2 * UCW Library -- Red-black trees
4 * (c) 2002--2005, Robert Spalek <robert@ucw.cz>
6 * Skeleton based on hash-tables by:
8 * (c) 2002, Martin Mares <mj@ucw.cz>
13 * Data structure description:
15 * A red-black tree is a binary search tree, where records are stored
16 * in nodes (may be also leaves). Every node has a colour. The
17 * following restrictions hold:
19 * - a parent of a red node is black
20 * - every path from the root to a node with less than 2 children
21 * contains the same number of black nodes
23 * A usual interpretation is, that leaves are intervals between records
24 * and contain no data. Every leaf is black. This is equivalent, but
29 * This is not a normal header file, it's a generator of red-black trees.
30 * Each time you include it with parameters set in the corresponding
31 * preprocessor macros, it generates a tree structure with the parameters
34 * You need to specify:
36 * TREE_NODE data type where a node dwells (usually a struct).
37 * TREE_PREFIX(x) macro to add a name prefix (used on all global names
38 * defined by the tree generator).
40 * Then decide on type of keys:
42 * TREE_KEY_ATOMIC=f use node->f as a key of an atomic type (i.e.,
43 * a type which can be compared using '>', `==', and '<')
44 * & TREE_ATOMIC_TYPE (defaults to int).
45 * | TREE_KEY_STRING=f use node->f as a string key, allocated
46 * separately from the rest of the node.
47 * | TREE_KEY_ENDSTRING=f use node->f as a string key, allocated
48 * automatically at the end of the node struct
49 * (to be declared as "char f[1]" at the end).
50 * | TREE_KEY_COMPLEX use a multi-component key; as the name suggests,
51 * the passing of parameters is a bit complex then.
52 * The TREE_KEY_COMPLEX(x) macro should expand to
53 * `x k1, x k2, ... x kn' and you should also define:
54 * & TREE_KEY_DECL declaration of function parameters in which key
55 * should be passed to all tree operations.
56 * That is, `type1 k1, type2 k2, ... typen kn'.
57 * With complex keys, TREE_GIVE_CMP is mandatory.
59 * Then specify what operations you request (all names are automatically
60 * prefixed by calling TREE_PREFIX):
62 * <always defined> init() -- initialize the tree.
63 * TREE_WANT_CLEANUP cleanup() -- deallocate the tree.
64 * TREE_WANT_FIND node *find(key) -- find first node with the specified
65 * key, return NULL if no such node exists.
66 * TREE_WANT_FIND_NEXT node *find_next(node *start) -- find next node with the
67 * specified key, return NULL if no such node exists.
68 * Implies TREE_DUPLICATES.
69 * TREE_WANT_SEARCH node *search(key) -- find the node with the specified
70 * or, if it does not exist, the nearest one.
71 * TREE_WANT_BOUNDARY node *boundary(uns direction) -- finds smallest
72 * (direction==0) or largest (direction==1) node.
73 * TREE_WANT_ADJACENT node *adjacent(node *, uns direction) -- finds next
74 * (direction==1) or previous (direction==0) node.
75 * TREE_WANT_NEW node *new(key) -- create new node with given key.
76 * If it already exists, it is created as the last one.
77 * TREE_WANT_LOOKUP node *lookup(key) -- find node with given key,
78 * if it doesn't exist, create it. Defining
79 * TREE_GIVE_INIT_DATA is strongly recommended.
80 * TREE_WANT_DELETE int delete(key) -- delete and deallocate node
81 * with a given key. Returns success.
82 * TREE_WANT_REMOVE remove(node *) -- delete and deallocate given node.
84 * TREE_WANT_DUMP dump() -- dumps the whole tree to stdout
86 * You can also supply several functions:
88 * TREE_GIVE_CMP int cmp(key1, key2) -- return -1, 0, and 1 according to
89 * the relation of keys. By default, we use <, ==, > for
90 * atomic types and either strcmp or strcasecmp for
92 * TREE_GIVE_EXTRA_SIZE int extra_size(key) -- returns how many bytes after the
93 * node should be allocated for dynamic data. Default=0
94 * or length of the string with TREE_KEY_ENDSTRING.
95 * TREE_GIVE_INIT_KEY void init_key(node *,key) -- initialize key in a newly
96 * created node. Defaults: assignment for atomic keys
97 * and static strings, strcpy for end-allocated strings.
98 * TREE_GIVE_INIT_DATA void init_data(node *) -- initialize data fields in a
99 * newly created node. Very useful for lookup operations.
100 * TREE_GIVE_ALLOC void *alloc(unsigned int size) -- allocate space for
101 * a node. Default is either normal or pooled allocation
102 * depending on whether we want deletions.
103 * void free(void *) -- the converse.
105 * ... and a couple of extra parameters:
107 * TREE_NOCASE string comparisons should be case-insensitive.
108 * TREE_ATOMIC_TYPE=t Atomic values are of type `t' instead of int.
109 * TREE_USE_POOL=pool Allocate all nodes from given mempool.
110 * Collides with delete/remove functions.
111 * TREE_GLOBAL Functions are exported (i.e., not static).
112 * TREE_CONSERVE_SPACE Use as little space as possible at the price of a
114 * TREE_DUPLICATES Records with duplicate keys are allowed.
115 * TREE_MAX_DEPTH Maximal depth of a tree (for stack allocation).
117 * If you set TREE_WANT_ITERATOR, you also get a iterator macro at no
120 * TREE_FOR_ALL(tree_prefix, tree_pointer, variable)
122 * // node *variable gets declared automatically
123 * do_something_with_node(variable);
124 * // use TREE_BREAK and TREE_CONTINUE instead of break and continue
125 * // you must not alter contents of the tree here
129 * Then include "lib/redblack.h" and voila, you have a tree suiting all your
130 * needs (at least those which you've revealed :) ).
132 * After including this file, all parameter macros are automatically
138 #if !defined(TREE_NODE) || !defined(TREE_PREFIX)
139 #error Some of the mandatory configuration macros are missing.
142 #define P(x) TREE_PREFIX(x)
144 /* Declare buckets and the tree. */
146 typedef TREE_NODE P(node);
148 #if defined(TREE_WANT_FIND_NEXT) || defined(TREE_WANT_ADJACENT) || defined(TREE_WANT_ITERATOR) || defined(TREE_WANT_REMOVE)
149 # define TREE_STORE_PARENT
152 typedef struct P(bucket) {
153 struct P(bucket) *son[2];
154 #ifdef TREE_STORE_PARENT
155 struct P(bucket) *parent;
157 #if !defined(TREE_CONSERVE_SPACE) && (defined(TREE_GIVE_EXTRA_SIZE) || defined(TREE_KEY_ENDSTRING))
161 #if !defined(TREE_CONSERVE_SPACE) && !defined(TREE_GIVE_EXTRA_SIZE) && !defined(TREE_KEY_ENDSTRING)
168 uns height; /* of black nodes */
172 typedef struct P(stack_entry) {
177 #define T struct P(tree)
179 /* Preset parameters */
181 #if defined(TREE_KEY_ATOMIC)
183 #define TREE_KEY(x) x TREE_KEY_ATOMIC
185 #ifndef TREE_ATOMIC_TYPE
186 # define TREE_ATOMIC_TYPE int
188 #define TREE_KEY_DECL TREE_ATOMIC_TYPE TREE_KEY()
190 #ifndef TREE_GIVE_CMP
191 # define TREE_GIVE_CMP
192 static inline int P(cmp) (TREE_ATOMIC_TYPE x, TREE_ATOMIC_TYPE y)
203 #ifndef TREE_GIVE_INIT_KEY
204 # define TREE_GIVE_INIT_KEY
205 static inline void P(init_key) (P(node) *n, TREE_ATOMIC_TYPE k)
206 { TREE_KEY(n->) = k; }
209 #elif defined(TREE_KEY_STRING) || defined(TREE_KEY_ENDSTRING)
211 #ifdef TREE_KEY_STRING
212 # define TREE_KEY(x) x TREE_KEY_STRING
213 # ifndef TREE_GIVE_INIT_KEY
214 # define TREE_GIVE_INIT_KEY
215 static inline void P(init_key) (P(node) *n, char *k)
216 { TREE_KEY(n->) = k; }
219 # define TREE_KEY(x) x TREE_KEY_ENDSTRING
220 # define TREE_GIVE_EXTRA_SIZE
221 static inline int P(extra_size) (char *k)
222 { return strlen(k); }
223 # ifndef TREE_GIVE_INIT_KEY
224 # define TREE_GIVE_INIT_KEY
225 static inline void P(init_key) (P(node) *n, char *k)
226 { strcpy(TREE_KEY(n->), k); }
229 #define TREE_KEY_DECL char *TREE_KEY()
231 #ifndef TREE_GIVE_CMP
232 # define TREE_GIVE_CMP
233 static inline int P(cmp) (char *x, char *y)
236 return strcasecmp(x,y);
243 #elif defined(TREE_KEY_COMPLEX)
245 #define TREE_KEY(x) TREE_KEY_COMPLEX(x)
248 #error You forgot to set the tree key type.
251 #ifndef TREE_CONSERVE_SPACE
252 static inline uns P(red_flag) (P(bucket) *node)
253 { return node->red_flag; }
254 static inline void P(set_red_flag) (P(bucket) *node, uns flag)
255 { node->red_flag = flag; }
256 static inline P(bucket) * P(tree_son) (P(bucket) *node, uns id)
257 { return node->son[id]; }
258 static inline void P(set_tree_son) (P(bucket) *node, uns id, P(bucket) *son)
259 { node->son[id] = son; }
261 /* Pointers are aligned, hence we can use lower bits. */
262 static inline uns P(red_flag) (P(bucket) *node)
263 { return ((addr_int_t) node->son[0]) & 1L; }
264 static inline void P(set_red_flag) (P(bucket) *node, uns flag)
265 { (addr_int_t) node->son[0] = (((addr_int_t) node->son[0]) & ~1L) | (flag & 1L); }
266 static inline P(bucket) * P(tree_son) (P(bucket) *node, uns id)
267 { return (void *) (((addr_int_t) node->son[id]) & ~1L); }
268 static inline void P(set_tree_son) (P(bucket) *node, uns id, P(bucket) *son)
269 { node->son[id] = (void *) ((addr_int_t) son | (((addr_int_t) node->son[id]) & 1L) ); }
272 /* Defaults for missing parameters. */
274 #ifndef TREE_GIVE_CMP
275 #error Unable to determine how to compare two keys.
278 #ifdef TREE_GIVE_EXTRA_SIZE
279 /* This trickery is needed to avoid `unused parameter' warnings */
280 # define TREE_EXTRA_SIZE P(extra_size)
283 * Beware, C macros are expanded iteratively, not recursively,
284 * hence we get only a _single_ argument, although the expansion
285 * of TREE_KEY contains commas.
287 # define TREE_EXTRA_SIZE(x) 0
290 #ifndef TREE_GIVE_INIT_KEY
291 # error Unable to determine how to initialize keys.
294 #ifndef TREE_GIVE_INIT_DATA
295 static inline void P(init_data) (P(node) *n UNUSED)
302 #ifndef TREE_GIVE_ALLOC
303 # ifdef TREE_USE_POOL
304 static inline void * P(alloc) (unsigned int size)
305 { return mp_alloc_fast(TREE_USE_POOL, size); }
306 # define TREE_SAFE_FREE(x)
308 static inline void * P(alloc) (unsigned int size)
309 { return xmalloc(size); }
311 static inline void P(free) (void *x)
316 #ifndef TREE_SAFE_FREE
317 # define TREE_SAFE_FREE(x) P(free) (x)
323 # define STATIC static
326 #ifndef TREE_MAX_DEPTH
327 # define TREE_MAX_DEPTH 64
330 #if defined(TREE_WANT_FIND_NEXT) && !defined(TREE_DUPLICATES)
331 # define TREE_DUPLICATES
334 #ifdef TREE_WANT_LOOKUP
335 #ifndef TREE_WANT_FIND
336 # define TREE_WANT_FIND
338 #ifndef TREE_WANT_NEW
339 # define TREE_WANT_NEW
343 /* Now the operations */
345 STATIC void P(init) (T *t)
347 t->count = t->height = 0;
351 #ifdef TREE_WANT_CLEANUP
352 static void P(cleanup_subtree) (T *t, P(bucket) *node)
356 P(cleanup_subtree) (t, P(tree_son) (node, 0));
357 P(cleanup_subtree) (t, P(tree_son) (node, 1));
362 STATIC void P(cleanup) (T *t)
364 P(cleanup_subtree) (t, t->root);
370 static uns P(fill_stack) (P(stack_entry) *stack, uns max_depth, P(bucket) *node, TREE_KEY_DECL, uns son_id UNUSED)
373 stack[0].buck = node;
374 for (i=0; stack[i].buck; i++)
377 cmp = P(cmp) (TREE_KEY(), TREE_KEY(stack[i].buck->n.));
384 ASSERT(i+1 < max_depth);
385 stack[i+1].buck = P(tree_son) (stack[i].buck, stack[i].son);
387 #ifdef TREE_DUPLICATES
391 /* Find first/last of equal keys according to son_id. */
392 idx = P(fill_stack) (stack+i+1, max_depth-i-1,
393 P(tree_son) (stack[i].buck, son_id), TREE_KEY(), son_id);
394 if (stack[i+1+idx].buck)
396 stack[i].son = son_id;
405 #ifdef TREE_WANT_FIND
406 STATIC P(node) * P(find) (T *t, TREE_KEY_DECL)
408 P(stack_entry) stack[TREE_MAX_DEPTH];
410 depth = P(fill_stack) (stack, TREE_MAX_DEPTH, t->root, TREE_KEY(), 0);
411 return stack[depth].buck ? &stack[depth].buck->n : NULL;
415 #ifdef TREE_WANT_BOUNDARY
416 STATIC P(node) * P(boundary) (T *t, uns direction)
418 P(bucket) *n = t->root, *ns;
423 uns son = !!direction;
424 while ((ns = P(tree_son) (n, son)))
431 #ifdef TREE_STORE_PARENT
432 STATIC P(node) * P(adjacent) (P(node) *start, uns direction)
434 P(bucket) *node = SKIP_BACK(P(bucket), n, start);
435 P(bucket) *next = P(tree_son) (node, direction);
440 node = P(tree_son) (next, 1 - direction);
449 while (next && node == P(tree_son) (next, direction))
456 ASSERT(node == P(tree_son) (next, 1 - direction));
462 #if defined(TREE_DUPLICATES) || defined(TREE_WANT_DELETE) || defined(TREE_WANT_REMOVE)
463 static int P(find_next_node) (P(stack_entry) *stack, uns max_depth, uns direction)
468 ASSERT(depth+1 < max_depth);
469 stack[depth].son = direction;
470 stack[depth+1].buck = P(tree_son) (stack[depth].buck, direction);
472 while (stack[depth].buck)
474 ASSERT(depth+1 < max_depth);
475 stack[depth].son = 1 - direction;
476 stack[depth+1].buck = P(tree_son) (stack[depth].buck, 1 - direction);
484 #ifdef TREE_WANT_FIND_NEXT
485 STATIC P(node) * P(find_next) (P(node) *start)
487 P(node) *next = P(adjacent) (start, 1);
488 if (next && P(cmp) (TREE_KEY(start->), TREE_KEY(next->)) == 0)
496 #ifdef TREE_WANT_SEARCH
497 STATIC P(node) * P(search) (T *t, TREE_KEY_DECL)
499 P(stack_entry) stack[TREE_MAX_DEPTH];
501 depth = P(fill_stack) (stack, TREE_MAX_DEPTH, t->root, TREE_KEY(), 0);
502 if (!stack[depth].buck)
509 return &stack[depth].buck->n;
514 #define TREE_TRACE(txt...) do { printf(txt); fflush(stdout); } while (0)
516 #define TREE_TRACE(txt...)
519 static inline P(bucket) * P(rotation) (P(bucket) *node, uns son_id)
521 /* Destroys red_flag's in node, son. Returns new root. */
522 P(bucket) *son = P(tree_son) (node, son_id);
523 TREE_TRACE("Rotation (node %d, son %d), direction %d\n", node->n.key, son->n.key, son_id);
524 node->son[son_id] = P(tree_son) (son, 1-son_id);
525 son->son[1-son_id] = node;
526 #ifdef TREE_STORE_PARENT
527 if (node->son[son_id])
528 node->son[son_id]->parent = node;
529 son->parent = node->parent;
535 static void P(rotate_after_insert) (T *t, P(stack_entry) *stack, uns depth)
538 P(bucket) *parent, *grand, *uncle;
541 node = stack[depth].buck;
542 ASSERT(P(red_flag) (node));
543 /* At this moment, node became red. The paths sum have
544 * been preserved, but we have to check the parental
548 ASSERT(t->root == node);
551 parent = stack[depth-1].buck;
552 if (!P(red_flag) (parent))
556 ASSERT(t->root == parent);
557 P(set_red_flag) (parent, 0);
561 grand = stack[depth-2].buck;
562 ASSERT(!P(red_flag) (grand));
563 /* The parent is also red, the grandparent exists and it
565 s1 = stack[depth-1].son;
566 s2 = stack[depth-2].son;
567 uncle = P(tree_son) (grand, 1-s2);
568 if (uncle && P(red_flag) (uncle))
570 /* Red parent and uncle, black grandparent.
571 * Exchange and try another iteration. */
572 P(set_red_flag) (parent, 0);
573 P(set_red_flag) (uncle, 0);
574 P(set_red_flag) (grand, 1);
576 TREE_TRACE("Swapping colours (parent %d, uncle %d, grand %d), passing thru\n", parent->n.key, uncle->n.key, grand->n.key);
579 /* Black uncle and grandparent, we need to rotate. Test
583 node = P(rotation) (grand, s2);
584 P(set_red_flag) (parent, 0);
585 P(set_red_flag) (grand, 1);
589 grand->son[s2] = P(rotation) (parent, s1);
590 node = P(rotation) (grand, s2);
591 P(set_red_flag) (grand, 1);
592 P(set_red_flag) (parent, 1);
593 P(set_red_flag) (node, 0);
596 P(set_tree_son) (stack[depth-3].buck, stack[depth-3].son, node);
602 STATIC P(node) * P(new) (T *t, TREE_KEY_DECL)
604 P(stack_entry) stack[TREE_MAX_DEPTH];
607 depth = P(fill_stack) (stack, TREE_MAX_DEPTH, t->root, TREE_KEY(), 1);
608 #ifdef TREE_DUPLICATES
609 /* It is the last found value, hence everything in the right subtree is
610 * strongly _bigger_. */
611 depth += P(find_next_node) (stack+depth, TREE_MAX_DEPTH-depth, 1);
613 ASSERT(!stack[depth].buck);
614 /* We are in a leaf, hence we can easily append a new leaf to it. */
615 added = P(alloc) (sizeof(struct P(bucket)) + TREE_EXTRA_SIZE(TREE_KEY()) );
616 added->son[0] = added->son[1] = NULL;
617 stack[depth].buck = added;
620 #ifdef TREE_STORE_PARENT
621 added->parent = stack[depth-1].buck;
623 P(set_tree_son) (stack[depth-1].buck, stack[depth-1].son, added);
627 #ifdef TREE_STORE_PARENT
628 added->parent = NULL;
632 P(set_red_flag) (added, 1); /* Set it red to not disturb the path sum. */
633 P(init_key) (&added->n, TREE_KEY());
634 P(init_data) (&added->n);
636 /* Let us reorganize the red_flag's and the structure of the tree. */
637 P(rotate_after_insert) (t, stack, depth);
642 #ifdef TREE_WANT_LOOKUP
643 STATIC P(node) * P(lookup) (T *t, TREE_KEY_DECL)
646 node = P(find) (t, TREE_KEY());
649 return P(new) (t, TREE_KEY());
653 #if defined(TREE_WANT_REMOVE) || defined(TREE_WANT_DELETE)
654 static void P(rotate_after_delete) (T *t, P(stack_entry) *stack, int depth)
657 P(bucket) *parent, *sibling, *instead;
658 uns parent_red, del_son, sibl_red;
665 parent = stack[depth].buck;
666 parent_red = P(red_flag) (parent);
667 del_son = stack[depth].son;
668 /* For the 1st iteration: we have deleted parent->son[del_son], which
669 * was a black node with no son. Hence there is one mising black
670 * vertex in that path, which we are going to fix now.
672 * For other iterations: in that path, there is also missing a black
675 ASSERT(!P(tree_son) (parent, del_son));
676 sibling = P(tree_son) (parent, 1-del_son);
678 sibl_red = P(red_flag) (sibling);
684 son[0] = P(tree_son) (sibling, 0);
685 son[1] = P(tree_son) (sibling, 1);
686 red[0] = son[0] ? P(red_flag) (son[0]) : 0;
687 red[1] = son[1] ? P(red_flag) (son[1]) : 0;
688 if (!red[0] && !red[1])
690 P(set_red_flag) (sibling, 1);
691 P(set_red_flag) (parent, 0);
698 TREE_TRACE("Swapping colours (parent %d, sibling %d), passing thru\n", parent->n.key, sibling->n.key);
701 } else if (!red[del_son])
703 instead = P(rotation) (parent, 1-del_son);
704 P(set_red_flag) (instead, parent_red);
705 P(set_red_flag) (parent, 0);
706 P(set_red_flag) (son[1-del_son], 0);
707 } else /* red[del_son] */
709 parent->son[1-del_son] = P(rotation) (sibling, del_son);
710 instead = P(rotation) (parent, 1-del_son);
711 P(set_red_flag) (instead, parent_red);
712 P(set_red_flag) (parent, 0);
713 P(set_red_flag) (sibling, 0);
715 } else /* sibl_red */
717 P(bucket) *grand[2], *son;
720 son = P(tree_son) (sibling, del_son);
721 ASSERT(son && !P(red_flag) (son));
722 grand[0] = P(tree_son) (son, 0);
723 grand[1] = P(tree_son) (son, 1);
724 red[0] = grand[0] ? P(red_flag) (grand[0]) : 0;
725 red[1] = grand[1] ? P(red_flag) (grand[1]) : 0;
726 if (!red[0] && !red[1])
728 instead = P(rotation) (parent, 1-del_son);
729 P(set_red_flag) (instead, 0);
730 P(set_red_flag) (parent, 0);
731 P(set_red_flag) (son, 1);
733 else if (!red[del_son])
735 parent->son[1-del_son] = P(rotation) (sibling, del_son);
736 instead = P(rotation) (parent, 1-del_son);
737 P(set_red_flag) (instead, 0);
738 P(set_red_flag) (parent, 0);
739 P(set_red_flag) (sibling, 1);
740 P(set_red_flag) (grand[1-del_son], 0);
741 } else /* red[del_son] */
743 sibling->son[del_son] = P(rotation) (son, del_son);
744 parent->son[1-del_son] = P(rotation) (sibling, del_son);
745 instead = P(rotation) (parent, 1-del_son);
746 P(set_red_flag) (instead, 0);
747 P(set_red_flag) (parent, 0);
748 P(set_red_flag) (sibling, 1);
749 P(set_red_flag) (son, 0);
752 /* We have performed all desired rotations and need to store the new
753 * pointer to the subtree. */
756 P(set_tree_son) (stack[depth-1].buck, stack[depth-1].son, instead);
761 static void P(remove_by_stack) (T *t, P(stack_entry) *stack, uns depth)
763 P(bucket) *node = stack[depth].buck;
766 for (i=0; i<depth; i++)
767 ASSERT(P(tree_son) (stack[i].buck, stack[i].son) == stack[i+1].buck);
768 if (P(tree_son) (node, 0) && P(tree_son) (node, 1))
771 uns flag_node, flag_xchg;
772 uns d = P(find_next_node) (stack+depth, TREE_MAX_DEPTH-depth, 1);
776 xchg = stack[depth+d].buck;
777 flag_node = P(red_flag) (node);
778 flag_xchg = P(red_flag) (xchg);
779 ASSERT(!P(tree_son) (xchg, 0));
780 son = P(tree_son) (xchg, 1);
781 stack[depth].buck = xchg; /* Magic iff d == 1. */
782 stack[depth+d].buck = node;
783 xchg->son[0] = P(tree_son) (node, 0);
784 xchg->son[1] = P(tree_son) (node, 1);
786 P(set_tree_son) (stack[depth-1].buck, stack[depth-1].son, xchg);
791 P(set_tree_son) (stack[depth+d-1].buck, stack[depth+d-1].son, node);
792 #ifdef TREE_STORE_PARENT
793 xchg->parent = depth > 0 ? stack[depth-1].buck : NULL;
794 xchg->son[0]->parent = xchg;
795 xchg->son[1]->parent = xchg;
796 node->parent = stack[depth+d-1].buck;
800 P(set_red_flag) (xchg, flag_node);
801 P(set_red_flag) (node, flag_xchg);
804 else if (P(tree_son) (node, 0))
805 son = P(tree_son) (node, 0);
807 son = P(tree_son) (node, 1);
808 /* At this moment, stack[depth].buck == node and it has at most one son
809 * and it is stored in the variable son. */
813 P(set_tree_son) (stack[depth-1].buck, stack[depth-1].son, son);
814 #ifdef TREE_STORE_PARENT
816 son->parent = stack[depth-1].buck;
822 #ifdef TREE_STORE_PARENT
827 if (P(red_flag) (node))
832 TREE_SAFE_FREE(node);
833 /* We have deleted a black node. */
836 ASSERT(P(red_flag) (son));
837 P(set_red_flag) (son, 0);
840 P(rotate_after_delete) (t, stack, (int) depth - 1);
844 #ifdef TREE_WANT_REMOVE
845 STATIC void P(remove) (T *t, P(node) *Node)
847 P(stack_entry) stack[TREE_MAX_DEPTH];
848 P(bucket) *node = SKIP_BACK(P(bucket), n, Node);
850 stack[0].buck = node;
855 ASSERT(depth < TREE_MAX_DEPTH);
856 stack[depth].buck = node->parent;
857 stack[depth].son = P(tree_son) (node->parent, 0) == node ? 0 : 1;
860 for (i=0; i<(depth+1)/2; i++)
862 P(stack_entry) tmp = stack[i];
863 stack[i] = stack[depth-i];
864 stack[depth-i] = tmp;
866 P(remove_by_stack) (t, stack, depth);
870 #ifdef TREE_WANT_DELETE
871 STATIC int P(delete) (T *t, TREE_KEY_DECL)
873 P(stack_entry) stack[TREE_MAX_DEPTH];
875 depth = P(fill_stack) (stack, TREE_MAX_DEPTH, t->root, TREE_KEY(), 1);
876 if (stack[depth].buck)
878 P(remove_by_stack) (t, stack, depth);
886 #ifdef TREE_WANT_DUMP
887 static void P(dump_subtree) (struct fastbuf *fb, T *t, P(bucket) *node, P(bucket) *parent, int cmp_res, int level, uns black)
893 ASSERT(black == t->height);
896 flag = P(red_flag) (node);
897 #ifdef TREE_STORE_PARENT
898 ASSERT(node->parent == parent);
902 ASSERT(!flag || !P(red_flag) (parent));
903 cmp_res *= P(cmp) (TREE_KEY(node->n.), TREE_KEY(parent->n.));
904 #ifdef TREE_DUPLICATES
905 ASSERT(cmp_res >= 0);
910 P(dump_subtree) (fb, t, P(tree_son) (node, 0), node, -1, level+1, black + (1-flag));
914 for (i=0; i<level; i++)
916 sprintf(tmp, "L%d %c\t", level, flag ? 'R' : 'B');
918 P(dump_key) (fb, &node->n);
919 P(dump_data) (fb, &node->n);
922 P(dump_subtree) (fb, t, P(tree_son) (node, 1), node, +1, level+1, black + (1-flag));
925 STATIC void P(dump) (struct fastbuf *fb, T *t)
930 sprintf(tmp, "Tree of %d nodes and height %d\n", t->count, t->height);
933 P(dump_subtree) (fb, t, t->root, NULL, 0, 0, 0);
942 /* And the iterator */
944 #ifdef TREE_WANT_ITERATOR
945 static P(node) * P(first_node) (T *t, uns direction)
947 P(bucket) *node = t->root, *prev = NULL;
951 node = P(tree_son) (node, direction);
953 return prev ? &prev->n : NULL;
958 #define TREE_FOR_ALL(t_px, t_ptr, t_var) \
961 GLUE_(t_px,node) *t_var = GLUE_(t_px,first_node)(t_ptr, 0); \
962 for (; t_var; t_var = GLUE_(t_px,adjacent)(t_var, 1)) \
964 #define TREE_END_FOR } } while(0)
965 #define TREE_BREAK break
966 #define TREE_CONTINUE continue
971 /* Finally, undefine all the parameters */
978 #undef TREE_KEY_ATOMIC
979 #undef TREE_KEY_STRING
980 #undef TREE_KEY_ENDSTRING
981 #undef TREE_KEY_COMPLEX
983 #undef TREE_WANT_CLEANUP
984 #undef TREE_WANT_FIND
985 #undef TREE_WANT_FIND_NEXT
986 #undef TREE_WANT_SEARCH
987 #undef TREE_WANT_BOUNDARY
988 #undef TREE_WANT_ADJACENT
990 #undef TREE_WANT_LOOKUP
991 #undef TREE_WANT_DELETE
992 #undef TREE_WANT_REMOVE
993 #undef TREE_WANT_DUMP
994 #undef TREE_WANT_ITERATOR
996 #undef TREE_GIVE_EXTRA_SIZE
997 #undef TREE_GIVE_INIT_KEY
998 #undef TREE_GIVE_INIT_DATA
999 #undef TREE_GIVE_ALLOC
1001 #undef TREE_ATOMIC_TYPE
1002 #undef TREE_USE_POOL
1004 #undef TREE_CONSERVE_SPACE
1005 #undef TREE_DUPLICATES
1006 #undef TREE_MAX_DEPTH
1007 #undef TREE_STORE_PARENT
1009 #undef TREE_EXTRA_SIZE
1010 #undef TREE_SAFE_FREE