2 * UCW Library -- Red-black trees
4 * (c) 2002--2005, Robert Spalek <robert@ucw.cz>
6 * Skeleton based on hash-tables by:
8 * (c) 2002, Martin Mares <mj@ucw.cz>
13 * Data structure description:
15 * A red-black tree is a binary search tree, where records are stored
16 * in nodes (may be also leaves). Every node has a colour. The
17 * following restrictions hold:
19 * - a parent of a red node is black
20 * - every path from the root to a node with less than 2 children
21 * contains the same number of black nodes
23 * A usual interpretation is, that leaves are intervals between records
24 * and contain no data. Every leaf is black. This is equivalent, but
29 * This is not a normal header file, it's a generator of red-black trees.
30 * Each time you include it with parameters set in the corresponding
31 * preprocessor macros, it generates a tree structure with the parameters
34 * You need to specify:
36 * TREE_NODE data type where a node dwells (usually a struct).
37 * TREE_PREFIX(x) macro to add a name prefix (used on all global names
38 * defined by the tree generator).
40 * Then decide on type of keys:
42 * TREE_KEY_ATOMIC=f use node->f as a key of an atomic type (i.e.,
43 * a type which can be compared using '>', `==', and '<')
44 * & TREE_ATOMIC_TYPE (defaults to int).
45 * | TREE_KEY_STRING=f use node->f as a string key, allocated
46 * separately from the rest of the node.
47 * | TREE_KEY_ENDSTRING=f use node->f as a string key, allocated
48 * automatically at the end of the node struct
49 * (to be declared as "char f[1]" at the end).
50 * | TREE_KEY_COMPLEX use a multi-component key; as the name suggests,
51 * the passing of parameters is a bit complex then.
52 * The TREE_KEY_COMPLEX(x) macro should expand to
53 * `x k1, x k2, ... x kn' and you should also define:
54 * & TREE_KEY_DECL declaration of function parameters in which key
55 * should be passed to all tree operations.
56 * That is, `type1 k1, type2 k2, ... typen kn'.
57 * With complex keys, TREE_GIVE_CMP is mandatory.
59 * Then specify what operations you request (all names are automatically
60 * prefixed by calling TREE_PREFIX):
62 * <always defined> init() -- initialize the tree.
63 * TREE_WANT_CLEANUP cleanup() -- deallocate the tree.
64 * TREE_WANT_FIND node *find(key) -- find first node with the specified
65 * key, return NULL if no such node exists.
66 * TREE_WANT_FIND_NEXT node *find_next(node *start) -- find next node with the
67 * specified key, return NULL if no such node exists.
68 * Implies TREE_DUPLICATES.
69 * TREE_WANT_SEARCH node *search(key) -- find the node with the specified
70 * or, if it does not exist, the nearest one.
71 * TREE_WANT_SEARCH_DOWN node *search_down(key) -- find either the node with
72 * specified value, or if it does not exist, the node
73 * with nearest smaller value.
74 * TREE_WANT_BOUNDARY node *boundary(uns direction) -- finds smallest
75 * (direction==0) or largest (direction==1) node.
76 * TREE_WANT_ADJACENT node *adjacent(node *, uns direction) -- finds next
77 * (direction==1) or previous (direction==0) node.
78 * TREE_WANT_NEW node *new(key) -- create new node with given key.
79 * If it already exists, it is created as the last one.
80 * TREE_WANT_LOOKUP node *lookup(key) -- find node with given key,
81 * if it doesn't exist, create it. Defining
82 * TREE_GIVE_INIT_DATA is strongly recommended.
83 * TREE_WANT_DELETE int delete(key) -- delete and deallocate node
84 * with a given key. Returns success.
85 * TREE_WANT_REMOVE remove(node *) -- delete and deallocate given node.
87 * TREE_WANT_DUMP dump() -- dumps the whole tree to stdout
89 * You can also supply several functions:
91 * TREE_GIVE_CMP int cmp(key1, key2) -- return -1, 0, and 1 according to
92 * the relation of keys. By default, we use <, ==, > for
93 * atomic types and either strcmp or strcasecmp for
95 * TREE_GIVE_EXTRA_SIZE int extra_size(key) -- returns how many bytes after the
96 * node should be allocated for dynamic data. Default=0
97 * or length of the string with TREE_KEY_ENDSTRING.
98 * TREE_GIVE_INIT_KEY void init_key(node *,key) -- initialize key in a newly
99 * created node. Defaults: assignment for atomic keys
100 * and static strings, strcpy for end-allocated strings.
101 * TREE_GIVE_INIT_DATA void init_data(node *) -- initialize data fields in a
102 * newly created node. Very useful for lookup operations.
103 * TREE_GIVE_ALLOC void *alloc(unsigned int size) -- allocate space for
104 * a node. Default is either normal or pooled allocation
105 * depending on whether we want deletions.
106 * void free(void *) -- the converse.
108 * ... and a couple of extra parameters:
110 * TREE_NOCASE string comparisons should be case-insensitive.
111 * TREE_ATOMIC_TYPE=t Atomic values are of type `t' instead of int.
112 * TREE_USE_POOL=pool Allocate all nodes from given mempool.
113 * Collides with delete/remove functions.
114 * TREE_GLOBAL Functions are exported (i.e., not static).
115 * TREE_CONSERVE_SPACE Use as little space as possible at the price of a
117 * TREE_DUPLICATES Records with duplicate keys are allowed.
118 * TREE_MAX_DEPTH Maximal depth of a tree (for stack allocation).
120 * If you set TREE_WANT_ITERATOR, you also get a iterator macro at no
123 * TREE_FOR_ALL(tree_prefix, tree_pointer, variable)
125 * // node *variable gets declared automatically
126 * do_something_with_node(variable);
127 * // use TREE_BREAK and TREE_CONTINUE instead of break and continue
128 * // you must not alter contents of the tree here
132 * Then include "lib/redblack.h" and voila, you have a tree suiting all your
133 * needs (at least those which you've revealed :) ).
135 * After including this file, all parameter macros are automatically
141 #if !defined(TREE_NODE) || !defined(TREE_PREFIX)
142 #error Some of the mandatory configuration macros are missing.
145 #define P(x) TREE_PREFIX(x)
147 /* Declare buckets and the tree. */
149 typedef TREE_NODE P(node);
151 #if defined(TREE_WANT_FIND_NEXT) || defined(TREE_WANT_ADJACENT) || defined(TREE_WANT_ITERATOR) || defined(TREE_WANT_REMOVE)
152 # define TREE_STORE_PARENT
155 typedef struct P(bucket) {
156 struct P(bucket) *son[2];
157 #ifdef TREE_STORE_PARENT
158 struct P(bucket) *parent;
160 #if !defined(TREE_CONSERVE_SPACE) && (defined(TREE_GIVE_EXTRA_SIZE) || defined(TREE_KEY_ENDSTRING))
164 #if !defined(TREE_CONSERVE_SPACE) && !defined(TREE_GIVE_EXTRA_SIZE) && !defined(TREE_KEY_ENDSTRING)
171 uns height; /* of black nodes */
175 typedef struct P(stack_entry) {
180 #define T struct P(tree)
182 /* Preset parameters */
184 #if defined(TREE_KEY_ATOMIC)
186 #define TREE_KEY(x) x TREE_KEY_ATOMIC
188 #ifndef TREE_ATOMIC_TYPE
189 # define TREE_ATOMIC_TYPE int
191 #define TREE_KEY_DECL TREE_ATOMIC_TYPE TREE_KEY()
193 #ifndef TREE_GIVE_CMP
194 # define TREE_GIVE_CMP
195 static inline int P(cmp) (TREE_ATOMIC_TYPE x, TREE_ATOMIC_TYPE y)
206 #ifndef TREE_GIVE_INIT_KEY
207 # define TREE_GIVE_INIT_KEY
208 static inline void P(init_key) (P(node) *n, TREE_ATOMIC_TYPE k)
209 { TREE_KEY(n->) = k; }
212 #elif defined(TREE_KEY_STRING) || defined(TREE_KEY_ENDSTRING)
214 #ifdef TREE_KEY_STRING
215 # define TREE_KEY(x) x TREE_KEY_STRING
216 # ifndef TREE_GIVE_INIT_KEY
217 # define TREE_GIVE_INIT_KEY
218 static inline void P(init_key) (P(node) *n, char *k)
219 { TREE_KEY(n->) = k; }
222 # define TREE_KEY(x) x TREE_KEY_ENDSTRING
223 # define TREE_GIVE_EXTRA_SIZE
224 static inline int P(extra_size) (char *k)
225 { return strlen(k); }
226 # ifndef TREE_GIVE_INIT_KEY
227 # define TREE_GIVE_INIT_KEY
228 static inline void P(init_key) (P(node) *n, char *k)
229 { strcpy(TREE_KEY(n->), k); }
232 #define TREE_KEY_DECL char *TREE_KEY()
234 #ifndef TREE_GIVE_CMP
235 # define TREE_GIVE_CMP
236 static inline int P(cmp) (char *x, char *y)
239 return strcasecmp(x,y);
246 #elif defined(TREE_KEY_COMPLEX)
248 #define TREE_KEY(x) TREE_KEY_COMPLEX(x)
251 #error You forgot to set the tree key type.
254 #ifndef TREE_CONSERVE_SPACE
255 static inline uns P(red_flag) (P(bucket) *node)
256 { return node->red_flag; }
257 static inline void P(set_red_flag) (P(bucket) *node, uns flag)
258 { node->red_flag = flag; }
259 static inline P(bucket) * P(tree_son) (P(bucket) *node, uns id)
260 { return node->son[id]; }
261 static inline void P(set_tree_son) (P(bucket) *node, uns id, P(bucket) *son)
262 { node->son[id] = son; }
264 /* Pointers are aligned, hence we can use lower bits. */
265 static inline uns P(red_flag) (P(bucket) *node)
266 { return ((addr_int_t) node->son[0]) & 1L; }
267 static inline void P(set_red_flag) (P(bucket) *node, uns flag)
268 { node->son[0] = (void*) ( (((addr_int_t) node->son[0]) & ~1L) | (flag & 1L) ); }
269 static inline P(bucket) * P(tree_son) (P(bucket) *node, uns id)
270 { return (void *) (((addr_int_t) node->son[id]) & ~1L); }
271 static inline void P(set_tree_son) (P(bucket) *node, uns id, P(bucket) *son)
272 { node->son[id] = (void *) ((addr_int_t) son | (((addr_int_t) node->son[id]) & 1L) ); }
275 /* Defaults for missing parameters. */
277 #ifndef TREE_GIVE_CMP
278 #error Unable to determine how to compare two keys.
281 #ifdef TREE_GIVE_EXTRA_SIZE
282 /* This trickery is needed to avoid `unused parameter' warnings */
283 # define TREE_EXTRA_SIZE P(extra_size)
286 * Beware, C macros are expanded iteratively, not recursively,
287 * hence we get only a _single_ argument, although the expansion
288 * of TREE_KEY contains commas.
290 # define TREE_EXTRA_SIZE(x) 0
293 #ifndef TREE_GIVE_INIT_KEY
294 # error Unable to determine how to initialize keys.
297 #ifndef TREE_GIVE_INIT_DATA
298 static inline void P(init_data) (P(node) *n UNUSED)
305 #ifndef TREE_GIVE_ALLOC
306 # ifdef TREE_USE_POOL
307 static inline void * P(alloc) (unsigned int size)
308 { return mp_alloc_fast(TREE_USE_POOL, size); }
309 # define TREE_SAFE_FREE(x)
311 static inline void * P(alloc) (unsigned int size)
312 { return xmalloc(size); }
314 static inline void P(free) (void *x)
319 #ifndef TREE_SAFE_FREE
320 # define TREE_SAFE_FREE(x) P(free) (x)
326 # define STATIC static
329 #ifndef TREE_MAX_DEPTH
330 # define TREE_MAX_DEPTH 64
333 #if defined(TREE_WANT_FIND_NEXT) && !defined(TREE_DUPLICATES)
334 # define TREE_DUPLICATES
337 #ifdef TREE_WANT_LOOKUP
338 #ifndef TREE_WANT_FIND
339 # define TREE_WANT_FIND
341 #ifndef TREE_WANT_NEW
342 # define TREE_WANT_NEW
346 /* Now the operations */
348 STATIC void P(init) (T *t)
350 t->count = t->height = 0;
354 #ifdef TREE_WANT_CLEANUP
355 static void P(cleanup_subtree) (T *t, P(bucket) *node)
359 P(cleanup_subtree) (t, P(tree_son) (node, 0));
360 P(cleanup_subtree) (t, P(tree_son) (node, 1));
365 STATIC void P(cleanup) (T *t)
367 P(cleanup_subtree) (t, t->root);
373 static uns P(fill_stack) (P(stack_entry) *stack, uns max_depth, P(bucket) *node, TREE_KEY_DECL, uns son_id UNUSED)
376 stack[0].buck = node;
377 for (i=0; stack[i].buck; i++)
380 cmp = P(cmp) (TREE_KEY(), TREE_KEY(stack[i].buck->n.));
387 ASSERT(i+1 < max_depth);
388 stack[i+1].buck = P(tree_son) (stack[i].buck, stack[i].son);
390 #ifdef TREE_DUPLICATES
394 /* Find first/last of equal keys according to son_id. */
395 idx = P(fill_stack) (stack+i+1, max_depth-i-1,
396 P(tree_son) (stack[i].buck, son_id), TREE_KEY(), son_id);
397 if (stack[i+1+idx].buck)
399 stack[i].son = son_id;
408 #ifdef TREE_WANT_FIND
409 STATIC P(node) * P(find) (T *t, TREE_KEY_DECL)
411 P(stack_entry) stack[TREE_MAX_DEPTH];
413 depth = P(fill_stack) (stack, TREE_MAX_DEPTH, t->root, TREE_KEY(), 0);
414 return stack[depth].buck ? &stack[depth].buck->n : NULL;
418 #ifdef TREE_WANT_SEARCH_DOWN
419 STATIC P(node) * P(search_down) (T *t, TREE_KEY_DECL)
421 P(node) *last_right=NULL;
422 P(bucket) *node=t->root;
426 cmp = P(cmp) (TREE_KEY(), TREE_KEY(node->n.));
430 node=P(tree_son) (node, 0);
434 node=P(tree_son) (node, 1);
441 #ifdef TREE_WANT_BOUNDARY
442 STATIC P(node) * P(boundary) (T *t, uns direction)
444 P(bucket) *n = t->root, *ns;
449 uns son = !!direction;
450 while ((ns = P(tree_son) (n, son)))
457 #ifdef TREE_STORE_PARENT
458 STATIC P(node) * P(adjacent) (P(node) *start, uns direction)
460 P(bucket) *node = SKIP_BACK(P(bucket), n, start);
461 P(bucket) *next = P(tree_son) (node, direction);
466 node = P(tree_son) (next, 1 - direction);
475 while (next && node == P(tree_son) (next, direction))
482 ASSERT(node == P(tree_son) (next, 1 - direction));
488 #if defined(TREE_DUPLICATES) || defined(TREE_WANT_DELETE) || defined(TREE_WANT_REMOVE)
489 static int P(find_next_node) (P(stack_entry) *stack, uns max_depth, uns direction)
494 ASSERT(depth+1 < max_depth);
495 stack[depth].son = direction;
496 stack[depth+1].buck = P(tree_son) (stack[depth].buck, direction);
498 while (stack[depth].buck)
500 ASSERT(depth+1 < max_depth);
501 stack[depth].son = 1 - direction;
502 stack[depth+1].buck = P(tree_son) (stack[depth].buck, 1 - direction);
510 #ifdef TREE_WANT_FIND_NEXT
511 STATIC P(node) * P(find_next) (P(node) *start)
513 P(node) *next = P(adjacent) (start, 1);
514 if (next && P(cmp) (TREE_KEY(start->), TREE_KEY(next->)) == 0)
522 #ifdef TREE_WANT_SEARCH
523 STATIC P(node) * P(search) (T *t, TREE_KEY_DECL)
525 P(stack_entry) stack[TREE_MAX_DEPTH];
527 depth = P(fill_stack) (stack, TREE_MAX_DEPTH, t->root, TREE_KEY(), 0);
528 if (!stack[depth].buck)
535 return &stack[depth].buck->n;
540 #define TREE_TRACE(txt...) do { printf(txt); fflush(stdout); } while (0)
542 #define TREE_TRACE(txt...)
545 static inline P(bucket) * P(rotation) (P(bucket) *node, uns son_id)
547 /* Destroys red_flag's in node, son. Returns new root. */
548 P(bucket) *son = P(tree_son) (node, son_id);
549 TREE_TRACE("Rotation (node %d, son %d), direction %d\n", node->n.key, son->n.key, son_id);
550 node->son[son_id] = P(tree_son) (son, 1-son_id);
551 son->son[1-son_id] = node;
552 #ifdef TREE_STORE_PARENT
553 if (node->son[son_id])
554 node->son[son_id]->parent = node;
555 son->parent = node->parent;
561 static void P(rotate_after_insert) (T *t, P(stack_entry) *stack, uns depth)
564 P(bucket) *parent, *grand, *uncle;
567 node = stack[depth].buck;
568 ASSERT(P(red_flag) (node));
569 /* At this moment, node became red. The paths sum have
570 * been preserved, but we have to check the parental
574 ASSERT(t->root == node);
577 parent = stack[depth-1].buck;
578 if (!P(red_flag) (parent))
582 ASSERT(t->root == parent);
583 P(set_red_flag) (parent, 0);
587 grand = stack[depth-2].buck;
588 ASSERT(!P(red_flag) (grand));
589 /* The parent is also red, the grandparent exists and it
591 s1 = stack[depth-1].son;
592 s2 = stack[depth-2].son;
593 uncle = P(tree_son) (grand, 1-s2);
594 if (uncle && P(red_flag) (uncle))
596 /* Red parent and uncle, black grandparent.
597 * Exchange and try another iteration. */
598 P(set_red_flag) (parent, 0);
599 P(set_red_flag) (uncle, 0);
600 P(set_red_flag) (grand, 1);
602 TREE_TRACE("Swapping colours (parent %d, uncle %d, grand %d), passing thru\n", parent->n.key, uncle->n.key, grand->n.key);
605 /* Black uncle and grandparent, we need to rotate. Test
609 node = P(rotation) (grand, s2);
610 P(set_red_flag) (parent, 0);
611 P(set_red_flag) (grand, 1);
615 grand->son[s2] = P(rotation) (parent, s1);
616 node = P(rotation) (grand, s2);
617 P(set_red_flag) (grand, 1);
618 P(set_red_flag) (parent, 1);
619 P(set_red_flag) (node, 0);
622 P(set_tree_son) (stack[depth-3].buck, stack[depth-3].son, node);
628 STATIC P(node) * P(new) (T *t, TREE_KEY_DECL)
630 P(stack_entry) stack[TREE_MAX_DEPTH];
633 depth = P(fill_stack) (stack, TREE_MAX_DEPTH, t->root, TREE_KEY(), 1);
634 #ifdef TREE_DUPLICATES
635 /* It is the last found value, hence everything in the right subtree is
636 * strongly _bigger_. */
637 depth += P(find_next_node) (stack+depth, TREE_MAX_DEPTH-depth, 1);
639 ASSERT(!stack[depth].buck);
640 /* We are in a leaf, hence we can easily append a new leaf to it. */
641 added = P(alloc) (sizeof(struct P(bucket)) + TREE_EXTRA_SIZE(TREE_KEY()) );
642 added->son[0] = added->son[1] = NULL;
643 stack[depth].buck = added;
646 #ifdef TREE_STORE_PARENT
647 added->parent = stack[depth-1].buck;
649 P(set_tree_son) (stack[depth-1].buck, stack[depth-1].son, added);
653 #ifdef TREE_STORE_PARENT
654 added->parent = NULL;
658 P(set_red_flag) (added, 1); /* Set it red to not disturb the path sum. */
659 P(init_key) (&added->n, TREE_KEY());
660 P(init_data) (&added->n);
662 /* Let us reorganize the red_flag's and the structure of the tree. */
663 P(rotate_after_insert) (t, stack, depth);
668 #ifdef TREE_WANT_LOOKUP
669 STATIC P(node) * P(lookup) (T *t, TREE_KEY_DECL)
672 node = P(find) (t, TREE_KEY());
675 return P(new) (t, TREE_KEY());
679 #if defined(TREE_WANT_REMOVE) || defined(TREE_WANT_DELETE)
680 static void P(rotate_after_delete) (T *t, P(stack_entry) *stack, int depth)
683 P(bucket) *parent, *sibling, *instead;
684 uns parent_red, del_son, sibl_red;
691 parent = stack[depth].buck;
692 parent_red = P(red_flag) (parent);
693 del_son = stack[depth].son;
694 /* For the 1st iteration: we have deleted parent->son[del_son], which
695 * was a black node with no son. Hence there is one mising black
696 * vertex in that path, which we are going to fix now.
698 * For other iterations: in that path, there is also missing a black
701 ASSERT(!P(tree_son) (parent, del_son));
702 sibling = P(tree_son) (parent, 1-del_son);
704 sibl_red = P(red_flag) (sibling);
710 son[0] = P(tree_son) (sibling, 0);
711 son[1] = P(tree_son) (sibling, 1);
712 red[0] = son[0] ? P(red_flag) (son[0]) : 0;
713 red[1] = son[1] ? P(red_flag) (son[1]) : 0;
714 if (!red[0] && !red[1])
716 P(set_red_flag) (sibling, 1);
717 P(set_red_flag) (parent, 0);
724 TREE_TRACE("Swapping colours (parent %d, sibling %d), passing thru\n", parent->n.key, sibling->n.key);
727 } else if (!red[del_son])
729 instead = P(rotation) (parent, 1-del_son);
730 P(set_red_flag) (instead, parent_red);
731 P(set_red_flag) (parent, 0);
732 P(set_red_flag) (son[1-del_son], 0);
733 } else /* red[del_son] */
735 parent->son[1-del_son] = P(rotation) (sibling, del_son);
736 instead = P(rotation) (parent, 1-del_son);
737 P(set_red_flag) (instead, parent_red);
738 P(set_red_flag) (parent, 0);
739 P(set_red_flag) (sibling, 0);
741 } else /* sibl_red */
743 P(bucket) *grand[2], *son;
746 son = P(tree_son) (sibling, del_son);
747 ASSERT(son && !P(red_flag) (son));
748 grand[0] = P(tree_son) (son, 0);
749 grand[1] = P(tree_son) (son, 1);
750 red[0] = grand[0] ? P(red_flag) (grand[0]) : 0;
751 red[1] = grand[1] ? P(red_flag) (grand[1]) : 0;
752 if (!red[0] && !red[1])
754 instead = P(rotation) (parent, 1-del_son);
755 P(set_red_flag) (instead, 0);
756 P(set_red_flag) (parent, 0);
757 P(set_red_flag) (son, 1);
759 else if (!red[del_son])
761 parent->son[1-del_son] = P(rotation) (sibling, del_son);
762 instead = P(rotation) (parent, 1-del_son);
763 P(set_red_flag) (instead, 0);
764 P(set_red_flag) (parent, 0);
765 P(set_red_flag) (sibling, 1);
766 P(set_red_flag) (grand[1-del_son], 0);
767 } else /* red[del_son] */
769 sibling->son[del_son] = P(rotation) (son, del_son);
770 parent->son[1-del_son] = P(rotation) (sibling, del_son);
771 instead = P(rotation) (parent, 1-del_son);
772 P(set_red_flag) (instead, 0);
773 P(set_red_flag) (parent, 0);
774 P(set_red_flag) (sibling, 1);
775 P(set_red_flag) (son, 0);
778 /* We have performed all desired rotations and need to store the new
779 * pointer to the subtree. */
782 P(set_tree_son) (stack[depth-1].buck, stack[depth-1].son, instead);
787 static void P(remove_by_stack) (T *t, P(stack_entry) *stack, uns depth)
789 P(bucket) *node = stack[depth].buck;
792 for (i=0; i<depth; i++)
793 ASSERT(P(tree_son) (stack[i].buck, stack[i].son) == stack[i+1].buck);
794 if (P(tree_son) (node, 0) && P(tree_son) (node, 1))
797 uns flag_node, flag_xchg;
798 uns d = P(find_next_node) (stack+depth, TREE_MAX_DEPTH-depth, 1);
802 xchg = stack[depth+d].buck;
803 flag_node = P(red_flag) (node);
804 flag_xchg = P(red_flag) (xchg);
805 ASSERT(!P(tree_son) (xchg, 0));
806 son = P(tree_son) (xchg, 1);
807 stack[depth].buck = xchg; /* Magic iff d == 1. */
808 stack[depth+d].buck = node;
809 xchg->son[0] = P(tree_son) (node, 0);
810 xchg->son[1] = P(tree_son) (node, 1);
812 P(set_tree_son) (stack[depth-1].buck, stack[depth-1].son, xchg);
817 P(set_tree_son) (stack[depth+d-1].buck, stack[depth+d-1].son, node);
818 #ifdef TREE_STORE_PARENT
819 xchg->parent = depth > 0 ? stack[depth-1].buck : NULL;
820 xchg->son[0]->parent = xchg;
821 xchg->son[1]->parent = xchg;
822 node->parent = stack[depth+d-1].buck;
826 P(set_red_flag) (xchg, flag_node);
827 P(set_red_flag) (node, flag_xchg);
830 else if (P(tree_son) (node, 0))
831 son = P(tree_son) (node, 0);
833 son = P(tree_son) (node, 1);
834 /* At this moment, stack[depth].buck == node and it has at most one son
835 * and it is stored in the variable son. */
839 P(set_tree_son) (stack[depth-1].buck, stack[depth-1].son, son);
840 #ifdef TREE_STORE_PARENT
842 son->parent = stack[depth-1].buck;
848 #ifdef TREE_STORE_PARENT
853 if (P(red_flag) (node))
858 TREE_SAFE_FREE(node);
859 /* We have deleted a black node. */
862 ASSERT(P(red_flag) (son));
863 P(set_red_flag) (son, 0);
866 P(rotate_after_delete) (t, stack, (int) depth - 1);
870 #ifdef TREE_WANT_REMOVE
871 STATIC void P(remove) (T *t, P(node) *Node)
873 P(stack_entry) stack[TREE_MAX_DEPTH];
874 P(bucket) *node = SKIP_BACK(P(bucket), n, Node);
876 stack[0].buck = node;
881 ASSERT(depth < TREE_MAX_DEPTH);
882 stack[depth].buck = node->parent;
883 stack[depth].son = P(tree_son) (node->parent, 0) == node ? 0 : 1;
886 for (i=0; i<(depth+1)/2; i++)
888 P(stack_entry) tmp = stack[i];
889 stack[i] = stack[depth-i];
890 stack[depth-i] = tmp;
892 P(remove_by_stack) (t, stack, depth);
896 #ifdef TREE_WANT_DELETE
897 STATIC int P(delete) (T *t, TREE_KEY_DECL)
899 P(stack_entry) stack[TREE_MAX_DEPTH];
901 depth = P(fill_stack) (stack, TREE_MAX_DEPTH, t->root, TREE_KEY(), 1);
902 if (stack[depth].buck)
904 P(remove_by_stack) (t, stack, depth);
912 #ifdef TREE_WANT_DUMP
913 static void P(dump_subtree) (struct fastbuf *fb, T *t, P(bucket) *node, P(bucket) *parent, int cmp_res, int level, uns black)
919 ASSERT(black == t->height);
922 flag = P(red_flag) (node);
923 #ifdef TREE_STORE_PARENT
924 ASSERT(node->parent == parent);
928 ASSERT(!flag || !P(red_flag) (parent));
929 cmp_res *= P(cmp) (TREE_KEY(node->n.), TREE_KEY(parent->n.));
930 #ifdef TREE_DUPLICATES
931 ASSERT(cmp_res >= 0);
936 P(dump_subtree) (fb, t, P(tree_son) (node, 0), node, -1, level+1, black + (1-flag));
940 for (i=0; i<level; i++)
942 sprintf(tmp, "L%d %c\t", level, flag ? 'R' : 'B');
944 P(dump_key) (fb, &node->n);
945 P(dump_data) (fb, &node->n);
948 P(dump_subtree) (fb, t, P(tree_son) (node, 1), node, +1, level+1, black + (1-flag));
951 STATIC void P(dump) (struct fastbuf *fb, T *t)
956 sprintf(tmp, "Tree of %d nodes and height %d\n", t->count, t->height);
959 P(dump_subtree) (fb, t, t->root, NULL, 0, 0, 0);
968 /* And the iterator */
970 #ifdef TREE_WANT_ITERATOR
971 static P(node) * P(first_node) (T *t, uns direction)
973 P(bucket) *node = t->root, *prev = NULL;
977 node = P(tree_son) (node, direction);
979 return prev ? &prev->n : NULL;
984 #define TREE_FOR_ALL(t_px, t_ptr, t_var) \
987 GLUE_(t_px,node) *t_var = GLUE_(t_px,first_node)(t_ptr, 0); \
988 for (; t_var; t_var = GLUE_(t_px,adjacent)(t_var, 1)) \
990 #define TREE_END_FOR } } while(0)
991 #define TREE_BREAK break
992 #define TREE_CONTINUE continue
997 /* Finally, undefine all the parameters */
1004 #undef TREE_KEY_ATOMIC
1005 #undef TREE_KEY_STRING
1006 #undef TREE_KEY_ENDSTRING
1007 #undef TREE_KEY_COMPLEX
1008 #undef TREE_KEY_DECL
1009 #undef TREE_WANT_CLEANUP
1010 #undef TREE_WANT_FIND
1011 #undef TREE_WANT_FIND_NEXT
1012 #undef TREE_WANT_SEARCH
1013 #undef TREE_WANT_SEARCH_DOWN
1014 #undef TREE_WANT_BOUNDARY
1015 #undef TREE_WANT_ADJACENT
1016 #undef TREE_WANT_NEW
1017 #undef TREE_WANT_LOOKUP
1018 #undef TREE_WANT_DELETE
1019 #undef TREE_WANT_REMOVE
1020 #undef TREE_WANT_DUMP
1021 #undef TREE_WANT_ITERATOR
1022 #undef TREE_GIVE_CMP
1023 #undef TREE_GIVE_EXTRA_SIZE
1024 #undef TREE_GIVE_INIT_KEY
1025 #undef TREE_GIVE_INIT_DATA
1026 #undef TREE_GIVE_ALLOC
1028 #undef TREE_ATOMIC_TYPE
1029 #undef TREE_USE_POOL
1031 #undef TREE_CONSERVE_SPACE
1032 #undef TREE_DUPLICATES
1033 #undef TREE_MAX_DEPTH
1034 #undef TREE_STORE_PARENT
1036 #undef TREE_EXTRA_SIZE
1037 #undef TREE_SAFE_FREE