2 * Sherlock Library -- Universal Sorter
4 * (c) 2001--2002 Martin Mares <mj@ucw.cz>
8 * This is not a normal header file, it's a generator of sorting
9 * routines. Each time you include it with parameters set in the
10 * corresponding preprocessor macros, it generates a file sorter
11 * with the parameters given.
13 * Recognized parameter macros: (those marked with [*] are mandatory)
15 * SORT_KEY [*] data type capable of storing a single key
16 * SORT_PREFIX(x) [*] add a name prefix (used on all global names
17 * defined by the sorter)
18 * SORT_PRESORT include an in-core presorting pass
19 * SORT_UNIFY merge items with identical keys
20 * SORT_DELETE_INPUT a C expression, if true, the input files are
21 * deleted as soon as possible
22 * SORT_INPUT_FILE input is a file with this name
23 * SORT_INPUT_FB input is a fastbuf stream
24 * (can be safely NULL if you want to treat original
25 * input in a different way by file read functions)
26 * SORT_INPUT_FBPAIR input is a pair of fastbuf streams
27 * (not supported by the presorter)
28 * SORT_OUTPUT_FILE output is a file with this name
29 * SORT_OUTPUT_FB output is a temporary fastbuf stream
31 * You also need to define some (usually inline) functions which
32 * are called by the sorter to process your data:
34 * int PREFIX_compare(SORT_KEY *a, *b)
35 * compare two keys, result like strcmp
36 * int PREFIX_fetch_key(struct fastbuf *f, SORT_KEY *k)
37 * fetch next key, returns 1=ok, 0=eof
38 * void PREFIX_copy_data(struct fastbuf *src, *dest, SORT_KEY *k)
39 * write just fetched key k to dest and copy all data
40 * belonging to this key from src to dest.
41 * void PREFIX_merge_data(struct fastbuf *src1, *src2, *dest, SORT_KEY *k1, *k2)
42 * [used only in case SORT_UNIFY is defined]
43 * write just fetched key k to dest and merge data from
44 * two records with the same key (k1 and k2 are key occurences
45 * in the corresponding streams).
46 * byte * PREFIX_fetch_item(struct fastbuf *f, SORT_KEY *k, byte *limit)
47 * [used only with SORT_PRESORT]
48 * fetch data belonging to a just fetched key and store
49 * them to memory following the key, but not over limit.
50 * Returns a pointer to first byte after the data
51 * or NULL if the data don't fit. For variable-length
52 * keys, it can use the rest of SORT_KEY and even return
53 * pointer before end of the key.
54 * Important: before PREFIX_fetch_item() succeeds, the key
55 * must be position independent, the sorter can copy it.
56 * void PREFIX_store_item(struct fastbuf *f, SORT_KEY *k)
57 * [used only with SORT_PRESORT]
58 * write key and all its data read with PREFIX_fetch_data
59 * to the stream given.
60 * SORT_KEY * PREFIX_merge_items(SORT_KEY *a, SORT_KEY *b)
61 * [used only with SORT_PRESORT && SORT_UNIFY]
62 * merge two items with the same key, returns pointer
63 * to at most one of the items, the rest will be removed
64 * from the list of items, but not deallocated, so
65 * the remaining item can freely reference data of the
69 /* Declarations of externals from sorter.c */
71 #ifndef SORT_DECLS_READ
72 #define SORT_DECLS_READ
74 extern uns sorter_trace;
75 extern uns sorter_presort_bufsize;
76 extern uns sorter_stream_bufsize;
78 extern uns sorter_pass_counter;
80 #endif /* !SORT_DECLS_READ */
82 /* The sorter proper */
84 #ifndef SORT_DECLARE_ONLY
86 #include "lib/fastbuf.h"
91 #if !defined(SORT_KEY) || !defined(SORT_PREFIX)
92 #error Some of the mandatory configuration macros are missing.
95 #define P(x) SORT_PREFIX(x)
96 #define SWAP(x,y,z) do { z=x; x=y; y=z; } while(0)
98 #if defined(SORT_UNIFY) || defined(SORT_UNIQUE)
104 static struct fastbuf *
105 P(flush_out)(struct fastbuf *out)
116 P(pass)(struct fastbuf **fb1, struct fastbuf **fb2)
118 struct fastbuf *in1 = *fb1;
119 struct fastbuf *in2 = *fb2;
120 struct fastbuf *out1 = NULL;
121 struct fastbuf *out2 = NULL;
122 SORT_KEY kbuf1, kbuf2, kbuf3, kbuf4;
123 SORT_KEY *kin1 = &kbuf1;
124 SORT_KEY *kprev1 = &kbuf2;
125 SORT_KEY *kin2 = &kbuf3;
126 SORT_KEY *kprev2 = &kbuf4;
127 SORT_KEY *kout = NULL;
129 int next1, next2, comp;
133 run1 = next1 = in1 ? P(fetch_key)(in1, kin1) : 0;
134 run2 = next2 = in2 ? P(fetch_key)(in2, kin2) : 0;
135 while (next1 || next2)
142 comp = P(compare)(kin1, kin2);
143 ktmp = (comp <= 0) ? kin1 : kin2;
144 if (!kout || !(P(compare)(kout, ktmp) LESS 0))
149 out1 = bopen_tmp(sorter_stream_bufsize);
154 P(copy_data)(in1, out1, kin1);
155 SWAP(kin1, kprev1, ktmp);
156 next1 = P(fetch_key)(in1, kin1);
157 run1 = next1 && (P(compare)(kprev1, kin1) LESS 0);
163 P(merge_data)(in1, in2, out1, kin1, kin2);
164 SWAP(kin1, kprev1, ktmp);
165 next1 = P(fetch_key)(in1, kin1);
166 run1 = next1 && (P(compare)(kprev1, kin1) LESS 0);
167 SWAP(kin2, kprev2, ktmp);
168 next2 = P(fetch_key)(in2, kin2);
169 run2 = next2 && (P(compare)(kprev2, kin2) LESS 0);
175 P(copy_data)(in2, out1, kin2);
176 SWAP(kin2, kprev2, ktmp);
177 next2 = P(fetch_key)(in2, kin2);
178 run2 = next2 && (P(compare)(kprev2, kin2) LESS 0);
190 log(L_INFO, "Pass %d: %d runs, %d+%d KB", sorter_pass_counter, run_count,
191 (out1 ? (int)((btell(out1) + 1023) / 1024) : 0),
192 (out2 ? (int)((btell(out2) + 1023) / 1024) : 0));
193 *fb1 = P(flush_out)(out1);
194 *fb2 = P(flush_out)(out2);
195 sorter_pass_counter++;
200 #define SORT_NODE struct P(presort_node)
208 P(mergesort)(SORT_NODE *x)
210 SORT_NODE *f1, **l1, *f2, **l2, **l;
228 f1 = P(mergesort)(f1);
230 f2 = P(mergesort)(f2);
234 if (P(compare)(&f1->key, &f2->key) <= 0)
252 P(presort)(struct fastbuf **fb1, struct fastbuf **fb2)
254 struct fastbuf *in = *fb1;
255 struct fastbuf *out1 = NULL;
256 struct fastbuf *out2 = NULL;
257 struct fastbuf *tbuf;
258 byte *buffer, *bufend, *current;
259 SORT_NODE *first, **last, *this, *leftover;
266 if (sorter_presort_bufsize < 2*sizeof(SORT_NODE))
267 die("PresortBuffer set too low");
268 buffer = xmalloc(sorter_presort_bufsize);
269 bufend = buffer + sorter_presort_bufsize;
273 SWAP(out1, out2, tbuf);
275 out1 = bopen_tmp(sorter_stream_bufsize);
280 memmove(buffer, leftover, sizeof(SORT_NODE));
281 this = leftover = (SORT_NODE *) buffer;
287 current = (byte *) ALIGN((addr_int_t) current, CPU_STRUCT_ALIGN);
288 if (current + sizeof(*this) > bufend)
290 this = (SORT_NODE *) current;
291 cont = P(fetch_key)(in, &this->key);
295 current = P(fetch_item)(in, &this->key, bufend);
298 if (leftover) /* Single node too large */
300 P(copy_data)(in, out1, &leftover->key);
305 else /* Node will be left over to the next phase */
317 first = P(mergesort)(first);
322 SORT_NODE *second = first->next;
323 if (second && !P(compare)(&first->key, &second->key))
325 SORT_KEY *n = P(merge_items)(&first->key, &second->key);
326 if (n == &first->key)
327 first->next = second->next;
331 first = second->next;
335 P(store_item)(out1, &first->key);
342 log(L_INFO, "Pass 0: %d runs (%d giants, %d splits), %d+%d KB",
343 run_count, giant_count, split_count,
344 (out1 ? (int)((btell(out1) + 1023) / 1024) : 0),
345 (out2 ? (int)((btell(out2) + 1023) / 1024) : 0));
346 *fb1 = P(flush_out)(out1);
347 *fb2 = P(flush_out)(out2);
351 #endif /* SORT_PRESORT */
354 #ifdef SORT_OUTPUT_FB
356 #elif defined(SORT_OUTPUT_FILE)
359 #error No output defined.
362 #ifdef SORT_INPUT_FILE
364 #elif defined(SORT_INPUT_FB)
366 #elif defined(SORT_INPUT_FBPAIR)
367 struct fastbuf *fb1, struct fastbuf *fb2
369 #error No input defined.
371 #ifdef SORT_OUTPUT_FILE
376 #ifdef SORT_INPUT_FILE
377 struct fastbuf *fb1, *fb2;
378 fb1 = bopen(inname, O_RDONLY, sorter_stream_bufsize);
380 #elif defined(SORT_INPUT_FB)
381 struct fastbuf *fb2 = NULL;
384 #ifdef SORT_DELETE_INPUT
385 fb1->is_temp_file = SORT_DELETE_INPUT;
387 sorter_pass_counter = 1;
389 P(presort)(&fb1, &fb2);
392 do P(pass)(&fb1, &fb2); while (fb1 && fb2);
394 fb1 = bopen_tmp(sorter_stream_bufsize);
396 #ifdef SORT_OUTPUT_FB
399 fb1->is_temp_file = 0;
400 if (rename(fb1->name, outname) < 0)
401 die("rename(%s,%s): %m", fb1->name, outname);
411 #endif /* !SORT_DECLARE_ONLY */