]> mj.ucw.cz Git - saga.git/blob - mst.tex
Corrections: Appendix A.
[saga.git] / mst.tex
1 \ifx\endpart\undefined
2 \input macros.tex
3 \fi
4
5 \chapter{Minimum Spanning Trees}
6
7 \section{The Problem}
8
9 The problem of finding a minimum spanning tree of a weighted graph is one of the
10 best studied problems in the area of combinatorial optimization since its birth.
11 Its colorful history (see \cite{graham:msthistory} and \cite{nesetril:history} for the full account)
12 begins in~1926 with the pioneering work of Bor\o{u}vka
13 \cite{boruvka:ojistem}\foot{See \cite{nesetril:boruvka} for an English translation with commentary.},
14 who studied primarily an Euclidean version of the problem related to planning
15 of electrical transmission lines (see \cite{boruvka:networks}), but gave an efficient
16 algorithm for the general version of the problem. As it was well before the dawn of graph
17 theory, the language of his paper was complicated, so we will better state the problem
18 in contemporary terminology:
19
20 \proclaim{Problem}Given an undirected graph~$G$ with weights $w:E(G)\rightarrow {\bb R}$,
21 find its minimum spanning tree, defined as follows:
22
23 \defn\id{mstdef}%
24 For a given graph~$G$ with weights $w:E(G)\rightarrow {\bb R}$:
25 \itemize\ibull
26 \:A~subgraph $H\subseteq G$ is called a \df{spanning subgraph} if $V(H)=V(G)$.
27 \:A~\df{spanning tree} of~$G$ is any spanning subgraph of~$G$ that is a tree.
28 \:For any subgraph $H\subseteq G$ we define its \df{weight} $w(H):=\sum_{e\in E(H)} w(e)$.
29   When comparing two weights, we will use the terms \df{lighter} and \df{heavier} in the
30   obvious sense.
31 \:A~\df{minimum spanning tree (MST)} of~$G$ is a spanning tree~$T$ such that its weight $w(T)$
32   is the smallest possible among all the spanning trees of~$G$.
33 \:For a disconnected graph, a \df{(minimum) spanning forest (MSF)} is defined as
34   a union of (minimum) spanning trees of its connected components.
35 \endlist
36
37 Bor\o{u}vka's work was further extended by Jarn\'\i{}k \cite{jarnik:ojistem}, again in
38 mostly geometric setting. He has discovered another efficient algorithm. However, when
39 computer science and graph theory started forming in the 1950's and the
40 spanning tree problem was one of the central topics of the flourishing new
41 disciplines, the previous work was not well known and the algorithms had to be
42 rediscovered several times.
43
44 In the next 50 years, several significantly faster algorithms were discovered, ranging
45 from the $\O(m\timesbeta(m,n))$ time algorithm by Fredman and Tarjan \cite{ft:fibonacci},
46 over algorithms with inverse-Ackermann type complexity by Chazelle \cite{chazelle:ackermann}
47 and Pettie \cite{pettie:ackermann}, to an~algorithm by Pettie \cite{pettie:optimal}
48 whose time complexity is provably optimal.
49
50 In the upcoming chapters, we will explore this colorful universe of MST algorithms.
51 We will meet the canonical works of the classics, the clever ideas of their successors,
52 various approaches to the problem including randomization and solving of important
53 special cases. At several places, we will try to contribute our little stones to this
54 mosaic.
55
56 %--------------------------------------------------------------------------------
57
58 \section{Basic properties}\id{mstbasics}%
59
60 In this section, we will examine the basic properties of spanning trees and prove
61 several important theorems which will serve as a~foundation for our MST algorithms.
62 We will mostly follow the theory developed by Tarjan in~\cite{tarjan:dsna}.
63
64 For the whole section, we will fix a~connected graph~$G$ with edge weights~$w$ and all
65 other graphs will be spanning subgraphs of~$G$. We will use the same notation
66 for the subgraphs as for the corresponding sets of edges.
67
68 First of all, let us show that the weights on edges are not necessary for the
69 definition of the MST. We can formulate an equivalent characterization using
70 an~ordering of edges instead.
71
72 \defnn{Heavy and light edges}\id{heavy}%
73 Let~$T$ be a~spanning tree. Then:
74 \itemize\ibull
75 \:For vertices $x$ and $y$, let $T[x,y]$ denote the (unique) path in~$T$ joining $x$ with~$y$.
76 \:For an edge $e=xy$ we will call $T[e]:=T[x,y]$ the \df{path covered by~$e$} and
77   the edges of this path \df{edges covered by~$e$}.
78 \:An edge~$e$ is called \df{light with respect to~$T$} (or just \df{$T$-light}) if it covers a~heavier edge, i.e., if there
79   is an~edge $f\in T[e]$ such that $w(f) > w(e)$.
80 \:An edge~$e$ is called \df{$T$-heavy} if it covers a~lighter edge.
81 \endlist
82
83 \rem
84 Edges of the tree~$T$ cover only themselves and thus they are neither heavy nor light.
85 The same can happen if an~edge outside~$T$ covers only edges of the same weight,
86 but this will be rare because all edge weights will be usually distinct.
87
88 \lemman{Light edges}\id{lightlemma}%
89 Let $T$ be a spanning tree. If there exists a $T$-light edge, then~$T$
90 is not minimum.
91
92 \proof
93 If there is a $T$-light edge~$e$, then there exists an edge $e'\in T[e]$ such
94 that $w(e')>w(e)$. Now $T-e'$ ($T$~with the edge~$e'$ removed) is a forest of two trees with endpoints of~$e$
95 located in different components, so adding $e$ to this forest must restore
96 connectivity and $T':=T-e'+e$ is another spanning tree with weight $w(T')
97 = w(T)-w(e')+w(e) < w(T)$. Hence $T$ could not have been minimum.
98 \qed
99
100 \figure{mst2.eps}{278pt}{An edge exchange as in the proof of Lemma~\ref{lightlemma}}
101
102 The converse of this lemma is also true and to prove it, we will once again use
103 the technique of transforming trees by \df{exchanges of edges.} In the proof of the
104 lemma, we have made use of the fact that whenever we exchange an edge~$e$ of
105 a~spanning tree for another edge~$f$ covered by~$e$, the result is again
106 a~spanning tree. In fact, it is possible to transform any spanning tree
107 to any other spanning tree by a sequence of exchanges.
108
109 \lemman{Exchange property for trees}\id{xchglemma}%
110 Let $T$ and $T'$ be spanning trees of a common graph. Then there exists
111 a sequence of edge exchanges that transforms $T$ to~$T'$. More formally,
112 there exists a sequence of spanning trees $T=T_0,T_1,\ldots,T_k=T'$ such that
113 $T_{i+1}=T_i - e_i + e_i^\prime$ where $e_i\in T_i$ and $e_i^\prime\in T'$.
114
115 \proof
116 By induction on $d(T,T'):=\vert T\symdiff T'\vert$. When $d(T,T')=0$,
117 both trees are identical and no exchanges are needed. Otherwise, the trees are different,
118 but as they have the same number of edges, there must exist an edge $e'\in T'\setminus T$.
119 The cycle $T[e']+e'$ cannot be wholly contained in~$T'$, so there also must
120 exist an edge $e\in T[e']\setminus T'$. Exchanging $e$ for~$e'$ yields a spanning
121 tree $T^*:=T-e+e'$ such that $d(T^*,T')=d(T,T')-2$. Now we can apply the induction
122 hypothesis to $T^*$ and $T'$ to get the rest of the exchange sequence.
123 \qed
124
125 \figure{mst1.eps}{295pt}{One step of the proof of Lemma~\ref{xchglemma}}
126
127 \>In some cases, a~much stronger statement is true:
128
129 \lemman{Monotone exchanges}\id{monoxchg}%
130 Let $T$ be a spanning tree such that there are no $T$-light edges and $T'$
131 be an arbitrary spanning tree. Then there exists a sequence of edge exchanges
132 transforming $T$ to~$T'$ such that the weight of the tree does not decrease in any step.
133
134 \proof
135 We improve the argument from the previous proof, refining the induction step.
136 When we exchange $e\in T$ for $e'\in T'\setminus T$ such that $e\in T[e']$,
137 the weight never drops, since $e'$ is not a $T$-light edge and therefore
138 $w(e') \ge w(e)$, so $w(T^*)=w(T)-w(e)+w(e')\ge w(T)$.
139
140 To keep the induction going, we have to make sure that there are still no light
141 edges with respect to~$T^*$. In fact, it is enough to avoid such edges in
142 $T'\setminus T^*$, since these are the only edges considered by the induction
143 steps. To accomplish that, we replace the so far arbitrary choice of $e'\in T'\setminus T$
144 by picking the lightest such edge.
145
146 Let us consider an edge $f\in T'\setminus T^*$. We want to show that $f$ is not
147 $T^*$-light, i.e., that it is heavier than all edges on $T^*[f]$. The path $T^*[f]$ is
148 either identical to the original path $T[f]$ (if $e\not\in T[f]$) or to $T[f] \symdiff C$,
149 where $C$ is the cycle $T[e']+e'$. The former case is trivial, in the latter we have
150 $w(f)\ge w(e')$ due to the choice of $e'$ and all other edges on~$C$ are lighter
151 than~$e'$ as $e'$ was not $T$-light.
152 \qed
153
154 This lemma immediately implies that Lemma \ref{lightlemma} works in both directions:
155
156 \thmn{Minimality of spanning trees}\id{mstthm}%
157 A~spanning tree~$T$ is minimum iff there is no $T$-light edge.
158
159 \proof
160 If~$T$ is minimum, then by Lemma~\ref{lightlemma} there are no $T$-light
161 edges.
162 Conversely, when $T$ is a spanning tree without $T$-light edges
163 and $T_{min}$ is an arbitrary minimum spanning tree, then according to the Monotone
164 exchange lemma (\ref{monoxchg}) there exists a non-decreasing sequence
165 of exchanges transforming $T$ to $T_{min}$, so $w(T)\le w(T_{min})$
166 and thus $T$~is also minimum.
167 \qed
168
169 In general, a single graph can have many minimum spanning trees (for example
170 a complete graph on~$n$ vertices with unit edge weights has $n^{n-2}$
171 minimum spanning trees according to the Cayley's formula \cite{cayley:trees}).
172 However, as the following theorem shows, this is possible only if the weight
173 function is not injective.
174
175 \thmn{Uniqueness of MST}%
176 If all edge weights are distinct, then the minimum spanning tree is unique.
177
178 \proof
179 Consider two minimum spanning trees $T_1$ and~$T_2$. According to the previous
180 theorem, there are no light edges with respect to neither of them, so by the
181 Monotone exchange lemma (\ref{monoxchg}) there exists a sequence of non-decreasing
182 edge exchanges going from $T_1$ to $T_2$. As all edge weights all distinct,
183 these edge exchanges must be in fact strictly increasing. On the other hand,
184 we know that $w(T_1)=w(T_2)$, so the exchange sequence must be empty and indeed
185 $T_1$ and $T_2$ must be identical.
186 \qed
187
188 \nota\id{mstnota}%
189 When $G$ is a graph with distinct edge weights, we will use $\mst(G)$ to denote
190 its unique minimum spanning tree.
191
192 Also the following trivial lemma will be often invaluable:
193
194 \lemman{Edge removal}
195 Let~$G$ be a~graph with distinct edge weights and $e \in G\setminus\mst(G)$.
196 Then $\mst(G-e) = \mst(G)$.
197
198 \proof
199 The tree $T=\mst(G)$ is also a~MST of~$G-e$, because every $T$-light
200 edge in~$G-e$ is also $T$-light in~$G$. Then we apply the uniqueness of
201 the MST of~$G-e$.
202 \qed
203
204 \paran{Comparison oracles}\id{edgeoracle}%
205 To simplify the description of MST algorithms, we will assume that the weights
206 of all edges are distinct and that instead of numeric weights we are given a~comparison oracle.
207 The oracle is a~function that answers questions of type ``Is $w(e)<w(f)$?'' in
208 constant time. This will conveniently shield us from problems with representation
209 of real numbers in algorithms and in the few cases where we need a more concrete
210 input, we will explicitly state so.
211
212 In case the weights are not distinct, we can easily break ties by comparing some
213 unique identifiers of edges. According to our characterization of minimum spanning
214 trees, the unique MST of the new graph will still be a~MST of the original graph.
215 Sometimes, we could be interested in finding all solutions, but as this is an~uncommon
216 problem, we will postpone it until Section \ref{kbestsect}. For the time being,
217 we will always assume distinct weights.
218
219 \obs
220 If all edge weights are distinct and $T$~is an~arbitrary spanning tree, then every edge of~$G$
221 is either $T$-heavy, or $T$-light, or contained in~$T$.
222
223 \paran{Monotone isomorphism}%
224 Another useful consequence of the Minimality theorem is that whenever two graphs are isomorphic and the
225 isomorphism preserves the relative order of weights, the isomorphism applies to their MST's as well:
226
227 \defn
228 A~\df{monotone isomorphism} between two weighted graphs $G_1=(V_1,E_1,w_1)$ and
229 $G_2=(V_2,E_2,w_2)$ is a bijection $\pi: V_1\rightarrow V_2$ such that
230 for each $u,v\in V_1: uv\in E_1 \Leftrightarrow \pi(u)\pi(v)\in E_2$ and
231 for each $e,f\in E_1: w_1(e)<w_1(f) \Leftrightarrow w_2(\pi[e]) < w_2(\pi[f])$.
232
233 \lemman{MST of isomorphic graphs}\id{mstiso}%
234 Let~$G_1$ and $G_2$ be two weighted graphs with distinct edge weights and $\pi$
235 a~monotone isomorphism between them. Then $\mst(G_2) = \pi[\mst(G_1)]$.
236
237 \proof
238 The isomorphism~$\pi$ maps spanning trees to spanning trees bijectively and it preserves
239 the relation of covering. Since it is monotone, it preserves the property of
240 being a light edge (an~edge $e\in E(G_1)$ is $T$-light $\Leftrightarrow$
241 the edge $\pi[e]\in E(G_2)$ is~$f[T]$-light). Therefore by the Minimality Theorem
242 (\ref{mstthm}), $T$ is the MST of~$G_1$ if and only if $\pi[T]$ is the MST of~$G_2$.
243 \qed
244
245 %--------------------------------------------------------------------------------
246
247 \section{The Red-Blue meta-algorithm}
248
249 Most MST algorithms can be described as special cases of the following procedure
250 (again following Tarjan \cite{tarjan:dsna}):
251
252 \algn{Red-Blue Meta-Algorithm}\id{rbma}%
253 \algo
254 \algin A~graph $G$ with an edge comparison oracle (see \ref{edgeoracle})
255 \:At the beginning, all edges are colored black.
256 \:Apply rules as long as possible:
257 \::Either pick a cut~$C$ such that its lightest edge is not blue \hfil\break and color this edge blue, \cmt{Blue rule}
258 \::or pick a cycle~$C$ such that its heaviest edge is not red \hfil\break and color this edge \rack{blue.}{red.\hfil} \cmt{Red rule}
259 \algout Minimum spanning tree of~$G$ consisting of edges colored blue.
260 \endalgo
261
262 \para
263 This procedure is not a proper algorithm, since it does not specify how to choose
264 the rule to apply. We will however prove that no matter how the rules are applied,
265 the procedure always stops and it gives the correct result. Also, it will turn out
266 that each of the classical MST algorithms can be described as a specific way
267 of choosing the rules in this procedure, which justifies the name meta-algorithm.
268
269 \nota
270 We will denote the unique minimum spanning tree of the input graph by~$T_{min}$.
271 We intend to prove that this is also the output of the procedure.
272
273 \paran{Correctness}%
274 Let us prove that the meta-algorithm is correct. First we show that the edges colored
275 blue in any step of the procedure always belong to~$T_{min}$ and that the edges colored
276 red are guaranteed to be outside~$T_{min}$. Then we demonstrate that the procedure
277 always stops. Some parts of the proof will turn out to be useful in the upcoming chapters,
278 so we will state them in a~slightly more general way.
279
280 \lemman{Blue lemma, also known as the Cut rule}\id{bluelemma}%
281 The lightest edge of every cut is contained in the MST.
282
283 \proof
284 By contradiction. Let $e$ be the lightest edge of a cut~$C$.
285 If $e\not\in T_{min}$, then there must exist an edge $e'\in T_{min}$ that is
286 contained in~$C$ (take any pair of vertices separated by~$C$: the path
287 in~$T_{min}$ joining these vertices must cross~$C$ at least once). Exchanging
288 $e$ for $e'$ in $T_{min}$ yields an even lighter spanning tree since
289 $w(e)<w(e')$.
290 \qed
291
292 \lemman{Red lemma, also known as the Cycle rule}\id{redlemma}%
293 An~edge~$e$ is not contained in the MST iff it is the heaviest on some cycle.
294
295 \proof
296 The implication from the left to the right follows directly from the Minimality
297 theorem: if~$e\not\in T_{min}$, then $e$~is $T_{min}$-heavy and so it is the heaviest
298 edge on the cycle $T_{min}[e]+e$.
299
300 We will prove the other implication again by contradiction. Suppose that $e$ is the heaviest edge of
301 a cycle~$C$ and that $e\in T_{min}$. Removing $e$ causes $T_{min}$ to split
302 to two components, let us call them $T_x$ and~$T_y$. Some vertices of~$C$ now lie in~$T_x$, the
303 others in~$T_y$, so there must exist in edge $e'\ne e$ such that its endpoints lie in different
304 components. Since $w(e')<w(e)$, exchanging $e$ for~$e'$ yields a~spanning tree lighter than
305 $T_{min}$.
306 \qed
307
308 \figure{mst-rb.eps}{289pt}{Proof of the Blue (left) and Red (right) lemma}
309
310 \lemman{Black lemma}%
311 As long as there exists a black edge, at least one rule can be applied.
312
313 \proof
314 Assume that $e=xy$ is a black edge. Let us define~$M$ as the set of vertices
315 reachable from~$x$ using only blue edges. If $y$~lies in~$M$, then $e$ together
316 with some blue path between $x$ and $y$ forms a cycle and $e$~must be the heaviest
317 edge on this cycle. This holds because all blue edges have been already proven
318 to be in $T_{min}$ and there can be no $T_{min}$-light edges.
319 In this case, we can apply the Red rule.
320
321 On the other hand, if $y\not\in M$, then the cut formed by all edges between $M$
322 and $V\setminus M$ contains no blue edges, therefore we can use the Blue rule.
323 \qed
324
325 \figure{mst-bez.eps}{295pt}{Configurations in the proof of the Black lemma}
326
327 \nota\id{deltanota}%
328 We will use $\delta(M)$ to denote the cut separating~$M$ from its complement.
329 That is, $\delta(M) = E \cap (M \times (V\setminus M))$. We will also abbreviate
330 $\delta(\{v\})$ as~$\delta(v)$.
331
332 \thmn{Red-Blue correctness}%
333 For any selection of rules, the Red-Blue procedure stops and the blue edges form
334 the minimum spanning tree of the input graph.
335
336 \proof
337 To prove that the procedure stops, let us notice that no edge is ever recolored,
338 so we must run out of black edges after at most~$m$ steps. Recoloring
339 to the same color is avoided by the conditions built in the rules, recoloring to
340 a different color would mean that the edge would be both inside and outside~$T_{min}$
341 due to our Red and Blue lemmata.
342
343 When no further rules can be applied, the Black lemma guarantees that all edges
344 are colored, so by the Blue lemma all blue edges are in~$T_{min}$ and by the Red
345 lemma all other (red) edges are outside~$T_{min}$. Thus the blue edges are exactly~$T_{min}$.
346 \qed
347
348 \rem
349 The MST problem is a~special case of the problem of finding the minimum basis
350 of a~weighted matroid. Surprisingly, when we modify the Red-Blue procedure to
351 use the standard definitions of cycles and cuts in matroids, it will always
352 find the minimum basis. Some of the other MST algorithms also easily generalize to
353 matroids and in some sense matroids are exactly the objects where ``the greedy approach works''. We
354 will however not pursue this direction in our work, referring the reader to the Oxley's monograph
355 \cite{oxley:matroids} instead.
356
357 %--------------------------------------------------------------------------------
358
359 \section{Classical algorithms}\id{classalg}%
360
361 The three classical MST algorithms (Bor\o{u}vka's, Jarn\'\i{}k's, and Kruskal's) can be easily
362 stated in terms of the Red-Blue meta-algorithm. For each of them, we first show the general version
363 of the algorithm, then we prove that it gives the correct result and finally we discuss the time
364 complexity of various implementations.
365
366 \paran{Bor\o{u}vka's algorithm}%
367 The oldest MST algorithm is based on a~simple idea: grow a~forest in a~sequence of
368 iterations until it becomes connected. We start with a~forest of isolated
369 vertices. In each iteration, we let each tree of the forest select the lightest
370 edge of those having exactly one endpoint in the tree (we will call such edges
371 the \df{neighboring edges} of the tree). We add all such edges to the forest and
372 proceed with the next iteration.
373
374 \algn{Bor\o{u}vka \cite{boruvka:ojistem}, Choquet \cite{choquet:mst}, Sollin \cite{sollin:mst}, and others}
375 \algo
376 \algin A~graph~$G$ with an edge comparison oracle.
377 \:$T\=$ a forest consisting of vertices of~$G$ and no edges.
378 \:While $T$ is not connected:
379 \::For each component $T_i$ of~$T$, choose the lightest edge $e_i$ from the cut
380    separating $T_i$ from the rest of~$T$.
381 \::Add all $e_i$'s to~$T$.
382 \algout Minimum spanning tree~$T$.
383 \endalgo
384
385 \lemma\id{boruvkadrop}%
386 In each iteration of the algorithm, the number of trees in~$T$ decreases by at least
387 a~factor of two.
388
389 \proof
390 Each tree gets merged with at least one of its neighbors, so each of the new trees
391 contains two or more original trees.
392 \qed
393
394 \cor
395 The algorithm stops in $\O(\log n)$ iterations.
396
397 \lemma\id{borcorr}%
398 The Bor\o{u}vka's algorithm outputs the MST of the input graph.
399
400 \proof
401 In every iteration of the algorithm, $T$ is a blue subgraph,
402 because every addition of some edge~$e_i$ to~$T$ is a straightforward
403 application of the Blue rule. We stop when the blue subgraph is connected, so
404 we do not need the Red rule to explicitly exclude edges.
405
406 It remains to show that adding the edges simultaneously does not
407 produce a cycle. Consider the first iteration of the algorithm where $T$ contains a~cycle~$C$. Without
408 loss of generality we can assume that:
409 $$C=T_1[u_1,v_1]\,v_1u_2\,T_2[u_2,v_2]\,v_2u_3\,T_3[u_3,v_3]\, \ldots \,T_k[u_k,v_k]\,v_ku_1.$$
410 Each component $T_i$ has chosen its lightest incident edge~$e_i$ as either the edge $v_iu_{i+1}$
411 or $v_{i-1}u_i$ (indexing cyclically). Suppose that $e_1=v_1u_2$ (otherwise we reverse the orientation
412 of the cycle). Then $e_2=v_2u_3$ and $w(e_2)<w(e_1)$ and we can continue in the same way,
413 getting $w(e_1)>w(e_2)>\ldots>w(e_k)>w(e_1)$, which is a contradiction.
414 (Note that distinctness of edge weights was crucial here.)
415 \qed
416
417 \lemma\id{boruvkaiter}%
418 Each iteration can be carried out in time $\O(m)$.
419
420 \proof
421 We assign a label to each tree and we keep a mapping from vertices to the
422 labels of the trees they belong to. We scan all edges, map their endpoints
423 to the particular trees and for each tree we maintain the lightest incident edge
424 so far encountered. Instead of merging the trees one by one (which would be too
425 slow), we build an auxiliary graph whose vertices are the labels of the original
426 trees and edges correspond to the chosen lightest inter-tree edges. We find the connected
427 components of this graph, and these determine how are the original labels translated
428 to the new labels.
429 \qed
430
431 \thm
432 The Bor\o{u}vka's algorithm finds the MST in time $\O(m\log n)$.
433
434 \proof
435 Follows from the previous lemmata.
436 \qed
437
438 \paran{Jarn\'\i{}k's algorithm}%
439 The next algorithm, discovered independently by Jarn\'\i{}k, Prim and Dijkstra, is similar
440 to the Bor\o{u}vka's algorithm, but instead of the whole forest it concentrates on
441 a~single tree. It starts with a~single vertex and it repeatedly extends the tree
442 by the lightest neighboring edge until the tree spans the whole graph.
443
444 \algn{Jarn\'\i{}k \cite{jarnik:ojistem}, Prim \cite{prim:mst}, Dijkstra \cite{dijkstra:mst}}\id{jarnik}%
445 \algo
446 \algin A~graph~$G$ with an edge comparison oracle.
447 \:$T\=$ a single-vertex tree containing an~arbitrary vertex of~$G$.
448 \:While there are vertices outside $T$:
449 \::Pick the lightest edge $uv$ such that $u\in V(T)$ and $v\not\in V(T)$.
450 \::$T\=T+uv$.
451 \algout Minimum spanning tree~$T$.
452 \endalgo
453
454 \lemma
455 The Jarn\'\i{}k's algorithm computes the MST of the input graph.
456
457 \proof
458 If~$G$ is connected, the algorithm always stops. In every step of
459 the algorithm, $T$ is always a blue tree. because Step~4 corresponds to applying
460 the Blue rule to the cut $\delta(T)$ separating~$T$ from the rest of the given graph. We need not care about
461 the remaining edges, since for a connected graph the algorithm always stops with the right
462 number of blue edges.
463 \qed
464
465 \impl\id{jarnimpl}%
466 The most important part of the algorithm is finding the \em{neighboring edges.}
467 In a~straightforward implementation, searching for the lightest neighboring
468 edge takes $\Theta(m)$ time, so the whole algorithm runs in time $\Theta(mn)$.
469
470 We can do much better by using a binary
471 heap to hold all neighboring edges. In each iteration, we find and delete the
472 minimum edge from the heap and once we expand the tree, we insert the newly discovered
473 neighboring edges to the heap and delete the neighboring edges that became
474 internal to the new tree. Since there are always at most~$m$ edges in the heap,
475 each heap operation takes $\O(\log m)=\O(\log n)$ time. For every edge, we perform
476 at most one insertion and at most one deletion, so we spend $\O(m\log n)$ time in total.
477 From this, we can conclude:
478
479 \thm
480 The Jarn\'\i{}k's algorithm computes the MST of a~given graph in time $\O(m\log n)$.
481
482 \rem
483 We will show several faster implementations in section \ref{iteralg}.
484
485 \paran{Kruskal's algorithm}%
486 The last of the three classical algorithms processes the edges of the
487 graph~$G$ greedily. It starts with an~empty forest and it takes the edges of~$G$
488 in order of their increasing weights. For every edge, it checks whether its
489 addition to the forest produces a~cycle and if it does not, the edge is added.
490 Otherwise, the edge is dropped and not considered again.
491
492 \algn{Kruskal \cite{kruskal:mst}}
493 \algo
494 \algin A~graph~$G$ with an edge comparison oracle.
495 \:Sort edges of~$G$ by their increasing weights.
496 \:$T\=\hbox{an empty spanning subgraph}$.
497 \:For all edges $e$ in their sorted order:
498 \::If $T+e$ is acyclic, add~$e$ to~$T$.
499 \::Otherwise drop~$e$.
500 \algout Minimum spanning tree~$T$.
501 \endalgo
502
503 \lemma
504 The Kruskal's algorithm returns the MST of the input graph.
505
506 \proof
507 In every step, $T$ is a forest of blue trees. Adding~$e$ to~$T$
508 in step~4 applies the Blue rule on the cut separating some pair of components of~$T$ ($e$ is the lightest,
509 because all other edges of the cut have not been considered yet). Dropping~$e$ in step~5 corresponds
510 to the Red rule on the cycle found ($e$~must be the heaviest, since all other edges of the
511 cycle have been already processed). At the end of the algorithm, all edges are colored,
512 so~$T$ must be the~MST.
513 \qed
514
515 \impl
516 Except for the initial sorting, which in general requires $\Theta(m\log m)$ time, the only
517 other non-trivial operation is the detection of cycles. What we need is a~data structure
518 for maintaining connected components, which supports queries and edge insertion.
519 This is closely related to the well-known Disjoint Set Union problem:
520
521 \problemn{Disjoint Set Union, DSU}
522 Maintain an~equivalence relation on a~finite set under a~sequence of operations \<Union>
523 and \<Find>. The \<Find> operation tests whether two elements are equivalent and \<Union>
524 joins two different equivalence classes into one.
525
526 \para
527 We can maintain the connected components of our forest~$T$ as equivalence classes. When we want
528 to add an~edge~$uv$, we first call $\<Find>(u,v)$ to check if both endpoints of the edge lie in
529 the same component. If they do not, addition of this edge connects both components into one,
530 so we perform $\<Union>(u,v)$ to merge the equivalence classes.
531
532 Tarjan has shown that there is a~data structure for the DSU problem
533 of surprising efficiency:
534
535 \thmn{Disjoint Set Union, Tarjan \cite{tarjan:setunion}}\id{dfu}%
536 Starting with a~trivial equivalence with single-element classes, a~sequence of operations
537 comprising of $n$~\<Union>s intermixed with $m\ge n$~\<Find>s can be processed in time
538 $\O(m\timesalpha(m,n))$, where $\alpha(m,n)$ is a~certain inverse of the Ackermann's function
539 (see Definition \ref{ackerinv}).
540
541 \proof
542 See \cite{tarjan:setunion}.
543 \qed
544
545 This completes the following theorem:
546
547 \thm\id{kruskal}%
548 The Kruskal's algorithm finds the MST of a given graph in time $\O(m\log n)$.
549 If the edges are already sorted by their weights, the time drops to
550 $\O(m\timesalpha(m,n))$.
551
552 \proof
553 We spend $\O(m\log n)$ time on sorting, $\O(m\timesalpha(m,n))$ on processing the sequence
554 of \<Union>s and \<Find>s, and $\O(m)$ on all other work.
555 \qed
556
557 \rem
558 The cost of the \<Union> and \<Find> operations is of course dwarfed by the complexity
559 of sorting, so a much simpler (at least in terms of its analysis) data
560 structure would be sufficient, as long as it has $\O(\log n)$ amortized complexity
561 per operation. For example, we can label vertices with identifiers of the
562 corresponding components and always relabel the smaller of the two components.
563
564 We will study dynamic maintenance of connected components in more detail in Chapter~\ref{dynchap}.
565
566 %--------------------------------------------------------------------------------
567
568 \section{Contractive algorithms}\id{contalg}%
569
570 While the classical algorithms are based on growing suitable trees, they
571 can be also reformulated in terms of edge contraction. Instead of keeping
572 a~forest of trees, we can keep each tree contracted to a single vertex.
573 This replaces the relatively complex tree-edge incidencies by simple
574 vertex-edge incidencies, potentially speeding up the calculation at the
575 expense of having to perform the contractions.
576
577 We will show a contractive version of the Bor\o{u}vka's algorithm
578 in which these costs are carefully balanced, leading for example to
579 a linear-time algorithm for MST in planar graphs.
580
581 There are two definitions of edge contraction that differ when an edge of
582 a~triangle is contracted. Either we unify the other two edges to a single edge
583 or we keep them as two parallel edges, leaving us with a~multigraph. We will
584 use the multigraph version and we will show that we can easily reduce the multigraph
585 to a~simple graph later. (See \ref{contract} for the exact definitions.)
586
587 We only need to be able to map edges of the contracted graph to the original
588 edges, so we let each edge carry a unique label $\ell(e)$ that will be preserved by
589 contractions.
590
591 \lemman{Flattening a multigraph}\id{flattening}%
592 Let $G$ be a multigraph and $G'$ its subgraph obtaining by removing loops
593 and replacing each bundle of parallel edges by its lightest edge.
594 Then $G'$~has the same MST as~$G$.
595
596 \proof
597 Every spanning tree of~$G'$ is a spanning tree of~$G$. In the other direction:
598 Loops can be never contained in a spanning tree. If there is a spanning tree~$T$
599 containing a~removed edge~$e$ parallel to an edge~$e'\in G'$, exchanging $e'$
600 for~$e$ makes~$T$ lighter. (This is indeed the multigraph version of the Red
601 lemma applied to a~two-edge cycle, as we will see in \ref{multimst}.)
602 \qed
603
604 \algn{Contractive version of Bor\o{u}vka's algorithm}\id{contbor}
605 \algo
606 \algin A~graph~$G$ with an edge comparison oracle.
607 \:$T\=\emptyset$.
608 \:$\ell(e)\=e$ for all edges~$e$. \cmt{Initialize the labels.}
609 \:While $n(G)>1$:
610 \::For each vertex $v_k$ of~$G$, let $e_k$ be the lightest edge incident to~$v_k$.
611 \::$T\=T\cup \{ \ell(e_1),\ldots,\ell(e_n) \}$.\hfil\break\cmt{Remember labels of all selected edges.}
612 \::Contract all edges $e_k$, inheriting labels and weights.\foot{In other words, we will ask the comparison oracle for the edge $\ell(e)$ instead of~$e$.}
613 \::Flatten $G$ (remove parallel edges and loops).
614 \algout Minimum spanning tree~$T$.
615 \endalgo
616
617 \nota
618 For the analysis of the algorithm, we will denote the graph considered by the algorithm
619 at the beginning of the $i$-th iteration by $G_i$ (starting with $G_0=G$) and the number
620 of vertices and edges of this graph by $n_i$ and $m_i$ respectively. A~single iteration
621 of the algorithm will be called a~\df{Bor\o{u}vka step}.
622
623 \lemma\id{contiter}%
624 The $i$-th Bor\o{u}vka step can be carried out in time~$\O(m_i)$.
625
626 \proof
627 The only non-trivial parts are steps 6 and~7. Contractions can be handled similarly
628 to the unions in the original Bor\o{u}vka's algorithm (see \ref{boruvkaiter}):
629 We build an~auxiliary graph containing only the selected edges~$e_k$, find
630 connected components of this graph and renumber vertices in each component to
631 the identifier of the component. This takes $\O(m_i)$ time.
632
633 Flattening is performed by first removing the loops and then bucket-sorting the edges
634 (as ordered pairs of vertex identifiers) lexicographically, which brings parallel
635 edges together. The bucket sort uses two passes with $n_i$~buckets, so it takes
636 $\O(n_i+m_i)=\O(m_i)$.
637 \qed
638
639 \thm\id{contborthm}%
640 The Contractive Bor\o{u}vka's algorithm finds the MST of the input graph in
641 time $\O(\min(n^2,m\log n))$.
642
643 \proof
644 As in the original Bor\o{u}vka's algorithm, the number of iterations is $\O(\log n)$.
645 When combined with the previous lemma, it gives an~$\O(m\log n)$ upper bound.
646
647 To get the $\O(n^2)$ bound, we observe that the number of trees in the non-contracting
648 version of the algorithm drops at least by a factor of two in each iteration (Lemma \ref{boruvkadrop})
649 and the same must hold for the number of vertices in the contracting version.
650 Therefore $n_i\le n/2^i$. While the number of edges need not decrease geometrically,
651 we still have $m_i\le n_i^2$ as the graphs~$G_i$ are simple (we explicitly removed multiple
652 edges and loops at the end of the previous iteration). Hence the total time spent
653 in all iterations is $\O(\sum_i n_i^2) = \O(\sum_i n^2/4^i) = \O(n^2)$.
654 \qed
655
656 On planar graphs, the algorithm runs much faster:
657
658 \thmn{Contractive Bor\o{u}vka on planar graphs}\id{planarbor}%
659 When the input graph is planar, the Contractive Bor\o{u}vka's algorithm runs in
660 time $\O(n)$.
661
662 \proof
663 Let us refine the previous proof. We already know that $n_i \le n/2^i$. We will
664 prove that when~$G$ is planar, the $m_i$'s are decreasing geometrically. We know that every
665 $G_i$ is planar, because the class of planar graphs is closed under edge deletion and
666 contraction. Moreover, $G_i$~is also simple, so we can use the standard bound on
667 the number of edges of planar simple graphs (see for example \cite{diestel:gt}) to get $m_i\le 3n_i \le 3n/2^i$.
668 The total time complexity of the algorithm is therefore $\O(\sum_i m_i)=\O(\sum_i n/2^i)=\O(n)$.
669 \qed
670
671 \rem
672 There are several other possibilities how to find the MST of a planar graph in linear time.
673 For example, Matsui \cite{matsui:planar} has described an algorithm based on simultaneously
674 working on the graph and its topological dual. The advantage of our approach is that we do not need
675 to construct the planar embedding explicitly. We will show another simpler linear-time algorithm
676 in section~\ref{minorclosed}.
677
678 \rem
679 To achieve the linear time complexity, the algorithm needs a very careful implementation,
680 but we defer the technical details to section~\ref{bucketsort}.
681
682 \paran{General contractions}%
683 Graph contractions are indeed a~very powerful tool and they can be used in other MST
684 algorithms as well. The following lemma shows the gist:
685
686 \lemman{Contraction of MST edges}\id{contlemma}%
687 Let $G$ be a weighted graph, $e$~an arbitrary edge of~$\mst(G)$, $G/e$ the multigraph
688 produced by contracting~$e$ in~$G$, and $\pi$ the bijection between edges of~$G-e$ and
689 their counterparts in~$G/e$. Then: $$\mst(G) = \pi^{-1}[\mst(G/e)] + e.$$
690
691 \proof
692 % We seem not to need this lemma for multigraphs...
693 %If there are any loops or parallel edges in~$G$, we can flatten the graph. According to the
694 %Flattening lemma (\ref{flattening}), the MST stays the same and if we remove a parallel edge
695 %or loop~$f$, then $\pi(f)$ would be removed when flattening~$G/e$, so $f$ never participates
696 %in a MST.
697 The right-hand side of the equality is a spanning tree of~$G$. Let us denote it by~$T$ and
698 the MST of $G/e$ by~$T'$. If $T$ were not minimum, there would exist a $T$-light edge~$f$ in~$G$
699 (by the Minimality Theorem, \ref{mstthm}). If the path $T[f]$ covered by~$f$ does not contain~$e$,
700 then $\pi[T[f]]$ is a path covered by~$\pi(f)$ in~$T'$. Otherwise $\pi(T[f]-e)$ is such a path.
701 In both cases, $f$ is $T'$-light, which contradicts the minimality of~$T'$. (We do not have
702 a~multigraph version of the theorem, but the direction we need is a~straightforward edge exchange,
703 which obviously works in multigraphs as well as in simple graphs.)
704 \qed
705
706 \rem
707 In the Contractive Bor\o{u}vka's algorithm, the role of the mapping~$\pi^{-1}$ is of course played by the edge labels~$\ell$.
708
709 \paran{A~lower bound}%
710 Finally, we will show a family of graphs for which the $\O(m\log n)$ bound on time complexity
711 is tight. The graphs do not have unique weights, but they are constructed in a way that
712 the algorithm never compares two edges with the same weight. Therefore, when two such
713 graphs are monotonically isomorphic (see~\ref{mstiso}), the algorithm processes them in the same way.
714
715 \defn
716 A~\df{distractor of order~$k$,} denoted by~$D_k$, is a path on $n=2^k$~vertices $v_1,\ldots,v_n$,
717 where each edge $v_iv_{i+1}$ has its weight equal to the number of trailing zeroes in the binary
718 representation of the number~$i$. The vertex $v_1$ is called a~\df{base} of the distractor.
719
720 \figure{distractor.eps}{\epsfxsize}{A~distractor $D_3$ and its evolution (bold edges are contracted)}
721
722 \rem
723 Alternatively, we can use a recursive definition: $D_0$ is a single vertex, $D_{k+1}$ consists
724 of two disjoint copies of~$D_k$ joined by an edge of weight~$k$.
725
726 \lemma
727 A~single iteration of the contractive algorithm reduces the distractor~$D_k$ to a~graph isomorphic with~$D_{k-1}$.
728
729 \proof
730 Each vertex~$v$ of~$D_k$ is incident with a single edge of weight~1. The algorithm therefore
731 selects all weight~1 edges and contracts them. This produces a~graph that is
732 equal to $D_{k-1}$ with all weights increased by~1, which does not change the relative order of edges.
733 \qed
734
735 \defn
736 A~\df{hedgehog}~$H_{a,k}$ is a graph consisting of $a$~distractors $D_k^1,\ldots,D_k^a$ of order~$k$
737 together with edges of a complete graph on the bases of these distractors. The additional edges
738 have arbitrary weights that are heavier than the edges of all the distractors.
739
740 \figure{hedgehog.eps}{\epsfxsize}{A~hedgehog $H_{5,2}$ (quills bent to fit in the picture)}
741
742 \lemma
743 A~single iteration of the contractive algorithm reduces~$H_{a,k}$ to a graph isomorphic with $H_{a,k-1}$.
744
745 \proof
746 Each vertex is incident with an edge of some distractor, so the algorithm does not select
747 any edge of the complete graph. Contraction therefore reduces each distractor to a smaller
748 distractor (modulo an additive factor in weight) and it leaves the complete graph intact.
749 The resulting graph is monotonely isomorphic to $H_{a,k-1}$.
750 \qed
751
752 When we set the parameters appropriately, we get the following lower bound:
753
754 \thmn{Lower bound for Contractive Bor\o{u}vka}%
755 For each $n$ there exists a graph on $\Theta(n)$ vertices and $\Theta(n)$ edges
756 such that the Contractive Bor\o{u}vka's algorithm spends time $\Omega(n\log n)$ on it.
757
758 \proof
759 Consider the hedgehog $H_{a,k}$ for $a=\lceil\sqrt n\rceil$ and $k=\lceil\log_2 a\rceil$.
760 It has $a\cdot 2^k = \Theta(n)$ vertices and ${a \choose 2} + a\cdot 2^k = \Theta(a^2) + \Theta(a^2) = \Theta(n)$ edges
761 as we wanted.
762
763 By the previous lemma, the algorithm proceeds through a sequence of hedgehogs $H_{a,k},
764 H_{a,k-1}, \ldots, H_{a,0}$ (up to monotone isomorphism), so it needs a logarithmic number of iterations plus some more
765 to finish on the remaining complete graph. Each iteration runs on a graph with $\Omega(n)$
766 edges as every $H_{a,k}$ contains a complete graph on~$a$ vertices.
767 \qed
768
769 %--------------------------------------------------------------------------------
770
771 \section{Lifting restrictions}
772
773 In order to have a~simple and neat theory, we have introduced several restrictions
774 on the graphs in which we search for the MST. As in some rare cases we are going to
775 meet graphs that do not fit into this simplified world, let us quickly examine what
776 happens when the restrictions are lifted.
777
778 \paran{Disconnected graphs}\id{disconn}%
779 The basic properties of minimum spanning trees and the algorithms presented in
780 this chapter apply to minimum spanning forests of disconnected graphs, too.
781 The proofs of our theorems and the steps of our algorithms are based on adjacency
782 of vertices and existence of paths, so they are always local to a~single
783 connected component. The Bor\o{u}vka's and Kruskal's algorithm need no changes,
784 the Jarn\'\i{}k's algorithm has to be invoked separately for each component.
785
786 We can also extend the notion of light and heavy edges with respect
787 to a~tree to forests: When an~edge~$e$ connects two vertices lying in the same
788 tree~$T$ of a~forest~$F$, it is $F$-heavy iff it is $T$-heavy (similarly
789 for $F$-light). Edges connecting two different trees are always considered
790 $F$-light. Again, a~spanning forest~$F$ is minimum iff there are no $F$-light
791 edges.
792
793 \paran{Multigraphs}\id{multimst}%
794 All theorems and algorithms from this chapter work for multigraphs as well,
795 only the notation sometimes gets crabbed, which we preferred to avoid. The Minimality
796 theorem and the Blue rule stay unchanged. The Red rule is naturally extended to
797 self-loops (which are never in the MST) and two-edge cycles (where the heavier
798 edge can be dropped) as already suggested in the Flattening lemma (\ref{flattening}).
799
800 \paran{Multiple edges of the same weight}\id{multiweight}%
801 In case when the edge weights are not distinct, the characterization of minimum
802 spanning trees using light edges is still correct, but the MST is no longer unique
803 (as already mentioned, there can be as much as~$n^{n-2}$ MST's).
804
805 In the Red-Blue procedure, we have to avoid being too zealous. The Blue lemma cannot
806 guarantee that when a~cut contains multiple edges of the minimum weight, all of them
807 are in the MST. It will however tell that if we pick one of these edges, an~arbitrary
808 MST can be modified to another MST that contains this edge. Therefore the Blue rule
809 will change to ``Pick a~cut~$C$ such that it does not contain any blue edge and color
810 one of its lightest edges blue.'' The Red lemma and the Red rule can be handled
811 in a~similar manner. The modified algorithm will be then guaranteed to find one of
812 the possible MST's.
813
814 The Kruskal's and Jarn\'\i{}k's algorithms keep working. This is however not the case of the
815 Bor\o{u}vka's algorithm, whose proof of correctness in Lemma \ref{borcorr} explicitly referred to
816 distinct weights and indeed, if they are not distinct, the algorithm will occasionally produce
817 cycles. To avoid the cycles, the ties in edge weight comparisons have to be broken in a~systematic
818 way. The same applies to the contractive version of this algorithm.
819
820 \endpart