2 * Sherlock Library -- Universal Sorter
4 * (c) 2001 Martin Mares <mj@ucw.cz>
8 * This is not a normal header file, it's a generator of sorting
9 * routines. Each time you include it with parameters set in the
10 * corresponding preprocessor macros, it generates a file sorter
11 * with the parameters given.
13 * Recognized parameter macros: (those marked with [*] are mandatory)
15 * SORT_KEY [*] data type capable of storing a single key
16 * SORT_PREFIX(x) [*] add a name prefix (used on all global names
17 * defined by the sorter)
18 * SORT_PRESORT include an in-core presorting pass
19 * SORT_UNIFY merge items with identical keys
20 * SORT_DELETE_INPUT a C expression, if true, the input files are
21 * deleted as soon as possible
22 * SORT_INPUT_FILE input is a file with this name
23 * SORT_INPUT_FB input is a fastbuf stream
24 * SORT_INPUT_FBPAIR input is a pair of fastbuf streams
25 * (not supported by the presorter)
26 * SORT_OUTPUT_FILE output is a file with this name
27 * SORT_OUTPUT_FB output is a temporary fastbuf stream
29 * You also need to define some (usually inline) functions which
30 * are called by the sorter to process your data:
32 * int PREFIX_compare(SORT_KEY *a, *b)
33 * compare two keys, result like strcmp
34 * int PREFIX_fetch_key(struct fastbuf *f, SORT_KEY *k)
35 * fetch next key, returns 1=ok, 0=eof
36 * void PREFIX_copy_data(struct fastbuf *src, *dest, SORT_KEY *k)
37 * write just fetched key k to dest and copy all data
38 * belonging to this key from src to dest.
39 * void PREFIX_merge_data(struct fastbuf *src1, *src2, *dest, SORT_KEY *k1, *k2)
40 * [used only in case SORT_UNIFY is defined]
41 * write just fetched key k to dest and merge data from
42 * two records with the same key (k1 and k2 are key occurences
43 * in the corresponding streams).
44 * byte * PREFIX_fetch_item(struct fastbuf *f, SORT_KEY *k, byte *limit)
45 * [used only with SORT_PRESORT]
46 * fetch data belonging to a just fetched key and store
47 * them to memory following the key, but not over limit.
48 * Returns a pointer to first byte after the data
49 * or NULL if the data don't fit.
50 * Important: keys carrying no data must be position
52 * void PREFIX_store_item(struct fastbuf *f, SORT_KEY *k)
53 * [used only with SORT_PRESORT]
54 * write key and all its data read with PREFIX_fetch_data
55 * to the stream given.
56 * SORT_KEY * PREFIX_merge_items(SORT_KEY *a, SORT_KEY *b)
57 * [used only with SORT_PRESORT && SORT_UNIFY]
58 * merge two items with the same key, returns pointer
59 * to at most one of the items, the rest will be removed
60 * from the list of items, but not deallocated, so
61 * the remaining item can freely reference data of the
65 /* Declarations of externals from sorter.c */
67 #ifndef SORT_DECLS_READ
68 #define SORT_DECLS_READ
70 extern uns sorter_trace;
71 extern uns sorter_presort_bufsize;
72 extern uns sorter_stream_bufsize;
74 extern uns sorter_pass_counter, sorter_file_counter;
75 struct fastbuf *sorter_open_tmp(void);
77 #endif /* !SORT_DECLS_READ */
79 /* The sorter proper */
81 #ifndef SORT_DECLARE_ONLY
83 #include "lib/fastbuf.h"
88 #if !defined(SORT_KEY) || !defined(SORT_PREFIX)
89 #error Some of the mandatory configuration macros are missing.
92 #define P(x) SORT_PREFIX(x)
93 #define SWAP(x,y,z) do { z=x; x=y; y=z; } while(0)
95 #if defined(SORT_UNIFY) || defined(SORT_UNIQUE)
101 static struct fastbuf *
102 P(flush_out)(struct fastbuf *out)
113 P(pass)(struct fastbuf **fb1, struct fastbuf **fb2)
115 struct fastbuf *in1 = *fb1;
116 struct fastbuf *in2 = *fb2;
117 struct fastbuf *out1 = NULL;
118 struct fastbuf *out2 = NULL;
119 SORT_KEY kbuf1, kbuf2, kbuf3, kbuf4;
120 SORT_KEY *kin1 = &kbuf1;
121 SORT_KEY *kprev1 = &kbuf2;
122 SORT_KEY *kin2 = &kbuf3;
123 SORT_KEY *kprev2 = &kbuf4;
124 SORT_KEY *kout = NULL;
126 int next1, next2, comp;
130 run1 = next1 = in1 ? P(fetch_key)(in1, kin1) : 0;
131 run2 = next2 = in2 ? P(fetch_key)(in2, kin2) : 0;
132 while (next1 || next2)
139 comp = P(compare)(kin1, kin2);
140 ktmp = (comp <= 0) ? kin1 : kin2;
141 if (!kout || !(P(compare)(kout, ktmp) LESS 0))
146 out1 = sorter_open_tmp();
151 P(copy_data)(in1, out1, kin1);
152 SWAP(kin1, kprev1, ktmp);
153 next1 = P(fetch_key)(in1, kin1);
154 run1 = next1 && (P(compare)(kprev1, kin1) LESS 0);
160 P(merge_data)(in1, in2, out1, kin1, kin2);
161 SWAP(kin1, kprev1, ktmp);
162 next1 = P(fetch_key)(in1, kin1);
163 run1 = next1 && (P(compare)(kprev1, kin1) LESS 0);
164 SWAP(kin2, kprev2, ktmp);
165 next2 = P(fetch_key)(in2, kin2);
166 run2 = next2 && (P(compare)(kprev2, kin2) LESS 0);
172 P(copy_data)(in2, out1, kin2);
173 SWAP(kin2, kprev2, ktmp);
174 next2 = P(fetch_key)(in2, kin2);
175 run2 = next2 && (P(compare)(kprev2, kin2) LESS 0);
187 log(L_INFO, "Pass %d: %d runs, %d+%d KB", sorter_pass_counter, run_count,
188 (out1 ? (int)((btell(out1) + 1023) / 1024) : 0),
189 (out2 ? (int)((btell(out2) + 1023) / 1024) : 0));
190 *fb1 = P(flush_out)(out1);
191 *fb2 = P(flush_out)(out2);
192 sorter_pass_counter++;
197 #define SORT_NODE struct P(presort_node)
205 P(mergesort)(SORT_NODE *x)
207 SORT_NODE *f1, **l1, *f2, **l2, **l;
225 f1 = P(mergesort)(f1);
227 f2 = P(mergesort)(f2);
231 if (P(compare)(&f1->key, &f2->key) <= 0)
249 P(presort)(struct fastbuf **fb1, struct fastbuf **fb2)
251 struct fastbuf *in = *fb1;
252 struct fastbuf *out1 = NULL;
253 struct fastbuf *out2 = NULL;
254 struct fastbuf *tbuf;
255 byte *buffer, *bufend, *current;
256 SORT_NODE *first, **last, *this, *leftover;
263 if (sorter_presort_bufsize < 2*sizeof(SORT_NODE))
264 die("PresortBuffer set too low");
265 buffer = xmalloc(sorter_presort_bufsize);
266 bufend = buffer + sorter_presort_bufsize;
270 SWAP(out1, out2, tbuf);
272 out1 = sorter_open_tmp();
277 memmove(buffer, leftover, sizeof(SORT_NODE));
278 this = leftover = (SORT_NODE *) buffer;
284 current = (byte *) ALIGN((addr_int_t) current, CPU_STRUCT_ALIGN);
285 if (current + sizeof(*this) > bufend)
287 this = (SORT_NODE *) current;
288 cont = P(fetch_key)(in, &this->key);
292 current = P(fetch_item)(in, &this->key, bufend);
295 if (leftover) /* Single node too large */
297 P(copy_data)(in, out1, &leftover->key);
302 else /* Node will be left over to the next phase */
314 first = P(mergesort)(first);
319 SORT_NODE *second = first->next;
320 if (second && !P(compare)(&first->key, &second->key))
322 SORT_KEY *n = P(merge_items)(&first->key, &second->key);
323 if (n == &first->key)
324 first->next = second->next;
328 first = second->next;
332 P(store_item)(out1, &first->key);
339 log(L_INFO, "Pass 0: %d runs (%d giants, %d splits), %d+%d KB",
340 run_count, giant_count, split_count,
341 (out1 ? (int)((btell(out1) + 1023) / 1024) : 0),
342 (out2 ? (int)((btell(out2) + 1023) / 1024) : 0));
343 *fb1 = P(flush_out)(out1);
344 *fb2 = P(flush_out)(out2);
347 #endif /* SORT_PRESORT */
350 #ifdef SORT_OUTPUT_FB
352 #elif defined(SORT_OUTPUT_FILE)
355 #error No output defined.
358 #ifdef SORT_INPUT_FILE
360 #elif defined(SORT_INPUT_FB)
362 #elif defined(SORT_INPUT_FBPAIR)
363 struct fastbuf *fb1, struct fastbuf *fb2
365 #error No input defined.
367 #ifdef SORT_OUTPUT_FILE
372 #ifdef SORT_INPUT_FILE
373 struct fastbuf *fb1, *fb2;
374 fb1 = bopen(inname, O_RDONLY, sorter_stream_bufsize);
376 #elif defined(SORT_INPUT_FB)
377 struct fastbuf *fb2 = NULL;
380 #ifdef SORT_DELETE_INPUT
381 fb1->is_temp_file = SORT_DELETE_INPUT;
383 sorter_pass_counter = 1;
385 P(presort)(&fb1, &fb2);
388 do P(pass)(&fb1, &fb2); while (fb1 && fb2);
390 fb1 = sorter_open_tmp();
392 #ifdef SORT_OUTPUT_FB
395 fb1->is_temp_file = 0;
396 if (rename(fb1->name, outname) < 0)
397 die("rename(%s,%s): %m", fb1->name, outname);
407 #endif /* !SORT_DECLARE_ONLY */