4 * (c) 2002, Robert Spalek <robert@ucw.cz>
6 * Skeleton based on hash-tables by:
8 * (c) 2002, Martin Mares <mj@ucw.cz>
13 * Data structure description:
15 * A red-black tree is a binary search tree, where records are stored
16 * in nodes (may be also leaves). Every node has a colour. The
17 * following restrictions hold:
19 * - a parent of a red node is black
20 * - every path from the root to a node with less than 2 children
21 * contains the same number of black nodes
23 * A usual interpretation is, that leaves are intervals between records
24 * and contain no data. Every leaf is black. This is equivalent, but
29 * This is not a normal header file, it's a generator of red-black trees.
30 * Each time you include it with parameters set in the corresponding
31 * preprocessor macros, it generates a tree structure with the parameters
34 * You need to specify:
36 * TREE_NODE data type where a node dwells (usually a struct).
37 * TREE_PREFIX(x) macro to add a name prefix (used on all global names
38 * defined by the tree generator).
40 * Then decide on type of keys:
42 * TREE_KEY_ATOMIC=f use node->f as a key of an atomic type (i.e.,
43 * a type which can be compared using '>', `==', and '<')
44 * & TREE_ATOMIC_TYPE (defaults to int).
45 * | TREE_KEY_STRING=f use node->f as a string key, allocated
46 * separately from the rest of the node.
47 * | TREE_KEY_ENDSTRING=f use node->f as a string key, allocated
48 * automatically at the end of the node struct
49 * (to be declared as "char f[1]" at the end).
50 * | TREE_KEY_COMPLEX use a multi-component key; as the name suggests,
51 * the passing of parameters is a bit complex then.
52 * The TREE_KEY_COMPLEX(x) macro should expand to
53 * `x k1, x k2, ... x kn' and you should also define:
54 * & TREE_KEY_DECL declaration of function parameters in which key
55 * should be passed to all tree operations.
56 * That is, `type1 k1, type2 k2, ... typen kn'.
57 * With complex keys, TREE_GIVE_CMP is mandatory.
59 * Then specify what operations you request (all names are automatically
60 * prefixed by calling TREE_PREFIX):
62 * <always defined> init() -- initialize the tree.
63 * TREE_WANT_CLEANUP cleanup() -- deallocate the tree.
64 * TREE_WANT_FIND node *find(key) -- find first node with the specified
65 * key, return NULL if no such node exists.
66 * TREE_WANT_FIND_NEXT node *find_next(node *start) -- find next node with the
67 * specified key, return NULL if no such node exists.
68 * Implies TREE_DUPLICATES.
69 * TREE_WANT_SEARCH node *search(key) -- find the node with the specified
70 * or, if it does not exist, the nearest one.
71 * TREE_WANT_ADJACENT node *adjacent(node *, uns direction) -- finds next
72 * (direction==1) or previous (direction==0) node.
73 * TREE_WANT_NEW node *new(key) -- create new node with given key.
74 * If it already exists, it is created as the last one.
75 * TREE_WANT_LOOKUP node *lookup(key) -- find node with given key,
76 * if it doesn't exist, create it. Defining
77 * TREE_GIVE_INIT_DATA is strongly recommended.
78 * TREE_WANT_DELETE int delete(key) -- delete and deallocate node
79 * with a given key. Returns success.
80 * TREE_WANT_REMOVE remove(node *) -- delete and deallocate given node.
82 * TREE_WANT_DUMP dump() -- dumps the whole tree to stdout
84 * You can also supply several functions:
86 * TREE_GIVE_CMP int cmp(key1, key2) -- return -1, 0, and 1 according to
87 * the relation of keys. By default, we use <, ==, > for
88 * atomic types and either strcmp or strcasecmp for
90 * TREE_GIVE_EXTRA_SIZE int extra_size(key) -- returns how many bytes after the
91 * node should be allocated for dynamic data. Default=0
92 * or length of the string with TREE_KEY_ENDSTRING.
93 * TREE_GIVE_INIT_KEY void init_key(node *,key) -- initialize key in a newly
94 * created node. Defaults: assignment for atomic keys
95 * and static strings, strcpy for end-allocated strings.
96 * TREE_GIVE_INIT_DATA void init_data(node *) -- initialize data fields in a
97 * newly created node. Very useful for lookup operations.
98 * TREE_GIVE_ALLOC void *alloc(unsigned int size) -- allocate space for
99 * a node. Default is either normal or pooled allocation
100 * depending on whether we want deletions.
101 * void free(void *) -- the converse.
103 * ... and a couple of extra parameters:
105 * TREE_NOCASE string comparisons should be case-insensitive.
106 * TREE_ATOMIC_TYPE=t Atomic values are of type `t' instead of int.
107 * TREE_USE_POOL=pool Allocate all nodes from given mempool.
108 * Collides with delete/remove functions.
109 * TREE_GLOBAL Functions are exported (i.e., not static).
110 * TREE_CONSERVE_SPACE Use as little space as possible at the price of a
112 * TREE_DUPLICATES Records with duplicate keys are allowed.
113 * TREE_MAX_DEPTH Maximal depth of a tree (for stack allocation).
115 * If you set TREE_WANT_ITERATOR, you also get a iterator macro at no
118 * TREE_FOR_ALL(tree_prefix, tree_pointer, variable)
120 * // node *variable gets declared automatically
121 * do_something_with_node(variable);
122 * // use TREE_BREAK and TREE_CONTINUE instead of break and continue
123 * // you must not alter contents of the tree here
127 * Then include "lib/redblack.h" and voila, you have a tree suiting all your
128 * needs (at least those which you've revealed :) ).
130 * After including this file, all parameter macros are automatically
136 #if !defined(TREE_NODE) || !defined(TREE_PREFIX)
137 #error Some of the mandatory configuration macros are missing.
140 #define P(x) TREE_PREFIX(x)
142 /* Declare buckets and the tree. */
144 typedef TREE_NODE P(node);
146 #if defined(TREE_WANT_FIND_NEXT) || defined(TREE_WANT_ADJACENT) || defined(TREE_WANT_ITERATOR) || defined(TREE_WANT_REMOVE)
147 # define TREE_STORE_PARENT
150 typedef struct P(bucket) {
151 struct P(bucket) *son[2];
152 #ifdef TREE_STORE_PARENT
153 struct P(bucket) *parent;
155 #if !defined(TREE_CONSERVE_SPACE) && (defined(TREE_GIVE_EXTRA_SIZE) || defined(TREE_KEY_ENDSTRING))
159 #if !defined(TREE_CONSERVE_SPACE) && !defined(TREE_GIVE_EXTRA_SIZE) && !defined(TREE_KEY_ENDSTRING)
166 uns height; /* of black nodes */
170 typedef struct P(stack_entry) {
175 #define T struct P(tree)
177 /* Preset parameters */
179 #if defined(TREE_KEY_ATOMIC)
181 #define TREE_KEY(x) x TREE_KEY_ATOMIC
183 #ifndef TREE_ATOMIC_TYPE
184 # define TREE_ATOMIC_TYPE int
186 #define TREE_KEY_DECL TREE_ATOMIC_TYPE TREE_KEY()
188 #ifndef TREE_GIVE_CMP
189 # define TREE_GIVE_CMP
190 static inline int P(cmp) (TREE_ATOMIC_TYPE x, TREE_ATOMIC_TYPE y)
201 #ifndef TREE_GIVE_INIT_KEY
202 # define TREE_GIVE_INIT_KEY
203 static inline void P(init_key) (P(node) *n, TREE_ATOMIC_TYPE k)
204 { TREE_KEY(n->) = k; }
207 #elif defined(TREE_KEY_STRING) || defined(TREE_KEY_ENDSTRING)
209 #ifdef TREE_KEY_STRING
210 # define TREE_KEY(x) x TREE_KEY_STRING
211 # ifndef TREE_GIVE_INIT_KEY
212 # define TREE_GIVE_INIT_KEY
213 static inline void P(init_key) (P(node) *n, char *k)
214 { TREE_KEY(n->) = k; }
217 # define TREE_KEY(x) x TREE_KEY_ENDSTRING
218 # define TREE_GIVE_EXTRA_SIZE
219 static inline int P(extra_size) (char *k)
220 { return strlen(k); }
221 # ifndef TREE_GIVE_INIT_KEY
222 # define TREE_GIVE_INIT_KEY
223 static inline void P(init_key) (P(node) *n, char *k)
224 { strcpy(TREE_KEY(n->), k); }
227 #define TREE_KEY_DECL char *TREE_KEY()
229 #ifndef TREE_GIVE_CMP
230 # define TREE_GIVE_CMP
231 static inline int P(cmp) (char *x, char *y)
234 return strcasecmp(x,y);
241 #elif defined(TREE_KEY_COMPLEX)
243 #define TREE_KEY(x) TREE_KEY_COMPLEX(x)
246 #error You forgot to set the tree key type.
249 #ifndef TREE_CONSERVE_SPACE
250 static inline uns P(red_flag) (P(bucket) *node)
251 { return node->red_flag; }
252 static inline void P(set_red_flag) (P(bucket) *node, uns flag)
253 { node->red_flag = flag; }
254 static inline P(bucket) * P(tree_son) (P(bucket) *node, uns id)
255 { return node->son[id]; }
256 static inline void P(set_tree_son) (P(bucket) *node, uns id, P(bucket) *son)
257 { node->son[id] = son; }
259 /* Pointers are aligned, hence we can use lower bits. */
260 static inline uns P(red_flag) (P(bucket) *node)
261 { return ((addr_int_t) node->son[0]) & 1L; }
262 static inline void P(set_red_flag) (P(bucket) *node, uns flag)
263 { (addr_int_t) node->son[0] = (((addr_int_t) node->son[0]) & ~1L) | (flag & 1L); }
264 static inline P(bucket) * P(tree_son) (P(bucket) *node, uns id)
265 { return (void *) (((addr_int_t) node->son[id]) & ~1L); }
266 static inline void P(set_tree_son) (P(bucket) *node, uns id, P(bucket) *son)
267 { node->son[id] = (void *) ((addr_int_t) son | (((addr_int_t) node->son[id]) & 1L) ); }
270 /* Defaults for missing parameters. */
272 #ifndef TREE_GIVE_CMP
273 #error Unable to determine how to compare two keys.
276 #ifdef TREE_GIVE_EXTRA_SIZE
277 /* This trickery is needed to avoid `unused parameter' warnings */
278 # define TREE_EXTRA_SIZE P(extra_size)
281 * Beware, C macros are expanded iteratively, not recursively,
282 * hence we get only a _single_ argument, although the expansion
283 * of TREE_KEY contains commas.
285 # define TREE_EXTRA_SIZE(x) 0
288 #ifndef TREE_GIVE_INIT_KEY
289 # error Unable to determine how to initialize keys.
292 #ifndef TREE_GIVE_INIT_DATA
293 static inline void P(init_data) (P(node) *n UNUSED)
300 #ifndef TREE_GIVE_ALLOC
301 # ifdef TREE_USE_POOL
302 static inline void * P(alloc) (unsigned int size)
303 { return mp_alloc_fast(TREE_USE_POOL, size); }
304 # define TREE_SAFE_FREE(x)
306 static inline void * P(alloc) (unsigned int size)
307 { return xmalloc(size); }
309 static inline void P(free) (void *x)
314 #ifndef TREE_SAFE_FREE
315 # define TREE_SAFE_FREE(x) P(free) (x)
321 # define STATIC static
324 #ifndef TREE_MAX_DEPTH
325 # define TREE_MAX_DEPTH 64
328 #if defined(TREE_WANT_FIND_NEXT) && !defined(TREE_DUPLICATES)
329 # define TREE_DUPLICATES
332 #ifdef TREE_WANT_LOOKUP
333 #ifndef TREE_WANT_FIND
334 # define TREE_WANT_FIND
336 #ifndef TREE_WANT_NEW
337 # define TREE_WANT_NEW
341 /* Now the operations */
343 STATIC void P(init) (T *t)
345 t->count = t->height = 0;
349 #ifdef TREE_WANT_CLEANUP
350 static void P(cleanup_subtree) (T *t, P(bucket) *node)
354 P(cleanup_subtree) (t, P(tree_son) (node, 0));
355 P(cleanup_subtree) (t, P(tree_son) (node, 1));
360 STATIC void P(cleanup) (T *t)
362 P(cleanup_subtree) (t, t->root);
368 static uns P(fill_stack) (P(stack_entry) *stack, uns max_depth, P(bucket) *node, TREE_KEY_DECL, uns son_id UNUSED)
371 stack[0].buck = node;
372 for (i=0; stack[i].buck; i++)
375 cmp = P(cmp) (TREE_KEY(), TREE_KEY(stack[i].buck->n.));
382 ASSERT(i+1 < max_depth);
383 stack[i+1].buck = P(tree_son) (stack[i].buck, stack[i].son);
385 #ifdef TREE_DUPLICATES
389 /* Find first/last of equal keys according to son_id. */
390 idx = P(fill_stack) (stack+i+1, max_depth-i-1,
391 P(tree_son) (stack[i].buck, son_id), TREE_KEY(), son_id);
392 if (stack[i+1+idx].buck)
394 stack[i].son = son_id;
403 #ifdef TREE_WANT_FIND
404 STATIC P(node) * P(find) (T *t, TREE_KEY_DECL)
406 P(stack_entry) stack[TREE_MAX_DEPTH];
408 depth = P(fill_stack) (stack, TREE_MAX_DEPTH, t->root, TREE_KEY(), 0);
409 return stack[depth].buck ? &stack[depth].buck->n : NULL;
413 #ifdef TREE_STORE_PARENT
414 STATIC P(node) * P(adjacent) (P(node) *start, uns direction)
416 P(bucket) *node = SKIP_BACK(P(bucket), n, start);
417 P(bucket) *next = P(tree_son) (node, direction);
422 node = P(tree_son) (next, 1 - direction);
431 while (next && node == P(tree_son) (next, direction))
438 ASSERT(node == P(tree_son) (next, 1 - direction));
444 #if defined(TREE_DUPLICATES) || defined(TREE_WANT_DELETE) || defined(TREE_WANT_REMOVE)
445 static int P(find_next_node) (P(stack_entry) *stack, uns max_depth, uns direction)
450 ASSERT(depth+1 < max_depth);
451 stack[depth].son = direction;
452 stack[depth+1].buck = P(tree_son) (stack[depth].buck, direction);
454 while (stack[depth].buck)
456 ASSERT(depth+1 < max_depth);
457 stack[depth].son = 1 - direction;
458 stack[depth+1].buck = P(tree_son) (stack[depth].buck, 1 - direction);
466 #ifdef TREE_WANT_FIND_NEXT
467 STATIC P(node) * P(find_next) (P(node) *start)
469 P(node) *next = P(adjacent) (start, 1);
470 if (next && P(cmp) (TREE_KEY(start->), TREE_KEY(next->)) == 0)
478 #ifdef TREE_WANT_SEARCH
479 STATIC P(node) * P(search) (T *t, TREE_KEY_DECL)
481 P(stack_entry) stack[TREE_MAX_DEPTH];
483 depth = P(fill_stack) (stack, TREE_MAX_DEPTH, t->root, TREE_KEY(), 0);
484 if (!stack[depth].buck)
491 return &stack[depth].buck->n;
496 #define TREE_TRACE(txt...) do { printf(txt); fflush(stdout); } while (0)
498 #define TREE_TRACE(txt...)
501 static inline P(bucket) * P(rotation) (P(bucket) *node, uns son_id)
503 /* Destroys red_flag's in node, son. Returns new root. */
504 P(bucket) *son = P(tree_son) (node, son_id);
505 TREE_TRACE("Rotation (node %d, son %d), direction %d\n", node->n.key, son->n.key, son_id);
506 node->son[son_id] = P(tree_son) (son, 1-son_id);
507 son->son[1-son_id] = node;
508 #ifdef TREE_STORE_PARENT
509 if (node->son[son_id])
510 node->son[son_id]->parent = node;
511 son->parent = node->parent;
517 static void P(rotate_after_insert) (T *t, P(stack_entry) *stack, uns depth)
520 P(bucket) *parent, *grand, *uncle;
523 node = stack[depth].buck;
524 ASSERT(P(red_flag) (node));
525 /* At this moment, node became red. The paths sum have
526 * been preserved, but we have to check the parental
530 ASSERT(t->root == node);
533 parent = stack[depth-1].buck;
534 if (!P(red_flag) (parent))
538 ASSERT(t->root == parent);
539 P(set_red_flag) (parent, 0);
543 grand = stack[depth-2].buck;
544 ASSERT(!P(red_flag) (grand));
545 /* The parent is also red, the grandparent exists and it
547 s1 = stack[depth-1].son;
548 s2 = stack[depth-2].son;
549 uncle = P(tree_son) (grand, 1-s2);
550 if (uncle && P(red_flag) (uncle))
552 /* Red parent and uncle, black grandparent.
553 * Exchange and try another iteration. */
554 P(set_red_flag) (parent, 0);
555 P(set_red_flag) (uncle, 0);
556 P(set_red_flag) (grand, 1);
558 TREE_TRACE("Swapping colours (parent %d, uncle %d, grand %d), passing thru\n", parent->n.key, uncle->n.key, grand->n.key);
561 /* Black uncle and grandparent, we need to rotate. Test
565 node = P(rotation) (grand, s2);
566 P(set_red_flag) (parent, 0);
567 P(set_red_flag) (grand, 1);
571 grand->son[s2] = P(rotation) (parent, s1);
572 node = P(rotation) (grand, s2);
573 P(set_red_flag) (grand, 1);
574 P(set_red_flag) (parent, 1);
575 P(set_red_flag) (node, 0);
578 P(set_tree_son) (stack[depth-3].buck, stack[depth-3].son, node);
584 STATIC P(node) * P(new) (T *t, TREE_KEY_DECL)
586 P(stack_entry) stack[TREE_MAX_DEPTH];
589 depth = P(fill_stack) (stack, TREE_MAX_DEPTH, t->root, TREE_KEY(), 1);
590 #ifdef TREE_DUPLICATES
591 /* It is the last found value, hence everything in the right subtree is
592 * strongly _bigger_. */
593 depth += P(find_next_node) (stack+depth, TREE_MAX_DEPTH-depth, 1);
595 ASSERT(!stack[depth].buck);
596 /* We are in a leaf, hence we can easily append a new leaf to it. */
597 added = P(alloc) (sizeof(struct P(bucket)) + TREE_EXTRA_SIZE(TREE_KEY()) );
598 added->son[0] = added->son[1] = NULL;
599 stack[depth].buck = added;
602 #ifdef TREE_STORE_PARENT
603 added->parent = stack[depth-1].buck;
605 P(set_tree_son) (stack[depth-1].buck, stack[depth-1].son, added);
609 #ifdef TREE_STORE_PARENT
610 added->parent = NULL;
614 P(set_red_flag) (added, 1); /* Set it red to not disturb the path sum. */
615 P(init_key) (&added->n, TREE_KEY());
616 P(init_data) (&added->n);
618 /* Let us reorganize the red_flag's and the structure of the tree. */
619 P(rotate_after_insert) (t, stack, depth);
624 #ifdef TREE_WANT_LOOKUP
625 STATIC P(node) * P(lookup) (T *t, TREE_KEY_DECL)
628 node = P(find) (t, TREE_KEY());
631 return P(new) (t, TREE_KEY());
635 #if defined(TREE_WANT_REMOVE) || defined(TREE_WANT_DELETE)
636 static void P(rotate_after_delete) (T *t, P(stack_entry) *stack, int depth)
639 P(bucket) *parent, *sibling, *instead;
640 uns parent_red, del_son, sibl_red;
647 parent = stack[depth].buck;
648 parent_red = P(red_flag) (parent);
649 del_son = stack[depth].son;
650 /* For the 1st iteration: we have deleted parent->son[del_son], which
651 * was a black node with no son. Hence there is one mising black
652 * vertex in that path, which we are going to fix now.
654 * For other iterations: in that path, there is also missing a black
657 ASSERT(!P(tree_son) (parent, del_son));
658 sibling = P(tree_son) (parent, 1-del_son);
660 sibl_red = P(red_flag) (sibling);
666 son[0] = P(tree_son) (sibling, 0);
667 son[1] = P(tree_son) (sibling, 1);
668 red[0] = son[0] ? P(red_flag) (son[0]) : 0;
669 red[1] = son[1] ? P(red_flag) (son[1]) : 0;
670 if (!red[0] && !red[1])
672 P(set_red_flag) (sibling, 1);
673 P(set_red_flag) (parent, 0);
680 TREE_TRACE("Swapping colours (parent %d, sibling %d), passing thru\n", parent->n.key, sibling->n.key);
683 } else if (!red[del_son])
685 instead = P(rotation) (parent, 1-del_son);
686 P(set_red_flag) (instead, parent_red);
687 P(set_red_flag) (parent, 0);
688 P(set_red_flag) (son[1-del_son], 0);
689 } else /* red[del_son] */
691 parent->son[1-del_son] = P(rotation) (sibling, del_son);
692 instead = P(rotation) (parent, 1-del_son);
693 P(set_red_flag) (instead, parent_red);
694 P(set_red_flag) (parent, 0);
695 P(set_red_flag) (sibling, 0);
697 } else /* sibl_red */
699 P(bucket) *grand[2], *son;
702 son = P(tree_son) (sibling, del_son);
703 ASSERT(son && !P(red_flag) (son));
704 grand[0] = P(tree_son) (son, 0);
705 grand[1] = P(tree_son) (son, 1);
706 red[0] = grand[0] ? P(red_flag) (grand[0]) : 0;
707 red[1] = grand[1] ? P(red_flag) (grand[1]) : 0;
708 if (!red[0] && !red[1])
710 instead = P(rotation) (parent, 1-del_son);
711 P(set_red_flag) (instead, 0);
712 P(set_red_flag) (parent, 0);
713 P(set_red_flag) (son, 1);
715 else if (!red[del_son])
717 parent->son[1-del_son] = P(rotation) (sibling, del_son);
718 instead = P(rotation) (parent, 1-del_son);
719 P(set_red_flag) (instead, 0);
720 P(set_red_flag) (parent, 0);
721 P(set_red_flag) (sibling, 1);
722 P(set_red_flag) (grand[1-del_son], 0);
723 } else /* red[del_son] */
725 sibling->son[del_son] = P(rotation) (son, del_son);
726 parent->son[1-del_son] = P(rotation) (sibling, del_son);
727 instead = P(rotation) (parent, 1-del_son);
728 P(set_red_flag) (instead, 0);
729 P(set_red_flag) (parent, 0);
730 P(set_red_flag) (sibling, 1);
731 P(set_red_flag) (son, 0);
734 /* We have performed all desired rotations and need to store the new
735 * pointer to the subtree. */
738 P(set_tree_son) (stack[depth-1].buck, stack[depth-1].son, instead);
743 static void P(remove_by_stack) (T *t, P(stack_entry) *stack, uns depth)
745 P(bucket) *node = stack[depth].buck;
748 for (i=0; i<depth; i++)
749 ASSERT(P(tree_son) (stack[i].buck, stack[i].son) == stack[i+1].buck);
750 if (P(tree_son) (node, 0) && P(tree_son) (node, 1))
753 uns flag_node, flag_xchg;
754 uns d = P(find_next_node) (stack+depth, TREE_MAX_DEPTH-depth, 1);
758 xchg = stack[depth+d].buck;
759 flag_node = P(red_flag) (node);
760 flag_xchg = P(red_flag) (xchg);
761 ASSERT(!P(tree_son) (xchg, 0));
762 son = P(tree_son) (xchg, 1);
763 stack[depth].buck = xchg; /* Magic iff d == 1. */
764 stack[depth+d].buck = node;
765 xchg->son[0] = P(tree_son) (node, 0);
766 xchg->son[1] = P(tree_son) (node, 1);
768 P(set_tree_son) (stack[depth-1].buck, stack[depth-1].son, xchg);
773 P(set_tree_son) (stack[depth+d-1].buck, stack[depth+d-1].son, node);
774 #ifdef TREE_STORE_PARENT
775 xchg->parent = depth > 0 ? stack[depth-1].buck : NULL;
776 xchg->son[0]->parent = xchg;
777 xchg->son[1]->parent = xchg;
778 node->parent = stack[depth+d-1].buck;
782 P(set_red_flag) (xchg, flag_node);
783 P(set_red_flag) (node, flag_xchg);
786 else if (P(tree_son) (node, 0))
787 son = P(tree_son) (node, 0);
789 son = P(tree_son) (node, 1);
790 /* At this moment, stack[depth].buck == node and it has at most one son
791 * and it is stored in the variable son. */
795 P(set_tree_son) (stack[depth-1].buck, stack[depth-1].son, son);
796 #ifdef TREE_STORE_PARENT
798 son->parent = stack[depth-1].buck;
804 #ifdef TREE_STORE_PARENT
809 if (P(red_flag) (node))
814 TREE_SAFE_FREE(node);
815 /* We have deleted a black node. */
818 ASSERT(P(red_flag) (son));
819 P(set_red_flag) (son, 0);
822 P(rotate_after_delete) (t, stack, (int) depth - 1);
826 #ifdef TREE_WANT_REMOVE
827 STATIC void P(remove) (T *t, P(node) *Node)
829 P(stack_entry) stack[TREE_MAX_DEPTH];
830 P(bucket) *node = SKIP_BACK(P(bucket), n, Node);
832 stack[0].buck = node;
837 ASSERT(depth < TREE_MAX_DEPTH);
838 stack[depth].buck = node->parent;
839 stack[depth].son = P(tree_son) (node->parent, 0) == node ? 0 : 1;
842 for (i=0; i<(depth+1)/2; i++)
844 P(stack_entry) tmp = stack[i];
845 stack[i] = stack[depth-i];
846 stack[depth-i] = tmp;
848 P(remove_by_stack) (t, stack, depth);
852 #ifdef TREE_WANT_DELETE
853 STATIC int P(delete) (T *t, TREE_KEY_DECL)
855 P(stack_entry) stack[TREE_MAX_DEPTH];
857 depth = P(fill_stack) (stack, TREE_MAX_DEPTH, t->root, TREE_KEY(), 1);
858 if (stack[depth].buck)
860 P(remove_by_stack) (t, stack, depth);
868 #ifdef TREE_WANT_DUMP
869 static void P(dump_subtree) (struct fastbuf *fb, T *t, P(bucket) *node, P(bucket) *parent, int cmp_res, int level, uns black)
875 ASSERT(black == t->height);
878 flag = P(red_flag) (node);
879 #ifdef TREE_STORE_PARENT
880 ASSERT(node->parent == parent);
884 ASSERT(!flag || !P(red_flag) (parent));
885 cmp_res *= P(cmp) (TREE_KEY(node->n.), TREE_KEY(parent->n.));
886 #ifdef TREE_DUPLICATES
887 ASSERT(cmp_res >= 0);
892 P(dump_subtree) (fb, t, P(tree_son) (node, 0), node, -1, level+1, black + (1-flag));
896 for (i=0; i<level; i++)
898 sprintf(tmp, "L%d %c\t", level, flag ? 'R' : 'B');
900 P(dump_key) (fb, &node->n);
901 P(dump_data) (fb, &node->n);
904 P(dump_subtree) (fb, t, P(tree_son) (node, 1), node, +1, level+1, black + (1-flag));
907 STATIC void P(dump) (struct fastbuf *fb, T *t)
912 sprintf(tmp, "Tree of %d nodes and height %d\n", t->count, t->height);
915 P(dump_subtree) (fb, t, t->root, NULL, 0, 0, 0);
924 /* And the iterator */
926 #ifdef TREE_WANT_ITERATOR
927 static P(node) * P(first_node) (T *t, uns direction)
929 P(bucket) *node = t->root, *prev = NULL;
933 node = P(tree_son) (node, direction);
935 return prev ? &prev->n : NULL;
940 #define TREE_FOR_ALL(t_px, t_ptr, t_var) \
943 TREE_GLUE(t_px,node) *t_var = TREE_GLUE(t_px,first_node)(t_ptr, 0); \
944 for (; t_var; t_var = TREE_GLUE(t_px,adjacent)(t_var, 1)) \
946 #define TREE_END_FOR } } while(0)
947 #define TREE_BREAK break
948 #define TREE_CONTINUE continue
949 #define TREE_GLUE(x,y) x##_##y
954 /* Finally, undefine all the parameters */
961 #undef TREE_KEY_ATOMIC
962 #undef TREE_KEY_STRING
963 #undef TREE_KEY_ENDSTRING
964 #undef TREE_KEY_COMPLEX
966 #undef TREE_WANT_CLEANUP
967 #undef TREE_WANT_FIND
968 #undef TREE_WANT_FIND_NEXT
969 #undef TREE_WANT_SEARCH
970 #undef TREE_WANT_ADJACENT
972 #undef TREE_WANT_LOOKUP
973 #undef TREE_WANT_DELETE
974 #undef TREE_WANT_REMOVE
975 #undef TREE_WANT_DUMP
976 #undef TREE_WANT_ITERATOR
978 #undef TREE_GIVE_EXTRA_SIZE
979 #undef TREE_GIVE_INIT_KEY
980 #undef TREE_GIVE_INIT_DATA
981 #undef TREE_GIVE_ALLOC
983 #undef TREE_ATOMIC_TYPE
986 #undef TREE_CONSERVE_SPACE
987 #undef TREE_DUPLICATES
988 #undef TREE_MAX_DEPTH
989 #undef TREE_STORE_PARENT
991 #undef TREE_EXTRA_SIZE
992 #undef TREE_SAFE_FREE