]> mj.ucw.cz Git - saga.git/blob - mst.tex
Cleaned up contractions.
[saga.git] / mst.tex
1 \ifx\endpart\undefined
2 \input macros.tex
3 \fi
4
5 \chapter{Minimum Spanning Trees}
6
7 \section{The Problem}
8
9 The problem of finding a minimum spanning tree of a weighted graph is one of the
10 best studied problems in the area of combinatorial optimization since its birth.
11 Its colorful history (see \cite{graham:msthistory} and \cite{nesetril:history} for the full account)
12 begins in~1926 with the pioneering work of Bor\o{u}vka
13 \cite{boruvka:ojistem}\foot{See \cite{nesetril:boruvka} for an English translation with commentary.},
14 who studied primarily an Euclidean version of the problem related to planning
15 of electrical transmission lines (see \cite{boruvka:networks}), but gave an efficient
16 algorithm for the general version of the problem. As it was well before the dawn of graph
17 theory, the language of his paper was complicated, so we will better state the problem
18 in contemporary terminology:
19
20 \proclaim{Problem}Given an undirected graph~$G$ with weights $w:E(G)\rightarrow {\bb R}$,
21 find its minimum spanning tree, defined as follows:
22
23 \defn\id{mstdef}%
24 For a given graph~$G$ with weights $w:E(G)\rightarrow {\bb R}$:
25 \itemize\ibull
26 \:A~subgraph $H\subseteq G$ is called a \df{spanning subgraph} if $V(H)=V(G)$.
27 \:A~\df{spanning tree} of~$G$ is any spanning subgraph of~$G$ that is a tree.
28 \:For any subgraph $H\subseteq G$ we define its \df{weight} $w(H):=\sum_{e\in E(H)} w(e)$.
29   When comparing two weights, we will use the terms \df{lighter} and \df{heavier} in the
30   obvious sense.
31 \:A~\df{minimum spanning tree (MST)} of~$G$ is a spanning tree~$T$ such that its weight $w(T)$
32   is the smallest possible of all the spanning trees of~$G$.
33 \:For a disconnected graph, a \df{(minimum) spanning forest (MSF)} is defined as
34   a union of (minimum) spanning trees of its connected components.
35 \endlist
36
37 Bor\o{u}vka's work was further extended by Jarn\'\i{}k \cite{jarnik:ojistem}, again in
38 mostly geometric setting, giving another efficient algorithm. However, when
39 computer science and graph theory started forming in the 1950's and the
40 spanning tree problem was one of the central topics of the flourishing new
41 disciplines, the previous work was not well known and the algorithms had to be
42 rediscovered several times.
43
44 In the next 50 years, several significantly faster algorithms were discovered, ranging
45 from the $\O(m\timesbeta(m,n))$ time algorithm by Fredman and Tarjan \cite{ft:fibonacci},
46 over algorithms with inverse-Ackermann type complexity by Chazelle \cite{chazelle:ackermann}
47 and Pettie \cite{pettie:ackermann}, to another algorithm by Pettie \cite{pettie:optimal}
48 whose time complexity is provably optimal.
49
50 In the upcoming chapters, we will explore this colorful universe of MST algorithms.
51 We will meet the canonical works of the classics, the clever ideas of their successors,
52 various approaches to the problem including randomization and solving of important
53 special cases. At several places, we will try to contribute our little stones to this
54 mosaic.
55
56 %--------------------------------------------------------------------------------
57
58 \section{Basic properties}\id{mstbasics}%
59
60 In this section, we will examine the basic properties of spanning trees and prove
61 several important theorems which will serve as a~foundation for our MST algorithms.
62 We will mostly follow the theory developed by Tarjan in~\cite{tarjan:dsna}.
63
64 For the whole section, we will fix a~connected graph~$G$ with edge weights~$w$ and all
65 other graphs will be spanning subgraphs of~$G$. We will use the same notation
66 for the subgraphs as for the corresponding sets of edges.
67
68 First of all, let us show that the weights on edges are not necessary for the
69 definition of the MST. We can formulate an equivalent characterization using
70 an ordering of edges instead.
71
72 \defnn{Heavy and light edges}\id{heavy}%
73 Let~$T$ be a~spanning tree. Then:
74 \itemize\ibull
75 \:For vertices $x$ and $y$, let $T[x,y]$ denote the (unique) path in~$T$ joining $x$ and~$y$.
76 \:For an edge $e=xy$ we will call $T[e]:=T[x,y]$ the \df{path covered by~$e$} and
77   the edges of this path \df{edges covered by~$e$}.
78 \:An edge~$e$ is called \df{light with respect to~$T$} (or just \df{$T$-light}) if it covers a heavier edge, i.e., if there
79   is an edge $f\in T[e]$ such that $w(f) > w(e)$.
80 \:An edge~$e$ is called \df{$T$-heavy} if it covers a~lighter edge.
81 \endlist
82
83 \rem
84 Edges of the tree~$T$ cover only themselves and thus they are neither heavy nor light.
85 The same can happen if an~edge outside~$T$ covers only edges of the same weight,
86 but this will be rare because all edge weights will be usually distinct.
87
88 \lemman{Light edges}\id{lightlemma}%
89 Let $T$ be a spanning tree. If there exists a $T$-light edge, then~$T$
90 is not minimum.
91
92 \proof
93 If there is a $T$-light edge~$e$, then there exists an edge $e'\in T[e]$ such
94 that $w(e')>w(e)$. Now $T-e'$ is a forest of two trees with endpoints of~$e$
95 located in different components, so adding $e$ to this forest must restore
96 connectivity and $T':=T-e'+e$ is another spanning tree with weight $w(T')
97 = w(T)-w(e')+w(e) < w(T)$. Hence $T$ could not have been minimum.
98 \qed
99
100 \figure{mst2.eps}{278pt}{An edge exchange as in the proof of Lemma~\ref{lightlemma}}
101
102 The converse of this lemma is also true and to prove it, we will once again use
103 technique of transforming trees by \df{exchanges} of edges. In the proof of the
104 lemma, we have made use of the fact that whenever we exchange an edge~$e$ of
105 a spanning tree for another edge~$f$ covered by~$e$, the result is again
106 a spanning tree. In fact, it is possible to transform any spanning tree
107 to any other spanning tree by a sequence of exchanges.
108
109 \lemman{Exchange property for trees}\id{xchglemma}%
110 Let $T$ and $T'$ be spanning trees of a common graph. Then there exists
111 a sequence of edge exchanges that transforms $T$ to~$T'$. More formally,
112 there exists a sequence of spanning trees $T=T_0,T_1,\ldots,T_k=T'$ such that
113 $T_{i+1}=T_i - e_i + e_i^\prime$ where $e_i\in T_i$ and $e_i^\prime\in T'$.
114
115 \proof
116 By induction on $d(T,T'):=\vert T\symdiff T'\vert$. When $d(T,T')=0$,
117 both trees are identical and no exchanges are needed. Otherwise, the trees are different,
118 but as they are of the same size, there must exist an edge $e'\in T'\setminus T$.
119 The cycle $T[e']+e'$ cannot be wholly contained in~$T'$, so there also must
120 exist an edge $e\in T[e']\setminus T'$. Exchanging $e$ for~$e'$ yields a spanning
121 tree $T^*:=T-e+e'$ such that $d(T^*,T')=d(T,T')-2$ and we can apply the induction
122 hypothesis to $T^*$ and $T'$ to get the rest of the exchange sequence.
123 \qed
124
125 \figure{mst1.eps}{295pt}{One step of the proof of Lemma~\ref{xchglemma}}
126
127 \lemman{Monotone exchanges}\id{monoxchg}%
128 Let $T$ be a spanning tree such that there are no $T$-light edges and $T'$
129 be an arbitrary spanning tree. Then there exists a sequence of edge exchanges
130 transforming $T$ to~$T'$ such that the weight does not decrease in any step.
131
132 \proof
133 We improve the argument from the previous proof, refining the induction step.
134 When we exchange $e\in T$ for $e'\in T'\setminus T$ such that $e\in T[e']$,
135 the weight never drops, since $e'$ is not a $T$-light edge and therefore
136 $w(e') \ge w(e)$, so $w(T^*)=w(T)-w(e)+w(e')\ge w(T)$.
137
138 To keep the induction going, we have to make sure that there are still no light
139 edges with respect to~$T^*$. In fact, it is enough to avoid such edges in
140 $T'\setminus T^*$, since these are the only edges considered by the induction
141 steps. To accomplish that, we replace the so far arbitrary choice of $e'\in T'\setminus T$
142 by picking the lightest such edge.
143
144 Now consider an edge $f\in T'\setminus T^*$. We want to show that $f$ is not
145 $T^*$-light, i.e., that it is heavier than all edges on $T^*[f]$. The path $T^*[f]$ is
146 either equal to the original path $T[f]$ (if $e\not\in T[f]$) or to $T[f] \symdiff C$,
147 where $C$ is the cycle $T[e']+e'$. The former case is trivial, in the latter one
148 $w(f)\ge w(e')$ due to the choice of $e'$ and all other edges on~$C$ are lighter
149 than~$e'$ as $e'$ was not $T$-light.
150 \qed
151
152 \thmn{Minimality of spanning trees}\id{mstthm}%
153 A~spanning tree~$T$ is minimum iff there is no $T$-light edge.
154
155 \proof
156 If~$T$ is minimum, then by Lemma~\ref{lightlemma} there are no $T$-light
157 edges.
158 Conversely, when $T$ is a spanning tree without $T$-light edges
159 and $T_{min}$ is an arbitrary minimum spanning tree, then according to the Monotone
160 exchange lemma (\ref{monoxchg}) there exists a non-decreasing sequence
161 of exchanges transforming $T$ to $T_{min}$, so $w(T)\le w(T_{min})$
162 and thus $T$~is also minimum.
163 \qed
164
165 In general, a single graph can have many minimum spanning trees (for example
166 a complete graph on~$n$ vertices and unit edge weights has $n^{n-2}$
167 minimum spanning trees according to the Cayley's formula \cite{cayley:trees}).
168 However, as the following theorem shows, this is possible only if the weight
169 function is not injective.
170
171 \thmn{Uniqueness of MST}%
172 If all edge weights are distinct, then the minimum spanning tree is unique.
173
174 \proof
175 Consider two minimum spanning trees $T_1$ and~$T_2$. According to the previous
176 theorem, there are no light edges with respect to neither of them, so by the
177 Monotone exchange lemma (\ref{monoxchg}) there exists a sequence of non-decreasing
178 edge exchanges going from $T_1$ to $T_2$. As all edge weights all distinct,
179 these edge exchanges must be in fact strictly increasing. On the other hand,
180 we know that $w(T_1)=w(T_2)$, so the exchange sequence must be empty and indeed
181 $T_1$ and $T_2$ must be identical.
182 \qed
183
184 \nota\id{mstnota}%
185 When $G$ is a graph with distinct edge weights, we will use $\mst(G)$ to denote
186 its unique minimum spanning tree.
187
188 \paran{Comparison oracles}\id{edgeoracle}%
189 To simplify the description of MST algorithms, we will assume that the weights
190 of all edges are distinct and that instead of numeric weights we are given a~comparison oracle.
191 The oracle is a~function that answers questions of type ``Is $w(e)<w(f)$?'' in
192 constant time. This will conveniently shield us from problems with representation
193 of real numbers in algorithms and in the few cases where we need a more concrete
194 input, we will explicitly state so.
195
196 In case the weights are not distinct, we can easily break ties by comparing some
197 unique identifiers of edges. According to our characterization of minimum spanning
198 trees, the unique MST of the new graph will still be a~MST of the original graph.
199
200 \obs
201 If all edge weights are distinct and $T$~is an~arbitrary tree, then for every tree~$T$ all edges are
202 either $T$-heavy, or $T$-light, or contained in~$T$.
203
204 \paran{Monotone isomorphism}%
205 Another useful consequence is that whenever two graphs are isomorphic and the
206 isomorphism preserves the relative order of weights, the isomorphism applies to their MST's as well:
207
208 \defn
209 A~\df{monotone isomorphism} between two weighted graphs $G_1=(V_1,E_1,w_1)$ and
210 $G_2=(V_2,E_2,w_2)$ is a bijection $\pi: V_1\rightarrow V_2$ such that
211 for each $u,v\in V_1: uv\in E_1 \Leftrightarrow \pi(u)\pi(v)\in E_2$ and
212 for each $e,f\in E_1: w_1(e)<w_1(f) \Leftrightarrow w_2(\pi[e]) < w_2(\pi[f])$.
213
214 \lemman{MST of isomorphic graphs}\id{mstiso}%
215 Let~$G_1$ and $G_2$ be two weighted graphs with distinct edge weights and $\pi$
216 a~monotone isomorphism between them. Then $\mst(G_2) = \pi[\mst(G_1)]$.
217
218 \proof
219 The isomorphism~$\pi$ maps spanning trees onto spanning trees and it preserves
220 the relation of covering. Since it is monotone, it preserves the property of
221 being a light edge (an~edge $e\in E(G_1)$ is $T$-light $\Leftrightarrow$
222 the edge $\pi[e]\in E(G_2)$ is~$f[T]$-light). Therefore by the Minimality Theorem
223 (\ref{mstthm}), $T$ is the MST of~$G_1$ if and only if $\pi[T]$ is the MST of~$G_2$.
224 \qed
225
226 %--------------------------------------------------------------------------------
227
228 \section{The Red-Blue meta-algorithm}
229
230 Most MST algorithms can be described as special cases of the following procedure
231 (again following Tarjan \cite{tarjan:dsna}):
232
233 \algn{Red-Blue Meta-Algorithm}\id{rbma}%
234 \algo
235 \algin A~graph $G$ with an edge comparison oracle (see \ref{edgeoracle})
236 \:In the beginning, all edges are colored black.
237 \:Apply rules as long as possible:
238 \::Either pick a cut~$C$ such that its lightest edge is not blue \hfil\break and color this edge blue, \cmt{Blue rule}
239 \::or pick a cycle~$C$ such that its heaviest edge is not red \hfil\break and color this edge \rack{blue.}{red.\hfil} \cmt{Red rule}
240 \algout Minimum spanning tree of~$G$ consisting of edges colored blue.
241 \endalgo
242
243 \para
244 This procedure is not a proper algorithm, since it does not specify how to choose
245 the rule to apply. We will however prove that no matter how the rules are applied,
246 the procedure always stops and gives the correct result. Also, it will turn out
247 that each of the classical MST algorithms can be described as a specific way
248 of choosing the rules in this procedure, which justifies the name meta-algorithm.
249
250 \nota
251 We will denote the unique minimum spanning tree of the input graph by~$T_{min}$.
252 We intend to prove that this is also the output of the procedure.
253
254 \paran{Correctness}%
255 Let us prove that the meta-algorithm is correct. First we show that the edges colored
256 blue in any step of the procedure always belong to~$T_{min}$ and that edges colored
257 red are guaranteed to be outside~$T_{min}$. Then we demonstrate that the procedure
258 always stops. We will prefer a~slightly more general formulation of the lemmata, which will turn out
259 to be useful in the future chapters.
260
261 \lemman{Blue lemma, also known as the Cut rule}\id{bluelemma}%
262 The lightest edge of every cut is contained in the MST.
263
264 \proof
265 By contradiction. Let $e$ be the lightest edge of a cut~$C$.
266 If $e\not\in T_{min}$, then there must exist an edge $e'\in T_{min}$ that is
267 contained in~$C$ (take any pair of vertices separated by~$C$: the path
268 in~$T_{min}$ joining these vertices must cross~$C$ at least once). Exchanging
269 $e$ for $e'$ in $T_{min}$ yields an even lighter spanning tree since
270 $w(e)<w(e')$.
271 \qed
272
273 \lemman{Red lemma, also known as the Cycle rule}\id{redlemma}%
274 An~edge~$e$ is not contained in the MST iff it is the heaviest on some cycle.
275
276 \proof
277 The implication from the left to the right follows directly from the Minimality
278 theorem: if~$e\not\in T_{min}$, then $e$~is $T_{min}$-heavy and so it is the heaviest
279 edge on the cycle $T_{min}[e]+e$.
280
281 We will prove the other implication again by contradiction. Suppose that $e$ is the heaviest edge of
282 a cycle~$C$ and that $e\in T_{min}$. Removing $e$ causes $T_{min}$ to split
283 to two components, let us call them $T_x$ and~$T_y$. Some vertices of~$C$ now lie in~$T_x$, the
284 others in~$T_y$, so there must exist in edge $e'\ne e$ such that its endpoints lie in different
285 components. Since $w(e')<w(e)$, exchanging $e$ for~$e'$ yields a~spanning tree lighter than
286 $T_{min}$.
287 \qed
288
289 \figure{mst-rb.eps}{289pt}{Proof of the Blue (left) and Red (right) lemma}
290
291 \lemman{Black lemma}%
292 As long as there exists a black edge, at least one rule can be applied.
293
294 \proof
295 Assume that $e=xy$ be a black edge. Let us denote $M$ the set of vertices
296 reachable from~$x$ using only blue edges. If $y$~lies in~$M$, then $e$ together
297 with some blue path between $x$ and $y$ forms a cycle and it must be the heaviest
298 edge on this cycle. This holds because all blue edges have been already proven
299 to be in $T_{min}$ and there can be no $T_{min}$-light edges (see Theorem~\ref{mstthm}).
300 In this case we can apply the Red rule.
301
302 On the other hand, if $y\not\in M$, then the cut formed by all edges between $M$
303 and $V(G)\setminus M$ contains no blue edges, therefore we can use the Blue rule.
304 \qed
305
306 \figure{mst-bez.eps}{295pt}{Configurations in the proof of the Black lemma}
307
308 \thmn{Red-Blue correctness}%
309 For any selection of rules, the Red-Blue procedure stops and the blue edges form
310 the minimum spanning tree of the input graph.
311
312 \proof
313 To prove that the procedure stops, let us notice that no edge is ever recolored,
314 so we must run out of black edges after at most~$m$ steps. Recoloring
315 to the same color is avoided by the conditions built in the rules, recoloring to
316 a different color would mean that the edge would be both inside and outside~$T_{min}$
317 due to our Red and Blue lemmata.
318
319 When no further rules can be applied, the Black lemma guarantees that all edges
320 are colored, so by the Blue lemma all blue edges are in~$T_{min}$ and by the Red
321 lemma all other (red) edges are outside~$T_{min}$, so the blue edges are exactly~$T_{min}$.
322 \qed
323
324 \rem
325 The MST problem is a~special case of the problem of finding the minimum basis
326 of a~weighted matroid. Surprisingly, when we modify the Red-Blue procedure to
327 use the standard definitions of cycles and cuts in matroids, it will always
328 find the minimum basis. Some of the other MST algorithms also easily generalize to
329 matroids and in some sense matroids are exactly the objects where ``the greedy approach works''. We
330 will however not pursue this direction in our work, referring the reader to the Oxley's monograph
331 \cite{oxley:matroids} instead.
332
333 %--------------------------------------------------------------------------------
334
335 \section{Classical algorithms}\id{classalg}%
336
337 The three classical MST algorithms can be easily stated in terms of the Red-Blue meta-algorithm.
338 For each of them, we first show the general version of the algorithm, then we prove that
339 it gives the correct result and finally we discuss the time complexity of various
340 implementations.
341
342 \paran{Bor\o{u}vka's algorithm}%
343 The oldest MST algorithm is based on a~simple idea: grow a~forest in a~sequence of
344 iterations until it becomes connected. We start with a~forest of isolated
345 vertices. In each iteration, we let each tree of the forest select the lightest
346 edge of those having exactly one endpoint in the tree (we will call such edges
347 the \df{neighboring edges} of the tree). We add all such edges to the forest and
348 proceed with the next iteration.
349
350 \algn{Bor\o{u}vka \cite{boruvka:ojistem}, Choquet \cite{choquet:mst}, Sollin \cite{sollin:mst} and others}
351 \algo
352 \algin A~graph~$G$ with an edge comparison oracle.
353 \:$T\=$ a forest consisting of vertices of~$G$ and no edges.
354 \:While $T$ is not connected:
355 \::For each component $T_i$ of~$T$, choose the lightest edge $e_i$ from the cut
356    separating $T_i$ from the rest of~$T$.
357 \::Add all $e_i$'s to~$T$.
358 \algout Minimum spanning tree~$T$.
359 \endalgo
360
361 \lemma\id{boruvkadrop}%
362 In each iteration of the algorithm, the number of trees in~$T$ drops at least twice.
363
364 \proof
365 Each tree gets merged with at least one of its neighbors, so each of the new trees
366 contains two or more original trees.
367 \qed
368
369 \cor
370 The algorithm stops in $\O(\log n)$ iterations.
371
372 \lemma\id{borcorr}%
373 Bor\o{u}vka's algorithm outputs the MST of the input graph.
374
375 \proof
376 In every iteration of the algorithm, $T$ is a blue subgraph,
377 because every addition of some edge~$e_i$ to~$T$ is a straightforward
378 application of the Blue rule. We stop when the blue subgraph is connected, so
379 we do not need the Red rule to explicitly exclude edges.
380
381 It remains to show that adding the edges simultaneously does not
382 produce a cycle. Consider the first iteration of the algorithm where $T$ contains a~cycle~$C$. Without
383 loss of generality we can assume that:
384 $$C=T_1[u_1v_1]\,v_1u_2\,T_2[u_2v_2]\,v_2u_3\,T_3[u_3v_3]\, \ldots \,T_k[u_kv_k]\,v_ku_1.$$
385 Each component $T_i$ has chosen its lightest incident edge~$e_i$ as either the edge $v_iu_{i+1}$
386 or $v_{i-1}u_i$ (indexing cyclically). Suppose that $e_1=v_1u_2$ (otherwise we reverse the orientation
387 of the cycle). Then $e_2=v_2u_3$ and $w(e_2)<w(e_1)$ and we can continue in the same way,
388 getting $w(e_1)>w(e_2)>\ldots>w(e_k)>w(e_1)$, which is a contradiction.
389 (Note that distinctness of edge weights was crucial here.)
390 \qed
391
392 \lemma\id{boruvkaiter}%
393 Each iteration can be carried out in time $\O(m)$.
394
395 \proof
396 We assign a label to each tree and we keep a mapping from vertices to the
397 labels of the trees they belong to. We scan all edges, map their endpoints
398 to the particular trees and for each tree we maintain the lightest incident edge
399 so far encountered. Instead of merging the trees one by one (which would be too
400 slow), we build an auxiliary graph whose vertices are the labels of the original
401 trees and edges correspond to the chosen lightest inter-tree edges. We find connected
402 components of this graph, these determine how are the original labels translated
403 to the new labels.
404 \qed
405
406 \thm
407 Bor\o{u}vka's algorithm finds the MST in time $\O(m\log n)$.
408
409 \proof
410 Follows from the previous lemmata.
411 \qed
412
413 \paran{Jarn\'\i{}k's algorithm}%
414 The next algorithm, discovered independently by Jarn\'\i{}k, Prim and Dijkstra, is similar
415 to Bor\o{u}vka's algorithm, but instead of the whole forest it concentrates on
416 a~single tree. It starts with a~single vertex and it repeatedly extends the tree
417 by the lightest neighboring edge until it spans the whole graph.
418
419 \algn{Jarn\'\i{}k \cite{jarnik:ojistem}, Prim \cite{prim:mst}, Dijkstra \cite{dijkstra:mst}}\id{jarnik}%
420 \algo
421 \algin A~graph~$G$ with an edge comparison oracle.
422 \:$T\=$ a single-vertex tree containing an~arbitrary vertex of~$G$.
423 \:While there are vertices outside $T$:
424 \::Pick the lightest edge $uv$ such that $u\in V(T)$ and $v\not\in V(T)$.
425 \::$T\=T+uv$.
426 \algout Minimum spanning tree~$T$.
427 \endalgo
428
429 \lemma
430 Jarn\'\i{}k's algorithm computes the MST of the input graph.
431
432 \proof
433 If~$G$ is connected, the algorithm always stops. Let us prove that in every step of
434 the algorithm, $T$ is always a blue tree. Step~4 corresponds to applying
435 the Blue rule to the cut $\delta(T)$ separating~$T$ from the rest of the given graph. We need not care about
436 the remaining edges, since for a connected graph the algorithm always stops with the right
437 number of blue edges.
438 \qed
439
440 \impl\id{jarnimpl}%
441 The most important part of the algorithm is finding \em{neighboring edges.}
442 In a~straightforward implementation, searching for the lightest neighboring
443 edge takes $\Theta(m)$ time, so the whole algorithm runs in time $\Theta(mn)$.
444
445 We can do much better by using a binary
446 heap to hold all neighboring edges. In each iteration, we find and delete the
447 minimum edge from the heap and once we expand the tree, we insert the newly discovered
448 neighboring edges to the heap while deleting the neighboring edges that become
449 internal to the new tree. Since there are always at most~$m$ edges in the heap,
450 each heap operation takes $\O(\log m)=\O(\log n)$ time. For every edge, we perform
451 at most one insertion and at most one deletion, so we spend $\O(m\log n)$ time in total.
452 From this, we can conclude:
453
454 \thm
455 Jarn\'\i{}k's algorithm computes the MST of a~given graph in time $\O(m\log n)$.
456
457 \rem
458 We will show several faster implementations in section \ref{iteralg}.
459
460 \paran{Kruskal's algorithm}%
461 The last of the three classical algorithms processes the edges of the
462 graph~$G$ greedily. It starts with an~empty forest and it takes the edges of~$G$
463 in order of their increasing weights. For every edge, it checks whether its
464 addition to the forest produces a~cycle and if it does not, the edge is added.
465 Otherwise, the edge is dropped and not considered again.
466
467 \algn{Kruskal \cite{kruskal:mst}}
468 \algo
469 \algin A~graph~$G$ with an edge comparison oracle.
470 \:Sort edges of~$G$ by their increasing weights.
471 \:$T\=\emptyset$. \cmt{an empty spanning subgraph}
472 \:For all edges $e$ in their sorted order:
473 \::If $T+e$ is acyclic, add~$e$ to~$T$.
474 \::Otherwise drop~$e$.
475 \algout Minimum spanning tree~$T$.
476 \endalgo
477
478 \lemma
479 Kruskal's algorithm returns the MST of the input graph.
480
481 \proof
482 In every step, $T$ is a forest of blue trees. Adding~$e$ to~$T$
483 in step~4 applies the Blue rule on the cut separating some pair of components of~$T$ ($e$ is the lightest,
484 because all other edges of the cut have not been considered yet). Dropping~$e$ in step~5 corresponds
485 to the Red rule on the cycle found ($e$~must be the heaviest, since all other edges of the
486 cycle have been already processed). At the end of the algorithm, all edges are colored,
487 so~$T$ must be the~MST.
488 \qed
489
490 \impl
491 Except for the initial sorting, which in general requires $\Theta(m\log m)$ time, the only
492 other non-trivial operation is the detection of cycles. What we need is a~data structure
493 for maintaining connected components, which supports queries and edge insertion.
494 This is closely related to the well-known Disjoint Set Union problem:
495
496 \problemn{Disjoint Set Union (DSU)}
497 Maintain an~equivalence relation on a~finite set under a~sequence of operations \<Union>
498 and \<Find>. The \<Find> operation tests whether two elements are equivalent and \<Union>
499 joins two different equivalence classes into one.
500
501 \para
502 We can maintain the connected components of our forest~$T$ as equivalence classes. When we want
503 to add an~edge~$uv$, we first call $\<Find>(u,v)$ to check if both endpoints of the edge lie in
504 the same components. If they do not, addition of this edge connects both components into one,
505 so we perform $\<Union>(u,v)$ to merge the equivalence classes.
506
507 Tarjan and van Leeuwen have shown that there is a~data structure for the DSU problem
508 with surprising efficiency:
509
510 \thmn{Disjoint Set Union, Tarjan and van Leeuwen \cite{tarjan:setunion}}\id{dfu}%
511 Starting with a~trivial equivalence with single-element classes, a~sequence of operations
512 comprising of $n$~\<Union>s intermixed with $m\ge n$~\<Find>s can be processed in time
513 $\O(m\timesalpha(m,n))$, where $\alpha(m,n)$ is a~certain inverse of the Ackermann's function
514 (see Definition \ref{ackerinv}).
515
516 \proof
517 See \cite{tarjan:setunion}.
518 \qed
519
520 This completes the following theorem:
521
522 \thm\id{kruskal}%
523 Kruskal's algorithm finds the MST of a given graph in time $\O(m\log n)$.
524 If the edges are already sorted by their weights, the time drops to
525 $\O(m\timesalpha(m,n))$.
526
527 \proof
528 We spend $\O(m\log n)$ on sorting, $\O(m\timesalpha(m,n))$ on processing the sequence
529 of \<Union>s and \<Find>s, and $\O(m)$ on all other work.
530 \qed
531
532 \rem
533 The cost of the \<Union> and \<Find> operations is of course dwarfed by the complexity
534 of sorting, so a much simpler (at least in terms of its analysis) data
535 structure would be sufficient, as long as it has $\O(\log n)$ amortized complexity
536 per operation. For example, we can label vertices with identifiers of the
537 corresponding components and always relabel the smaller of the two components.
538
539 We will study dynamic maintenance of connected components in more detail in Chapter~\ref{dynchap}.
540
541 %--------------------------------------------------------------------------------
542
543 \section{Contractive algorithms}\id{contalg}%
544
545 While the classical algorithms are based on growing suitable trees, they
546 can be also reformulated in terms of edge contraction. Instead of keeping
547 a~forest of trees, we can keep each tree contracted to a single vertex.
548 This replaces the relatively complex tree-edge incidencies by simple
549 vertex-edge incidencies, potentially speeding up the calculation at the
550 expense of having to perform the contractions.
551
552 We will show a contractive version of the Bor\o{u}vka's algorithm
553 in which these costs are carefully balanced, leading for example to
554 a linear-time algorithm for MST in planar graphs.
555
556 There are two definitions of edge contraction that differ when an edge of
557 a~triangle is contracted. Either we unify the other two edges to a single edge
558 or we keep them as two parallel edges, leaving us with a~multigraph. We will
559 use the multigraph version and we will show that we can easily reduce the multigraph
560 to a simple graph later. (See \ref{contract} for the exact definitions.)
561
562 We only need to be able to map edges of the contracted graph to the original
563 edges, so each edge will carry a unique label $\ell(e)$ that will be preserved by
564 contractions.
565
566 \lemman{Flattening a multigraph}\id{flattening}%
567 Let $G$ be a multigraph and $G'$ its subgraph such that all loops have been
568 removed and each bundle of parallel edges replaced by its lightest edge.
569 Then $G'$~has the same MST as~$G$.
570
571 \proof
572 Every spanning tree of~$G'$ is a spanning tree of~$G$. In the other direction:
573 Loops can be never contained in a spanning tree. If there is a spanning tree~$T$
574 containing a~removed edge~$e$ parallel to an edge~$e'\in G'$, exchanging $e'$
575 for~$e$ makes~$T$ lighter. (This is indeed the multigraph version of the Red
576 lemma applied to a~two-edge cycle, as we will see in \ref{multimst}.)
577 \qed
578
579 \algn{Contractive version of Bor\o{u}vka's algorithm}\id{contbor}
580 \algo
581 \algin A~graph~$G$ with an edge comparison oracle.
582 \:$T\=\emptyset$.
583 \:$\ell(e)\=e$ for all edges~$e$. \cmt{Initialize the labels.}
584 \:While $n(G)>1$:
585 \::For each vertex $v_k$ of~$G$, let $e_k$ be the lightest edge incident to~$v_k$.
586 \::$T\=T\cup \{ \ell(e_k) \}$. \cmt{Remember labels of all selected edges.}
587 \::Contract all edges $e_k$, inheriting labels and weights.\foot{In other words, we ask the comparison oracle for the edge $\ell(e)$ instead of~$e$.}
588 \::Flatten $G$, removing parallel edges and loops.
589 \algout Minimum spanning tree~$T$.
590 \endalgo
591
592 \nota
593 For the analysis of the algorithm, we will denote the graph considered by the algorithm
594 at the beginning of the $i$-th iteration by $G_i$ (starting with $G_0=G$) and the number
595 of vertices and edges of this graph by $n_i$ and $m_i$ respectively.
596
597 \lemma\id{contiter}%
598 The $i$-th iteration of the algorithm (also called the \df{Bor\o{u}vka step}) can be carried
599 out in time~$\O(m_i)$.
600
601 \proof
602 The only non-trivial parts are steps 6 and~7. Contractions can be handled similarly
603 to the unions in the original Bor\o{u}vka's algorithm (see \ref{boruvkaiter}):
604 We build an auxiliary graph containing only the selected edges~$e_k$, find
605 connected components of this graph and renumber vertices in each component to
606 the identifier of the component. This takes $\O(m_i)$ time.
607
608 Flattening is performed by first removing the loops and then bucket-sorting the edges
609 (as ordered pairs of vertex identifiers) lexicographically, which brings parallel
610 edges together. The bucket sort uses two passes with $n_i$~buckets, so it takes
611 $\O(n_i+m_i)=\O(m_i)$.
612 \qed
613
614 \thm\id{contborthm}%
615 The Contractive Bor\o{u}vka's algorithm finds the MST of the input graph in
616 time $\O(\min(n^2,m\log n))$.
617
618 \proof
619 As in the original Bor\o{u}vka's algorithm, the number of iterations is $\O(\log n)$.
620 When combined with the previous lemma, it gives an~$\O(m\log n)$ upper bound.
621
622 To get the $\O(n^2)$ bound, we observe that the number of trees in the non-contracting
623 version of the algorithm drops at least by a factor of two in each iteration (Lemma \ref{boruvkadrop})
624 and the same must hold for the number of vertices in the contracting version.
625 Therefore $n_i\le n/2^i$. While the number of edges need not decrease geometrically,
626 we still have $m_i\le n_i^2$ as the graphs~$G_i$ are simple (we explicitly removed multiple
627 edges and loops at the end of the previous iteration). Hence the total time spent
628 in all iterations is $\O(\sum_i n_i^2) = \O(\sum_i n^2/4^i) = \O(n^2)$.
629 \qed
630
631 \thmn{Contractive Bor\o{u}vka on planar graphs, \cite{mm:mst}}\id{planarbor}%
632 When the input graph is planar, the Contractive Bor\o{u}vka's algorithm runs in
633 time $\O(n)$.
634
635 \proof
636 Let us refine the previous proof. We already know that $n_i \le n/2^i$. We will
637 prove that when~$G$ is planar, the $m_i$'s are decreasing geometrically. We know that every
638 $G_i$ is planar, because the class of planar graphs is closed under edge deletion and
639 contraction. Moreover, $G_i$~is also simple, so we can use the standard theorem on
640 the number of edges of planar simple graphs (see for example \cite{diestel:gt}) to get $m_i\le 3n_i \le 3n/2^i$.
641 The total time complexity of the algorithm is therefore $\O(\sum_i m_i)=\O(\sum_i n/2^i)=\O(n)$.
642 \qed
643
644 \rem
645 There are several other possibilities how to find the MST of a planar graph in linear time.
646 For example, Matsui \cite{matsui:planar} has described an algorithm based on simultaneously
647 working on the graph and its topological dual. The advantage of our approach is that we do not need
648 to construct the planar embedding explicitly. We will show one more linear algorithm
649 in section~\ref{minorclosed}.
650
651 \rem
652 To achieve the linear time complexity, the algorithm needs a very careful implementation,
653 but we defer the technical details to section~\ref{bucketsort}.
654
655 \paran{General contractions}%
656 Graph contractions are indeed a~very powerful tool and they can be used in other MST
657 algorithms as well. The following lemma shows the gist:
658
659 \lemman{Contraction of MST edges}\id{contlemma}%
660 Let $G$ be a weighted graph, $e$~an arbitrary edge of~$\mst(G)$, $G/e$ the multigraph
661 produced by contracting~$e$ in~$G$, and $\pi$ the bijection between edges of~$G-e$ and
662 their counterparts in~$G/e$. Then: $$\mst(G) = \pi^{-1}[\mst(G/e)] + e.$$
663
664 \proof
665 % We seem not to need this lemma for multigraphs...
666 %If there are any loops or parallel edges in~$G$, we can flatten the graph. According to the
667 %Flattening lemma (\ref{flattening}), the MST stays the same and if we remove a parallel edge
668 %or loop~$f$, then $\pi(f)$ would be removed when flattening~$G/e$, so $f$ never participates
669 %in a MST.
670 The right-hand side of the equality is a spanning tree of~$G$, let us denote it by~$T$ and
671 the MST of $G/e$ by~$T'$. If $T$ were not minimum, there would exist a $T$-light edge~$f$ in~$G$
672 (by Theorem \ref{mstthm}). If the path $T[f]$ covered by~$f$ does not contain~$e$,
673 then $\pi[T[f]]$ is a path covered by~$\pi(f)$ in~$T'$. Otherwise $\pi(T[f]-e)$ is such a path.
674 In both cases, $f$ is $T'$-light, which contradicts the minimality of~$T'$. (We do not have
675 a~multigraph version of the theorem, but the side we need is a~straightforward edge exchange,
676 which obviously works in multigraphs as well.)
677 \qed
678
679 \rem
680 In the previous algorithm, the role of the mapping~$\pi^{-1}$ is of course played by the edge labels~$\ell$.
681
682 \paran{A~lower bound}%
683 Finally, we will show a family of graphs for which the $\O(m\log n)$ bound on time complexity
684 is tight. The graphs do not have unique weights, but they are constructed in a way that
685 the algorithm never compares two edges with the same weight. Therefore, when two such
686 graphs are monotonically isomorphic (see~\ref{mstiso}), the algorithm processes them in the same way.
687
688 \defn
689 A~\df{distractor of order~$k$,} denoted by~$D_k$, is a path on $n=2^k$~vertices $v_1,\ldots,v_n$
690 where each edge $v_iv_{i+1}$ has its weight equal to the number of trailing zeroes in the binary
691 representation of the number~$i$. The vertex $v_1$ is called a~\df{base} of the distractor.
692
693 \rem
694 Alternatively, we can use a recursive definition: $D_0$ is a single vertex, $D_{k+1}$ consists
695 of two disjoint copies of~$D_k$ joined by an edge of weight~$k$.
696
697 \figure{distractor.eps}{\epsfxsize}{A~distractor $D_3$ and its evolution (bold edges are contracted)}
698
699 \lemma
700 A~single iteration of the contractive algorithm reduces~$D_k$ to a graph isomorphic with~$D_{k-1}$.
701
702 \proof
703 Each vertex~$v$ of~$D_k$ is incident with a single edge of weight~1. The algorithm therefore
704 selects all weight~1 edges and contracts them. This produces a graph which is
705 exactly $D_{k-1}$ with all weights increased by~1, which does not change the relative order of edges.
706 \qed
707
708 \defn
709 A~\df{hedgehog}~$H_{a,k}$ is a graph consisting of $a$~distractors $D_k^1,\ldots,D_k^a$ of order~$k$
710 together with edges of a complete graph on the bases of the distractors. These additional edges
711 have arbitrary weights, but heavier than the edges of all distractors.
712
713 \figure{hedgehog.eps}{\epsfxsize}{A~hedgehog $H_{5,2}$ (quills bent to fit in the picture)}
714
715 \lemma
716 A~single iteration of the contractive algorithm reduces~$H_{a,k}$ to a graph isomorphic with $H_{a,k-1}$.
717
718 \proof
719 Each vertex is incident with an edge of some distractor, so the algorithm does not select
720 any edge of the complete graph. Contraction therefore reduces each distractor to a smaller
721 distractor (modulo an additive factor in weight) and leaves the complete graph intact.
722 This is monotonely isomorphic to $H_{a,k-1}$.
723 \qed
724
725 \thmn{Lower bound for Contractive Bor\o{u}vka}%
726 For each $n$ there exists a graph on $\Theta(n)$ vertices and $\Theta(n)$ edges
727 such that the Contractive Bor\o{u}vka's algorithm spends time $\Omega(n\log n)$ on it.
728
729 \proof
730 Consider the hedgehog $H_{a,k}$ for $a=\lceil\sqrt n\rceil$ and $k=\lceil\log_2 a\rceil$.
731 It has $a\cdot 2^k = \Theta(n)$ vertices and ${a \choose 2} + a\cdot 2^k = \Theta(a^2) + \Theta(a^2) = \Theta(n)$ edges
732 as we wanted.
733
734 By the previous lemma, the algorithm proceeds through a sequence of hedgehogs $H_{a,k},
735 H_{a,k-1}, \ldots, H_{a,0}$ (up to monotone isomorphism), so it needs a logarithmic number of iterations plus some more
736 to finish on the remaining complete graph. Each iteration runs on a graph with $\Omega(n)$
737 edges as every $H_{a,k}$ contains a complete graph on~$a$ vertices.
738 \qed
739
740 %--------------------------------------------------------------------------------
741
742 \section{Lifting restrictions}
743
744 In order to have a~simple and neat theory, we have introduced several restrictions
745 on the graphs in which we search for the MST. As in some rare cases we are going to
746 meet graphs that do not fit into this simplified world, let us quickly examine what
747 happens when the restrictions are lifted.
748
749 \paran{Disconnected graphs}\id{disconn}%
750 The basic properties of minimum spanning trees and the algorithms presented in
751 this chapter apply to minimum spanning forests of disconnected graphs, too.
752 The proofs of our theorems and the steps of our algorithms are based on adjacency
753 of vertices and existence of paths, so they are always local to a~single
754 connected component. The Bor\o{u}vka's and Kruskal's algorithm need no changes,
755 the Jarn\'\i{}k's algorithm has to be invoked separately for each component.
756
757 We can also extend the notion of light and heavy edges with respect
758 to a~tree to forests: When an~edge~$e$ connects two vertices lying in the same
759 tree~$T$ of a~forest~$F$, it is $F$-heavy iff it is $T$-heavy (similarly
760 for $F$-light). Edges connecting two different trees are always considered
761 $F$-light. Again, a~spanning forest~$F$ is minimum iff there are no $F$-light
762 edges.
763
764 \paran{Multigraphs}\id{multimst}%
765 All theorems and algorithms from this chapter work for multigraphs as well,
766 only the notation sometimes gets crabbed, which we preferred to avoid. The Minimality
767 theorem and the Blue rule stay unchanged. The Red rule is naturally extended to
768 self-loops (which are never in the MST) and two-edge cycles (where the heavier
769 edge can be dropped) as already suggested in the Flattening lemma (\ref{flattening}).
770
771 \paran{Multiple edges of the same weight}\id{multiweight}%
772 In case when the edge weights are not distinct, the characterization of minimum
773 spanning trees using light edges is still correct, but the MST is no longer unique
774 (as already mentioned, there can be as much as~$n^{n-2}$ MST's).
775
776 In the Red-Blue procedure, we have to avoid being too zealous. The Blue lemma cannot
777 guarantee that when a~cut contains multiple edges of the minimum weight, all of them
778 are in the MST. It will however tell that if we pick one of these edges, an~arbitrary
779 MST can be modified to another MST that contains this edge. Therefore the Blue rule
780 will change to ``Pick a~cut~$C$ such that it does not contain any blue edge and color
781 one of its lightest edges blue.'' The Red lemma and the Red rule can be handled
782 in a~similar manner. The modified algorithm will be then guaranteed to find one of
783 the possible MST's.
784
785 The Kruskal's and Jarn\'\i{}k's algorithms keep working. This is however not the case of the
786 Bor\o{u}vka's algorithm, whose proof of correctness in Lemma \ref{borcorr} explicitly referred to
787 distinct weights and indeed, if they are not distinct, the algorithm will occasionally produce
788 cycles. To avoid the cycles, the ties in edge weight comparisons have to be broken in a~systematic
789 way. The same applies to the contractive version of this algorithm.
790
791 \endpart