}k's algorithm finds the MST of the graph in time $\O(m\log n)$.
406
407 \rem
408 We will show several faster implementations in section \ref{fibonacci}.
409
410 \algn{Kruskal \cite{kruskal:mst}, the Greedy algorithm}
411 \algo
412 \algin A~graph~$G$ with an edge comparison oracle.
413 \:Sort edges of~$G$ by their increasing weight.
414 \:$T\=\emptyset$. \cmt{an empty spanning subgraph}
415 \:For all edges $e$ in their sorted order:
416 \::If $T+e$ is acyclic, add~$e$ to~$T$.
417 \::Otherwise drop~$e$.
418 \algout Minimum spanning tree~$T$.
419 \endalgo
420
421 \lemma
422 Kruskal's algorithm returns the MST of the input graph.
423
424 \proof
425 In every step, $T$ is a forest of blue trees. Adding~$e$ to~$T$
426 in step~4 applies the Blue rule on the cut separating two components of~$T$ ($e$ is the lightest,
427 because all other edges of the cut have not been considered yet). Dropping~$e$ in step~5 corresponds
428 to the red rule on the cycle found ($e$~must be the heaviest, since all other edges of the
429 cycle have been already processed). At the end of the algorithm, all edges have been colored,
430 so~$T$ must be the~MST.
431 \qed
432
433 \impl
434 Except for the initial sorting, which in general takes $\Theta(m\log n)$ time, the only
435 other non-trivial operation is detection of cycles. What we need is a data structure
436 for maintaining connected components, which supports queries and edge insertion.
437 The following theorem shows that it can be done with a surprising efficiency.
438
439 \thmn{Incremental connectivity}%
440 When only edge insertions and queries are allowed, connected components
441 can be maintained in $\O(\alpha(n))$ time amortized per operation.
442
443 \proof
444 Proven by Tarjan and van Leeuwen in \cite{tarjan:setunion}.
445 \qed
446
447 \FIXME{Define Ackermann's function. Use $\alpha(m,n)$?}
448
449 \rem
450 The cost of the operations on components is of course dwarfed by the complexity
451 of sorting, so a much simpler (at least in terms of its analysis) data
452 structure would be sufficient, as long as it has $\O(\log n)$ amortized complexity
453 per operation. For example, we can label vertices with identifiers of the
454 corresponding components and always recolor the smaller of the two components.
455
456 \thm
457 Kruskal's algorithm finds the MST of a given graph in time $\O(m\log n)$
458 or $\O(m\alpha(n))$ if the edges are already sorted by their weights.
459
460 \proof
461 Follows from the above analysis.
462 \qed
463
464 \section{Contractive algorithms}
465
466 While the classical algorithms are based on growing suitable trees, they
467 can be also reformulated in terms of edge contraction. Instead of keeping
468 a forest of trees, we can keep each tree contracted to a single vertex.
469 This replaces the relatively complex tree-edge incidencies by simple
470 vertex-edge incidencies, potentially speeding up the calculation at the
471 expense of having to perform the contractions.
472
473 We will show a contractive version of the Bor\o{u}vka's algorithm
474 in which these costs are carefully balanced, leading for example to
475 a linear-time algorithm for MST in planar graphs.
476
477 There are two definitions of edge contraction which differ when an edge of a
478 triangle is contracted. Either we unify the other two edges to a single edge
479 or we keep them as two parallel edges, leaving us with a~multigraph. We will
480 use the multigraph version and show that we can easily reduce the multigraph
481 to a simple graph later. (See \ref{contract} for the exact definitions.)
482
483 We only need to be able to map edges of the contracted graph to the original
484 edges, so each edge will carry a unique label $\ell(e)$ which will be preserved by
485 contractions.
486
487 \lemman{Flattening a multigraph}\id{flattening}%
488 Let $G$ be a multigraph and $G'$ its subgraph such that all loops have been
489 removed and each bundle of parallel edges replaced by its lightest edge.
490 Then $G'$~has the same MST as~$G$.
491
492 \proof
493 Loops can be never used in a spanning tree. If there is a spanning tree~$T$
494 containing a removed edge~$e$ parallel to an edge~$e'\in G'$, exchaning $e'$
495 for~$e$ in~$T$ makes it lighter. \qed
496
497 \rem Removal of the heavier of a pair of parallel edges can be also viewed
498 as an application of the Red rule on a two-edge cycle. And indeed it is, the
499 Red-Blue procedure works on multigraphs as well as on simple graphs and all the
500 classical algorithms also do. We only would have to be more careful in the
501 formulations and proofs, which we preferred to avoid. We also note that most of
502 the algorithms can be run on disconnected multigraphs with little or no
503 modifications.
504
505 \algn{Contractive version of Bor\o{u}vka's algorithm}
506 \algo
507 \algin A~graph~$G$ with an edge comparison oracle.
508 \:$T\=\emptyset$.
509 \:$\ell(e)\=e$ for all edges~$e$. \cmt{Initialize the labels.}
510 \:While $n(G)>1$:
511 \::For each vertex $v_i$ of~$G$, let $e_i$ be the lightest edge incident to~$v_i$.
512 \::$T\=T\cup \{ \ell(e_i) \}$. \cmt{Remember labels of all selected edges.}
513 \::Contract $G$ along all edges $e_i$, inheriting labels and weights.
514 \::Flatten $G$, removing parallel edges and loops.
515 \algout Minimum spanning tree~$T$.
516 \endalgo
517
518 \lemma
519 Each iteration of the algorithm can be carried out in time~$\O(m)$.
520
521 \proof
522 The only non-trivial parts are steps 6 and~7. Contractions can be handled similarly
523 to the unions in the original Bor\o{u}vka's algorithm (see \ref{boruvkaiter}).
524 We build an auxillary graph containing only the selected edges~$e_i$, find
525 connected components of this graph and renumber vertices in each component to
526 the identifier of the component. This takes $\O(m)$ time.
527
528 Flattening is performed by first removing the loops and then bucket-sorting the edges
529 (as ordered pairs of vertex identifiers) lexicographically, which brings parallel
530 edges together. The bucket sort uses two passes with $n$~buckets, so it takes
531 $\O(n+m)=\O(m)$.
532 \qed
533
534 \thm
535 The Contractive Bor\o{u}vka's algorithm finds the MST in time $\O(m\log n)$.
536
537 \proof
538 As in the original Bor\o{u}vka's algorithm, the number of phases is $\O(\log n)$.
539 Then apply the previous lemma.
540 \qed
541
542 \thmn{\cite{mm:mst}}
543 When the input graph is planar, the Contractive Bor\o{u}vka's algorithm runs in
544 time $\O(m)$.
545
546 \proof
547 Let us denote the graph considered by the algorithm at the beginning of the $i$-th
548 iteration by $G_i$ (starting with $G_0=G$) and its number of vertices and edges
549 by $n_i$ and $m_i$ respectively. As we already know from the previous lemma,
550 the $i$-th iteration takes $\O(m_i)$ time. We are going to prove that the
551 $m_i$'s are decreasing exponentially.
552
553 The number of trees in the non-contracting version of the algorithm decreases
554 at least twice in each iteration (Lemma \ref{boruvkadrop}) and the
555 same must hold for the number of vertices in the contracting version.
556 Therefore $n_i\le n/2^i$.
557
558 However, every $G_i$ is planar, because the class of planar graphs is closed
559 under edge deletion and contraction. The~$G_i$ is also simple as we explicitly removed multiple edges and
560 loops at the end of the previous iteration. So we can use the standard theorem on
561 the number of edges of planar simple graphs (see for example \cite{diestel:gt}) to get $m_i\le 3n_i \le 3n/2^i$.
562 From this we get that the total time complexity is $\O(\sum_i m_i)=\O(m)$.
563 \qed
564
565 \rem
566 There are other possibilities how to find the MST of a planar graph in linear time.
567 Matsui \cite{matsui:planar} has described an algorithm based on simultaneously
568 processing the graph and its dual. The advantage of our approach is that we do not
569 need to construct the planar embedding first.
570
571 \rem
572 To achieve the linear time complexity, the algorithm needs a very careful implementation.
573 Specifically, when we represent the graph using adjacency lists, whose heads are stored
574 in an array indexed by vertex identifiers, we must renumber the vertices in each iteration.
575 Otherwise, unused identifiers could end up taking most of space in the arrays and scans of these
576 arrays would have super-linear cost with respect to the size of the current graph~$G_i$.
577
578 \rem
579 The algorithm can be also implemented on the pointer machine. Representation of graphs
580 by pointer structures easily avoids the aforementioned problems with sparse arrays,
581 but we need to handle the bucket sorting somehow. We can create a small data structure
582 for every vertex and use a pointer to this structure as a unique identifier of the vertex.
583 We will also keep a list of all vertex structures. During the bucket sort, each vertex
584 structure will contain a pointer to the corresponding bucket and the vertex list will
585 define the order of vertices (which can be arbitrary, but has to be fixed).
586
587 Graph contractions are indeed a~very powerful tool and they can be used in other MST
588 algorithms as well. The following lemma shows the gist:
589
590 \lemman{Contraction of MST edges}%
591 Let $G$ be a weighted graph, $e$~an arbitrary edge of~$\mst(G)$, $G/e$ the multigraph
592 produced by contracting $G$ along~$e$, and $\pi$ the bijection between edges of~$G-e$ and
593 their counterparts in~$G/e$. Then: $$\mst(G) = \pi^{-1}[\mst(G/e)] + e.$$
594
595 \proof
596 % We seem not to need this lemma for multigraphs...
597 %If there are any loops or parallel edges in~$G$, we can flatten the graph. According to the
598 %Flattening lemma (\ref{flattening}), the MST stays the same and if we remove a parallel edge
599 %or loop~$f$, then $\pi(f)$ would be removed when flattening~$G/e$, so $f$ never participates
600 %in a MST.
601 The right-hand side of the equality is a spanning tree of~$G$, let us denote it by~$T$ and
602 the MST of $G/e$ by~$T'$. If $T$ were not minimum, there would exist a $T$-light edge~$f$ in~$G$
603 (according to Theorem \ref{mstthm}). If the path $T[f]$ covered by~$f$ does not contain~$e$,
604 then $\pi[T[f]]$ is a path covered by~$\pi(f)$ in~$T'$. Otherwise $\pi(T[f]-e)$ is such a path.
605 In both cases, $f$ is $T'$-light, which contradicts the minimality of~$T'$. (We do not have
606 a~multigraph version of the theorem, but this direction is a straightforward edge exchange,
607 which of course works in multigraphs as well.)
608 \qed
609
610 \rem
611 In the previous algorithm, the role of the mapping~$\pi^{-1}$ is of course played by the edge labels~$\ell$.
612
613 Finally, we will show a family of graphs where the $\O(m\log n)$ bound on time complexity
614 is tight. The graphs do not have unique weights, but they are constructed in a way that
615 the algorithm never compares two edges with the same weight. Therefore, when two such
616 graphs are monotonely isomorphic (see~\ref{mstiso}), the algorithm processes them in the same way.
617
618 \defn
619 A~\df{distractor of order~$k$,} denoted by~$D_k$, is a path on $n=2^k$~vertices $v_1,\ldots,v_n$
620 where each edge $v_iv_{i+1}$ has its weight equal to the number of trailing zeroes in the binary
621 representation of the number~$i$. The vertex $v_1$ is called a~\df{base} of the distractor.
622
623 \rem
624 Alternatively, we can use a recursive definition: $D_0$ is a single vertex, $D_k$ consists
625 of two disjoint copies of $D_{k-1}$ joined by an edge of weight~$k$.
626
627 \figure{distractor.eps}{\epsfxsize}{A~distractor $D_3$ and its evolution (bold edges are contracted)}
628
629 \lemma
630 A~single iteration of the contractive algorithm reduces~$D_k$ to a graph isomorphic with~$D_{k-1}$.
631
632 \proof
633 Each vertex~$v$ of~$D_k$ is incident with a single edge of weight~1. The algorithm therefore
634 selects all weight~1 edges and contracts them. This produces a graph which is
635 exactly $D_{k-1}$ with all weights increased by~1, which does not change the relative order of edges.
636 \qed
637
638 \defn
639 A~\df{hedgehog}~$H_{a,k}$ is a graph consisting of $a$~distractors $D_k^1,\ldots,D_k^a$ of order~$k$
640 together with edges of a complete graph on the bases of the distractors. These additional edges
641 have unique weights larger than~$k$, i.e., they are heavier than the edges of the distractors.
642
643 \figure{hedgehog.eps}{\epsfxsize}{A~hedgehog $H_{5,2}$ (quills bent to fit in the picture)}
644
645 \lemma
646 A~single iteration of the contractive algorithm reduces~$H_{a,k}$ to a graph isomorphic with $H_{a,k-1}$.
647
648 \proof
649 Each vertex is incident with an edge of some distractor, so the algorithm does not select
650 any edge of the complete graph. Contraction therefore reduces each distractor to a smaller
651 distractor (modulo an additive factor in weight) and leaves the complete graph intact.
652 This is monotonely isomorphic to $H_{a,k-1}$.
653 \qed
654
655 \thmn{Lower bound for Contractive Bor\o{u}vka}%
656 For each $n$ there exists a graph on $\Theta(n)$ vertices and $\Theta(n)$ edges
657 such that the Contractive Bor\o{u}vka's algorithm spends time $\Omega(m\log n)$ on it.
658
659 \proof
660 Consider the hedgehog $H_{a,k}$ for $a=\lceil\sqrt n\rceil$ and $k=\lceil\log_2 a\rceil$.
661 It has $a\cdot 2^k = \Theta(n)$ vertices and ${a \choose 2} + a\cdot 2^k = \Theta(a^2) + \Theta(a^2) = \Theta(n)$ edges
662 as we wanted.
663
664 By the previous lemma, the algorithm proceeds through a sequence of hedgehogs $H_{a,k},
665 H_{a,k-1}, \ldots, H_{a,0}$, so it needs a logarithmic number of iterations plus some more
666 to finish on the remaining complete graph. Each iteration runs on a graph with $\Omega(n)$
667 edges as every $H_{a,k}$ contains a complete graph on~$a$ vertices.
668 \qed
669
670 \section{Minor-closed graph classes}
671
672 The contracting algorithm given in the previous section has been found to perform
673 well on planar graphs, but in the general case its time complexity was not linear.
674 Can we find some broader class of graphs where the algorithm is still efficient?
675 The right context turns out to be the minor-closed graph classes, which are
676 closed on contractions and have bounded density.
677
678 \defn
679 A~graph~$H$ is a \df{minor} of a~graph~$G$ iff it can be obtained
680 from a subgraph of~$G$ by a sequence of graph contractions (see \ref{simpcont}).
681
682 \defn
683 A~class~$\cal C$ of graphs is \df{minor-closed}, when for every $G\in\cal C$ and
684 its minor~$H$, the graph~$H$ lies in~$\cal C$ as well. A~class~$\cal C$ is called
685 \df{non-trivial} if at least one graph lies in~$\cal C$ and at least one lies outside~$\cal C$.
686
687 \example
688 Non-trivial minor-closed classes include planar graphs and more generally graphs
689 embeddable in any fixed surface. Many nice properties of planar graphs extend
690 to these classes, too, most notable the linearity of the number of edges.
691
692 \defn\id{density}%
693 Let $\cal C$ be a class of graphs. We define its \df{edge density} $\varrho(\cal C)$
694 to be the infimum of all~$\varrho$'s such that $\vert E(G) \vert \le \varrho\cdot\vert V(G)\vert$
695 holds for every $G\in\cal C$.
696
697 \thmn{Density of minor-closed classes}
698 A~minor-closed class of graphs has finite edge density if and only if it is
699 a non-trivial class.
700
701 \proof
702 See Theorem 6.1 in \cite{nesetril:minors}, which also lists some other equivalent conditions.
703 \qed
704
705
706
707 \section{Using Fibonacci heaps}
708 \id{fibonacci}
709
710 % G has to be connected, so m=O(n)
711 % mention Steiner trees
712 % mention matroids
713 % sorted weights
714 % \O(...) as a set?
715 % impedance mismatch in terminology: contraction of G along e vs. contraction of e.
716
717 \endpart