2 * UCW Library -- Red-black trees
4 * (c) 2002--2005, Robert Spalek <robert@ucw.cz>
6 * Skeleton based on hash-tables by:
8 * (c) 2002, Martin Mares <mj@ucw.cz>
13 * Data structure description:
15 * A red-black tree is a binary search tree, where records are stored
16 * in nodes (may be also leaves). Every node has a colour. The
17 * following restrictions hold:
19 * - a parent of a red node is black
20 * - every path from the root to a node with less than 2 children
21 * contains the same number of black nodes
23 * A usual interpretation is, that leaves are intervals between records
24 * and contain no data. Every leaf is black. This is equivalent, but
29 * This is not a normal header file, it's a generator of red-black trees.
30 * Each time you include it with parameters set in the corresponding
31 * preprocessor macros, it generates a tree structure with the parameters
34 * You need to specify:
36 * TREE_NODE data type where a node dwells (usually a struct).
37 * TREE_PREFIX(x) macro to add a name prefix (used on all global names
38 * defined by the tree generator).
40 * Then decide on type of keys:
42 * TREE_KEY_ATOMIC=f use node->f as a key of an atomic type (i.e.,
43 * a type which can be compared using '>', `==', and '<')
44 * & TREE_ATOMIC_TYPE (defaults to int).
45 * | TREE_KEY_STRING=f use node->f as a string key, allocated
46 * separately from the rest of the node.
47 * | TREE_KEY_ENDSTRING=f use node->f as a string key, allocated
48 * automatically at the end of the node struct
49 * (to be declared as "char f[1]" at the end).
50 * | TREE_KEY_COMPLEX use a multi-component key; as the name suggests,
51 * the passing of parameters is a bit complex then.
52 * The TREE_KEY_COMPLEX(x) macro should expand to
53 * `x k1, x k2, ... x kn' and you should also define:
54 * & TREE_KEY_DECL declaration of function parameters in which key
55 * should be passed to all tree operations.
56 * That is, `type1 k1, type2 k2, ... typen kn'.
57 * With complex keys, TREE_GIVE_CMP is mandatory.
59 * Then specify what operations you request (all names are automatically
60 * prefixed by calling TREE_PREFIX):
62 * <always defined> init() -- initialize the tree.
63 * TREE_WANT_CLEANUP cleanup() -- deallocate the tree.
64 * TREE_WANT_FIND node *find(key) -- find first node with the specified
65 * key, return NULL if no such node exists.
66 * TREE_WANT_FIND_NEXT node *find_next(node *start) -- find next node with the
67 * specified key, return NULL if no such node exists.
68 * Implies TREE_DUPLICATES.
69 * TREE_WANT_SEARCH node *search(key) -- find the node with the specified
70 * or, if it does not exist, the nearest one.
71 * TREE_WANT_SEARCH_DOWN node *search_down(key) -- find either the node with
72 * specified value, or if it does not exist, the node
73 * with nearest smaller value.
74 * TREE_WANT_BOUNDARY node *boundary(uns direction) -- finds smallest
75 * (direction==0) or largest (direction==1) node.
76 * TREE_WANT_ADJACENT node *adjacent(node *, uns direction) -- finds next
77 * (direction==1) or previous (direction==0) node.
78 * TREE_WANT_NEW node *new(key) -- create new node with given key.
79 * If it already exists, it is created as the last one.
80 * TREE_WANT_LOOKUP node *lookup(key) -- find node with given key,
81 * if it doesn't exist, create it. Defining
82 * TREE_GIVE_INIT_DATA is strongly recommended.
83 * TREE_WANT_DELETE int delete(key) -- delete and deallocate node
84 * with a given key. Returns success.
85 * TREE_WANT_REMOVE remove(node *) -- delete and deallocate given node.
87 * TREE_WANT_DUMP dump() -- dumps the whole tree to stdout
89 * You can also supply several functions:
91 * TREE_GIVE_CMP int cmp(key1, key2) -- return -1, 0, and 1 according to
92 * the relation of keys. By default, we use <, ==, > for
93 * atomic types and either strcmp or strcasecmp for
95 * TREE_GIVE_EXTRA_SIZE int extra_size(key) -- returns how many bytes after the
96 * node should be allocated for dynamic data. Default=0
97 * or length of the string with TREE_KEY_ENDSTRING.
98 * TREE_GIVE_INIT_KEY void init_key(node *,key) -- initialize key in a newly
99 * created node. Defaults: assignment for atomic keys
100 * and static strings, strcpy for end-allocated strings.
101 * TREE_GIVE_INIT_DATA void init_data(node *) -- initialize data fields in a
102 * newly created node. Very useful for lookup operations.
103 * TREE_GIVE_ALLOC void *alloc(unsigned int size) -- allocate space for
104 * a node. Default is either normal or pooled allocation
105 * depending on whether we want deletions.
106 * void free(void *) -- the converse.
108 * ... and a couple of extra parameters:
110 * TREE_NOCASE string comparisons should be case-insensitive.
111 * TREE_ATOMIC_TYPE=t Atomic values are of type `t' instead of int.
112 * TREE_USE_POOL=pool Allocate all nodes from given mempool.
113 * Collides with delete/remove functions.
114 * TREE_GLOBAL Functions are exported (i.e., not static).
115 * TREE_CONSERVE_SPACE Use as little space as possible at the price of a
117 * TREE_DUPLICATES Records with duplicate keys are allowed.
118 * TREE_MAX_DEPTH Maximal depth of a tree (for stack allocation).
120 * If you set TREE_WANT_ITERATOR, you also get a iterator macro at no
123 * TREE_FOR_ALL(tree_prefix, tree_pointer, variable)
125 * // node *variable gets declared automatically
126 * do_something_with_node(variable);
127 * // use TREE_BREAK and TREE_CONTINUE instead of break and continue
128 * // you must not alter contents of the tree here
132 * Then include "lib/redblack.h" and voila, you have a tree suiting all your
133 * needs (at least those which you've revealed :) ).
135 * After including this file, all parameter macros are automatically
142 #if !defined(TREE_NODE) || !defined(TREE_PREFIX)
143 #error Some of the mandatory configuration macros are missing.
146 #define P(x) TREE_PREFIX(x)
148 /* Declare buckets and the tree. */
150 typedef TREE_NODE P(node);
152 #if defined(TREE_WANT_FIND_NEXT) || defined(TREE_WANT_ADJACENT) || defined(TREE_WANT_ITERATOR) || defined(TREE_WANT_REMOVE)
153 # define TREE_STORE_PARENT
156 typedef struct P(bucket) {
157 struct P(bucket) *son[2];
158 #ifdef TREE_STORE_PARENT
159 struct P(bucket) *parent;
161 #if !defined(TREE_CONSERVE_SPACE) && (defined(TREE_GIVE_EXTRA_SIZE) || defined(TREE_KEY_ENDSTRING))
165 #if !defined(TREE_CONSERVE_SPACE) && !defined(TREE_GIVE_EXTRA_SIZE) && !defined(TREE_KEY_ENDSTRING)
172 uns height; /* of black nodes */
176 typedef struct P(stack_entry) {
181 #define T struct P(tree)
183 /* Preset parameters */
185 #if defined(TREE_KEY_ATOMIC)
187 #define TREE_KEY(x) x TREE_KEY_ATOMIC
189 #ifndef TREE_ATOMIC_TYPE
190 # define TREE_ATOMIC_TYPE int
192 #define TREE_KEY_DECL TREE_ATOMIC_TYPE TREE_KEY()
194 #ifndef TREE_GIVE_CMP
195 # define TREE_GIVE_CMP
196 static inline int P(cmp) (TREE_ATOMIC_TYPE x, TREE_ATOMIC_TYPE y)
207 #ifndef TREE_GIVE_INIT_KEY
208 # define TREE_GIVE_INIT_KEY
209 static inline void P(init_key) (P(node) *n, TREE_ATOMIC_TYPE k)
210 { TREE_KEY(n->) = k; }
213 #elif defined(TREE_KEY_STRING) || defined(TREE_KEY_ENDSTRING)
215 #ifdef TREE_KEY_STRING
216 # define TREE_KEY(x) x TREE_KEY_STRING
217 # ifndef TREE_GIVE_INIT_KEY
218 # define TREE_GIVE_INIT_KEY
219 static inline void P(init_key) (P(node) *n, char *k)
220 { TREE_KEY(n->) = k; }
223 # define TREE_KEY(x) x TREE_KEY_ENDSTRING
224 # define TREE_GIVE_EXTRA_SIZE
225 static inline int P(extra_size) (char *k)
226 { return strlen(k); }
227 # ifndef TREE_GIVE_INIT_KEY
228 # define TREE_GIVE_INIT_KEY
229 static inline void P(init_key) (P(node) *n, char *k)
230 { strcpy(TREE_KEY(n->), k); }
233 #define TREE_KEY_DECL char *TREE_KEY()
235 #ifndef TREE_GIVE_CMP
236 # define TREE_GIVE_CMP
237 static inline int P(cmp) (char *x, char *y)
240 return strcasecmp(x,y);
247 #elif defined(TREE_KEY_COMPLEX)
249 #define TREE_KEY(x) TREE_KEY_COMPLEX(x)
252 #error You forgot to set the tree key type.
255 #ifndef TREE_CONSERVE_SPACE
256 static inline uns P(red_flag) (P(bucket) *node)
257 { return node->red_flag; }
258 static inline void P(set_red_flag) (P(bucket) *node, uns flag)
259 { node->red_flag = flag; }
260 static inline P(bucket) * P(tree_son) (P(bucket) *node, uns id)
261 { return node->son[id]; }
262 static inline void P(set_tree_son) (P(bucket) *node, uns id, P(bucket) *son)
263 { node->son[id] = son; }
265 /* Pointers are aligned, hence we can use lower bits. */
266 static inline uns P(red_flag) (P(bucket) *node)
267 { return ((uintptr_t) node->son[0]) & 1L; }
268 static inline void P(set_red_flag) (P(bucket) *node, uns flag)
269 { node->son[0] = (void*) ( (((uintptr_t) node->son[0]) & ~1L) | (flag & 1L) ); }
270 static inline P(bucket) * P(tree_son) (P(bucket) *node, uns id)
271 { return (void *) (((uintptr_t) node->son[id]) & ~1L); }
272 static inline void P(set_tree_son) (P(bucket) *node, uns id, P(bucket) *son)
273 { node->son[id] = (void *) ((uintptr_t) son | (((uintptr_t) node->son[id]) & 1L) ); }
276 /* Defaults for missing parameters. */
278 #ifndef TREE_GIVE_CMP
279 #error Unable to determine how to compare two keys.
282 #ifdef TREE_GIVE_EXTRA_SIZE
283 /* This trickery is needed to avoid `unused parameter' warnings */
284 # define TREE_EXTRA_SIZE P(extra_size)
287 * Beware, C macros are expanded iteratively, not recursively,
288 * hence we get only a _single_ argument, although the expansion
289 * of TREE_KEY contains commas.
291 # define TREE_EXTRA_SIZE(x) 0
294 #ifndef TREE_GIVE_INIT_KEY
295 # error Unable to determine how to initialize keys.
298 #ifndef TREE_GIVE_INIT_DATA
299 static inline void P(init_data) (P(node) *n UNUSED)
306 #ifndef TREE_GIVE_ALLOC
307 # ifdef TREE_USE_POOL
308 static inline void * P(alloc) (unsigned int size)
309 { return mp_alloc_fast(TREE_USE_POOL, size); }
310 # define TREE_SAFE_FREE(x)
312 static inline void * P(alloc) (unsigned int size)
313 { return xmalloc(size); }
315 static inline void P(free) (void *x)
320 #ifndef TREE_SAFE_FREE
321 # define TREE_SAFE_FREE(x) P(free) (x)
327 # define STATIC static
330 #ifndef TREE_MAX_DEPTH
331 # define TREE_MAX_DEPTH 64
334 #if defined(TREE_WANT_FIND_NEXT) && !defined(TREE_DUPLICATES)
335 # define TREE_DUPLICATES
338 #ifdef TREE_WANT_LOOKUP
339 #ifndef TREE_WANT_FIND
340 # define TREE_WANT_FIND
342 #ifndef TREE_WANT_NEW
343 # define TREE_WANT_NEW
347 /* Now the operations */
349 STATIC void P(init) (T *t)
351 t->count = t->height = 0;
355 #ifdef TREE_WANT_CLEANUP
356 static void P(cleanup_subtree) (T *t, P(bucket) *node)
360 P(cleanup_subtree) (t, P(tree_son) (node, 0));
361 P(cleanup_subtree) (t, P(tree_son) (node, 1));
366 STATIC void P(cleanup) (T *t)
368 P(cleanup_subtree) (t, t->root);
374 static uns P(fill_stack) (P(stack_entry) *stack, uns max_depth, P(bucket) *node, TREE_KEY_DECL, uns son_id UNUSED)
377 stack[0].buck = node;
378 for (i=0; stack[i].buck; i++)
381 cmp = P(cmp) (TREE_KEY(), TREE_KEY(stack[i].buck->n.));
388 ASSERT(i+1 < max_depth);
389 stack[i+1].buck = P(tree_son) (stack[i].buck, stack[i].son);
391 #ifdef TREE_DUPLICATES
395 /* Find first/last of equal keys according to son_id. */
396 idx = P(fill_stack) (stack+i+1, max_depth-i-1,
397 P(tree_son) (stack[i].buck, son_id), TREE_KEY(), son_id);
398 if (stack[i+1+idx].buck)
400 stack[i].son = son_id;
409 #ifdef TREE_WANT_FIND
410 STATIC P(node) * P(find) (T *t, TREE_KEY_DECL)
412 P(stack_entry) stack[TREE_MAX_DEPTH];
414 depth = P(fill_stack) (stack, TREE_MAX_DEPTH, t->root, TREE_KEY(), 0);
415 return stack[depth].buck ? &stack[depth].buck->n : NULL;
419 #ifdef TREE_WANT_SEARCH_DOWN
420 STATIC P(node) * P(search_down) (T *t, TREE_KEY_DECL)
422 P(node) *last_right=NULL;
423 P(bucket) *node=t->root;
427 cmp = P(cmp) (TREE_KEY(), TREE_KEY(node->n.));
431 node=P(tree_son) (node, 0);
435 node=P(tree_son) (node, 1);
442 #ifdef TREE_WANT_BOUNDARY
443 STATIC P(node) * P(boundary) (T *t, uns direction)
445 P(bucket) *n = t->root, *ns;
450 uns son = !!direction;
451 while ((ns = P(tree_son) (n, son)))
458 #ifdef TREE_STORE_PARENT
459 STATIC P(node) * P(adjacent) (P(node) *start, uns direction)
461 P(bucket) *node = SKIP_BACK(P(bucket), n, start);
462 P(bucket) *next = P(tree_son) (node, direction);
467 node = P(tree_son) (next, 1 - direction);
476 while (next && node == P(tree_son) (next, direction))
483 ASSERT(node == P(tree_son) (next, 1 - direction));
489 #if defined(TREE_DUPLICATES) || defined(TREE_WANT_DELETE) || defined(TREE_WANT_REMOVE)
490 static int P(find_next_node) (P(stack_entry) *stack, uns max_depth, uns direction)
495 ASSERT(depth+1 < max_depth);
496 stack[depth].son = direction;
497 stack[depth+1].buck = P(tree_son) (stack[depth].buck, direction);
499 while (stack[depth].buck)
501 ASSERT(depth+1 < max_depth);
502 stack[depth].son = 1 - direction;
503 stack[depth+1].buck = P(tree_son) (stack[depth].buck, 1 - direction);
511 #ifdef TREE_WANT_FIND_NEXT
512 STATIC P(node) * P(find_next) (P(node) *start)
514 P(node) *next = P(adjacent) (start, 1);
515 if (next && P(cmp) (TREE_KEY(start->), TREE_KEY(next->)) == 0)
523 #ifdef TREE_WANT_SEARCH
524 STATIC P(node) * P(search) (T *t, TREE_KEY_DECL)
526 P(stack_entry) stack[TREE_MAX_DEPTH];
528 depth = P(fill_stack) (stack, TREE_MAX_DEPTH, t->root, TREE_KEY(), 0);
529 if (!stack[depth].buck)
536 return &stack[depth].buck->n;
541 #define TREE_TRACE(txt...) do { printf(txt); fflush(stdout); } while (0)
543 #define TREE_TRACE(txt...)
546 static inline P(bucket) * P(rotation) (P(bucket) *node, uns son_id)
548 /* Destroys red_flag's in node, son. Returns new root. */
549 P(bucket) *son = P(tree_son) (node, son_id);
550 TREE_TRACE("Rotation (node %d, son %d), direction %d\n", node->n.key, son->n.key, son_id);
551 node->son[son_id] = P(tree_son) (son, 1-son_id);
552 son->son[1-son_id] = node;
553 #ifdef TREE_STORE_PARENT
554 if (node->son[son_id])
555 node->son[son_id]->parent = node;
556 son->parent = node->parent;
562 static void P(rotate_after_insert) (T *t, P(stack_entry) *stack, uns depth)
565 P(bucket) *parent, *grand, *uncle;
568 node = stack[depth].buck;
569 ASSERT(P(red_flag) (node));
570 /* At this moment, node became red. The paths sum have
571 * been preserved, but we have to check the parental
575 ASSERT(t->root == node);
578 parent = stack[depth-1].buck;
579 if (!P(red_flag) (parent))
583 ASSERT(t->root == parent);
584 P(set_red_flag) (parent, 0);
588 grand = stack[depth-2].buck;
589 ASSERT(!P(red_flag) (grand));
590 /* The parent is also red, the grandparent exists and it
592 s1 = stack[depth-1].son;
593 s2 = stack[depth-2].son;
594 uncle = P(tree_son) (grand, 1-s2);
595 if (uncle && P(red_flag) (uncle))
597 /* Red parent and uncle, black grandparent.
598 * Exchange and try another iteration. */
599 P(set_red_flag) (parent, 0);
600 P(set_red_flag) (uncle, 0);
601 P(set_red_flag) (grand, 1);
603 TREE_TRACE("Swapping colours (parent %d, uncle %d, grand %d), passing thru\n", parent->n.key, uncle->n.key, grand->n.key);
606 /* Black uncle and grandparent, we need to rotate. Test
610 node = P(rotation) (grand, s2);
611 P(set_red_flag) (parent, 0);
612 P(set_red_flag) (grand, 1);
616 grand->son[s2] = P(rotation) (parent, s1);
617 node = P(rotation) (grand, s2);
618 P(set_red_flag) (grand, 1);
619 P(set_red_flag) (parent, 1);
620 P(set_red_flag) (node, 0);
623 P(set_tree_son) (stack[depth-3].buck, stack[depth-3].son, node);
629 STATIC P(node) * P(new) (T *t, TREE_KEY_DECL)
631 P(stack_entry) stack[TREE_MAX_DEPTH];
634 depth = P(fill_stack) (stack, TREE_MAX_DEPTH, t->root, TREE_KEY(), 1);
635 #ifdef TREE_DUPLICATES
636 /* It is the last found value, hence everything in the right subtree is
637 * strongly _bigger_. */
638 depth += P(find_next_node) (stack+depth, TREE_MAX_DEPTH-depth, 1);
640 ASSERT(!stack[depth].buck);
641 /* We are in a leaf, hence we can easily append a new leaf to it. */
642 added = P(alloc) (sizeof(struct P(bucket)) + TREE_EXTRA_SIZE(TREE_KEY()) );
643 added->son[0] = added->son[1] = NULL;
644 stack[depth].buck = added;
647 #ifdef TREE_STORE_PARENT
648 added->parent = stack[depth-1].buck;
650 P(set_tree_son) (stack[depth-1].buck, stack[depth-1].son, added);
654 #ifdef TREE_STORE_PARENT
655 added->parent = NULL;
659 P(set_red_flag) (added, 1); /* Set it red to not disturb the path sum. */
660 P(init_key) (&added->n, TREE_KEY());
661 P(init_data) (&added->n);
663 /* Let us reorganize the red_flag's and the structure of the tree. */
664 P(rotate_after_insert) (t, stack, depth);
669 #ifdef TREE_WANT_LOOKUP
670 STATIC P(node) * P(lookup) (T *t, TREE_KEY_DECL)
673 node = P(find) (t, TREE_KEY());
676 return P(new) (t, TREE_KEY());
680 #if defined(TREE_WANT_REMOVE) || defined(TREE_WANT_DELETE)
681 static void P(rotate_after_delete) (T *t, P(stack_entry) *stack, int depth)
684 P(bucket) *parent, *sibling, *instead;
685 uns parent_red, del_son, sibl_red;
692 parent = stack[depth].buck;
693 parent_red = P(red_flag) (parent);
694 del_son = stack[depth].son;
695 /* For the 1st iteration: we have deleted parent->son[del_son], which
696 * was a black node with no son. Hence there is one mising black
697 * vertex in that path, which we are going to fix now.
699 * For other iterations: in that path, there is also missing a black
702 ASSERT(!P(tree_son) (parent, del_son));
703 sibling = P(tree_son) (parent, 1-del_son);
705 sibl_red = P(red_flag) (sibling);
711 son[0] = P(tree_son) (sibling, 0);
712 son[1] = P(tree_son) (sibling, 1);
713 red[0] = son[0] ? P(red_flag) (son[0]) : 0;
714 red[1] = son[1] ? P(red_flag) (son[1]) : 0;
715 if (!red[0] && !red[1])
717 P(set_red_flag) (sibling, 1);
718 P(set_red_flag) (parent, 0);
725 TREE_TRACE("Swapping colours (parent %d, sibling %d), passing thru\n", parent->n.key, sibling->n.key);
728 } else if (!red[del_son])
730 instead = P(rotation) (parent, 1-del_son);
731 P(set_red_flag) (instead, parent_red);
732 P(set_red_flag) (parent, 0);
733 P(set_red_flag) (son[1-del_son], 0);
734 } else /* red[del_son] */
736 parent->son[1-del_son] = P(rotation) (sibling, del_son);
737 instead = P(rotation) (parent, 1-del_son);
738 P(set_red_flag) (instead, parent_red);
739 P(set_red_flag) (parent, 0);
740 P(set_red_flag) (sibling, 0);
742 } else /* sibl_red */
744 P(bucket) *grand[2], *son;
747 son = P(tree_son) (sibling, del_son);
748 ASSERT(son && !P(red_flag) (son));
749 grand[0] = P(tree_son) (son, 0);
750 grand[1] = P(tree_son) (son, 1);
751 red[0] = grand[0] ? P(red_flag) (grand[0]) : 0;
752 red[1] = grand[1] ? P(red_flag) (grand[1]) : 0;
753 if (!red[0] && !red[1])
755 instead = P(rotation) (parent, 1-del_son);
756 P(set_red_flag) (instead, 0);
757 P(set_red_flag) (parent, 0);
758 P(set_red_flag) (son, 1);
760 else if (!red[del_son])
762 parent->son[1-del_son] = P(rotation) (sibling, del_son);
763 instead = P(rotation) (parent, 1-del_son);
764 P(set_red_flag) (instead, 0);
765 P(set_red_flag) (parent, 0);
766 P(set_red_flag) (sibling, 1);
767 P(set_red_flag) (grand[1-del_son], 0);
768 } else /* red[del_son] */
770 sibling->son[del_son] = P(rotation) (son, del_son);
771 parent->son[1-del_son] = P(rotation) (sibling, del_son);
772 instead = P(rotation) (parent, 1-del_son);
773 P(set_red_flag) (instead, 0);
774 P(set_red_flag) (parent, 0);
775 P(set_red_flag) (sibling, 1);
776 P(set_red_flag) (son, 0);
779 /* We have performed all desired rotations and need to store the new
780 * pointer to the subtree. */
783 P(set_tree_son) (stack[depth-1].buck, stack[depth-1].son, instead);
788 static void P(remove_by_stack) (T *t, P(stack_entry) *stack, uns depth)
790 P(bucket) *node = stack[depth].buck;
793 for (i=0; i<depth; i++)
794 ASSERT(P(tree_son) (stack[i].buck, stack[i].son) == stack[i+1].buck);
795 if (P(tree_son) (node, 0) && P(tree_son) (node, 1))
798 uns flag_node, flag_xchg;
799 uns d = P(find_next_node) (stack+depth, TREE_MAX_DEPTH-depth, 1);
803 xchg = stack[depth+d].buck;
804 flag_node = P(red_flag) (node);
805 flag_xchg = P(red_flag) (xchg);
806 ASSERT(!P(tree_son) (xchg, 0));
807 son = P(tree_son) (xchg, 1);
808 stack[depth].buck = xchg; /* Magic iff d == 1. */
809 stack[depth+d].buck = node;
810 xchg->son[0] = P(tree_son) (node, 0);
811 xchg->son[1] = P(tree_son) (node, 1);
813 P(set_tree_son) (stack[depth-1].buck, stack[depth-1].son, xchg);
818 P(set_tree_son) (stack[depth+d-1].buck, stack[depth+d-1].son, node);
819 #ifdef TREE_STORE_PARENT
820 xchg->parent = depth > 0 ? stack[depth-1].buck : NULL;
821 xchg->son[0]->parent = xchg;
822 xchg->son[1]->parent = xchg;
823 node->parent = stack[depth+d-1].buck;
827 P(set_red_flag) (xchg, flag_node);
828 P(set_red_flag) (node, flag_xchg);
831 else if (P(tree_son) (node, 0))
832 son = P(tree_son) (node, 0);
834 son = P(tree_son) (node, 1);
835 /* At this moment, stack[depth].buck == node and it has at most one son
836 * and it is stored in the variable son. */
840 P(set_tree_son) (stack[depth-1].buck, stack[depth-1].son, son);
841 #ifdef TREE_STORE_PARENT
843 son->parent = stack[depth-1].buck;
849 #ifdef TREE_STORE_PARENT
854 if (P(red_flag) (node))
859 TREE_SAFE_FREE(node);
860 /* We have deleted a black node. */
863 ASSERT(P(red_flag) (son));
864 P(set_red_flag) (son, 0);
867 P(rotate_after_delete) (t, stack, (int) depth - 1);
871 #ifdef TREE_WANT_REMOVE
872 STATIC void P(remove) (T *t, P(node) *Node)
874 P(stack_entry) stack[TREE_MAX_DEPTH];
875 P(bucket) *node = SKIP_BACK(P(bucket), n, Node);
877 stack[0].buck = node;
882 ASSERT(depth < TREE_MAX_DEPTH);
883 stack[depth].buck = node->parent;
884 stack[depth].son = P(tree_son) (node->parent, 0) == node ? 0 : 1;
887 for (i=0; i<(depth+1)/2; i++)
889 P(stack_entry) tmp = stack[i];
890 stack[i] = stack[depth-i];
891 stack[depth-i] = tmp;
893 P(remove_by_stack) (t, stack, depth);
897 #ifdef TREE_WANT_DELETE
898 STATIC int P(delete) (T *t, TREE_KEY_DECL)
900 P(stack_entry) stack[TREE_MAX_DEPTH];
902 depth = P(fill_stack) (stack, TREE_MAX_DEPTH, t->root, TREE_KEY(), 1);
903 if (stack[depth].buck)
905 P(remove_by_stack) (t, stack, depth);
913 #ifdef TREE_WANT_DUMP
914 static void P(dump_subtree) (struct fastbuf *fb, T *t, P(bucket) *node, P(bucket) *parent, int cmp_res, int level, uns black)
920 ASSERT(black == t->height);
923 flag = P(red_flag) (node);
924 #ifdef TREE_STORE_PARENT
925 ASSERT(node->parent == parent);
929 ASSERT(!flag || !P(red_flag) (parent));
930 cmp_res *= P(cmp) (TREE_KEY(node->n.), TREE_KEY(parent->n.));
931 #ifdef TREE_DUPLICATES
932 ASSERT(cmp_res >= 0);
937 P(dump_subtree) (fb, t, P(tree_son) (node, 0), node, -1, level+1, black + (1-flag));
941 for (i=0; i<level; i++)
943 sprintf(tmp, "L%d %c\t", level, flag ? 'R' : 'B');
945 P(dump_key) (fb, &node->n);
946 P(dump_data) (fb, &node->n);
949 P(dump_subtree) (fb, t, P(tree_son) (node, 1), node, +1, level+1, black + (1-flag));
952 STATIC void P(dump) (struct fastbuf *fb, T *t)
957 sprintf(tmp, "Tree of %d nodes and height %d\n", t->count, t->height);
960 P(dump_subtree) (fb, t, t->root, NULL, 0, 0, 0);
969 /* And the iterator */
971 #ifdef TREE_WANT_ITERATOR
972 static P(node) * P(first_node) (T *t, uns direction)
974 P(bucket) *node = t->root, *prev = NULL;
978 node = P(tree_son) (node, direction);
980 return prev ? &prev->n : NULL;
985 #define TREE_FOR_ALL(t_px, t_ptr, t_var) \
988 GLUE_(t_px,node) *t_var = GLUE_(t_px,first_node)(t_ptr, 0); \
989 for (; t_var; t_var = GLUE_(t_px,adjacent)(t_var, 1)) \
991 #define TREE_END_FOR } } while(0)
992 #define TREE_BREAK break
993 #define TREE_CONTINUE continue
998 /* Finally, undefine all the parameters */
1005 #undef TREE_KEY_ATOMIC
1006 #undef TREE_KEY_STRING
1007 #undef TREE_KEY_ENDSTRING
1008 #undef TREE_KEY_COMPLEX
1009 #undef TREE_KEY_DECL
1010 #undef TREE_WANT_CLEANUP
1011 #undef TREE_WANT_FIND
1012 #undef TREE_WANT_FIND_NEXT
1013 #undef TREE_WANT_SEARCH
1014 #undef TREE_WANT_SEARCH_DOWN
1015 #undef TREE_WANT_BOUNDARY
1016 #undef TREE_WANT_ADJACENT
1017 #undef TREE_WANT_NEW
1018 #undef TREE_WANT_LOOKUP
1019 #undef TREE_WANT_DELETE
1020 #undef TREE_WANT_REMOVE
1021 #undef TREE_WANT_DUMP
1022 #undef TREE_WANT_ITERATOR
1023 #undef TREE_GIVE_CMP
1024 #undef TREE_GIVE_EXTRA_SIZE
1025 #undef TREE_GIVE_INIT_KEY
1026 #undef TREE_GIVE_INIT_DATA
1027 #undef TREE_GIVE_ALLOC
1029 #undef TREE_ATOMIC_TYPE
1030 #undef TREE_USE_POOL
1032 #undef TREE_CONSERVE_SPACE
1033 #undef TREE_DUPLICATES
1034 #undef TREE_MAX_DEPTH
1035 #undef TREE_STORE_PARENT
1037 #undef TREE_EXTRA_SIZE
1038 #undef TREE_SAFE_FREE