]> mj.ucw.cz Git - home-hw.git/blob - clock/firmware/main.c
Merge branch 'master' of ssh://git.ucw.cz/home/mj/GIT/home-hw
[home-hw.git] / clock / firmware / main.c
1 /*
2  *      Workshop Clock
3  *
4  *      (c) 2020-2023 Martin Mareš <mj@ucw.cz>
5  */
6
7 #include "util.h"
8
9 #include <libopencm3/cm3/cortex.h>
10 #include <libopencm3/cm3/nvic.h>
11 #include <libopencm3/cm3/systick.h>
12 #include <libopencm3/cm3/scb.h>
13 #include <libopencm3/stm32/rcc.h>
14 #include <libopencm3/stm32/desig.h>
15 #include <libopencm3/stm32/gpio.h>
16 #include <libopencm3/stm32/usart.h>
17 #include <libopencm3/stm32/i2c.h>
18 #include <libopencm3/stm32/timer.h>
19 #include <libopencm3/usb/dfu.h>
20 #include <libopencm3/usb/usbd.h>
21
22 #include <string.h>
23
24 static void ep82_send(u32 key_code);
25
26 /*** Hardware init ***/
27
28 static void clock_init(void)
29 {
30         rcc_clock_setup_pll(&rcc_hse_configs[RCC_CLOCK_HSE8_72MHZ]);
31
32         rcc_periph_clock_enable(RCC_GPIOA);
33         rcc_periph_clock_enable(RCC_GPIOB);
34         rcc_periph_clock_enable(RCC_GPIOC);
35         rcc_periph_clock_enable(RCC_I2C1);
36         rcc_periph_clock_enable(RCC_USART1);
37         rcc_periph_clock_enable(RCC_USB);
38         rcc_periph_clock_enable(RCC_TIM1);
39
40         rcc_periph_reset_pulse(RST_GPIOA);
41         rcc_periph_reset_pulse(RST_GPIOB);
42         rcc_periph_reset_pulse(RST_GPIOC);
43         rcc_periph_reset_pulse(RST_I2C1);
44         rcc_periph_reset_pulse(RST_USART1);
45         rcc_periph_reset_pulse(RST_USB);
46         rcc_periph_reset_pulse(RST_TIM1);
47 }
48
49 static void gpio_init(void)
50 {
51         // PA9 = TXD1 for debugging console
52         // PA10 = RXD1 for debugging console
53         gpio_set_mode(GPIOA, GPIO_MODE_OUTPUT_50_MHZ, GPIO_CNF_OUTPUT_ALTFN_PUSHPULL, GPIO9);
54         gpio_set_mode(GPIOA, GPIO_MODE_INPUT, GPIO_CNF_INPUT_FLOAT, GPIO10);
55
56         // PC13 = BluePill LED
57         gpio_set_mode(GPIOC, GPIO_MODE_OUTPUT_50_MHZ, GPIO_CNF_OUTPUT_PUSHPULL, GPIO13);
58         gpio_clear(GPIOC, GPIO13);
59
60         // PB7 = SDA for display controller
61         // PB6 = SCL for display controller
62         gpio_set_mode(GPIOB, GPIO_MODE_OUTPUT_50_MHZ, GPIO_CNF_OUTPUT_ALTFN_OPENDRAIN, GPIO6 | GPIO7);
63
64         // PA8 = SFH5110 output (5V tolerant) connected to TIM1_CH1
65         gpio_set_mode(GPIOC, GPIO_MODE_INPUT, GPIO_CNF_INPUT_FLOAT, GPIO8);
66 }
67
68 static void usart_init(void)
69 {
70         usart_set_baudrate(USART1, 115200);
71         usart_set_databits(USART1, 8);
72         usart_set_stopbits(USART1, USART_STOPBITS_1);
73         usart_set_mode(USART1, USART_MODE_TX);
74         usart_set_parity(USART1, USART_PARITY_NONE);
75         usart_set_flow_control(USART1, USART_FLOWCONTROL_NONE);
76
77         usart_enable(USART1);
78 }
79
80 /*** System ticks ***/
81
82 static volatile u32 ms_ticks;
83
84 void sys_tick_handler(void)
85 {
86         ms_ticks++;
87 }
88
89 static void tick_init(void)
90 {
91         systick_set_frequency(1000, CPU_CLOCK_MHZ * 1000000);
92         systick_counter_enable();
93         systick_interrupt_enable();
94 }
95
96 static void delay_ms(uint ms)
97 {
98         u32 start_ticks = ms_ticks;
99         while (ms_ticks - start_ticks < ms)
100                 ;
101 }
102
103 /*** Display ***/
104
105 /*
106  *      Display digits:
107  *
108  *                 ---- 40 ----
109  *               |              |
110  *               |              |
111  *              20              80
112  *               |              |
113  *               |              |
114  *                 ---- 10 ----
115  *               |              |
116  *               |              |
117  *              08              02
118  *               |              |
119  *               |              |
120  *                 ---- 04 ----
121  *                                      (01)
122  */
123
124 static byte disp[4];
125 static byte ctrl = 0x56;
126
127 static const byte disp_font[] = {
128         [0] = 0xee,
129         [1] = 0x82,
130         [2] = 0xdc,
131         [3] = 0xd6,
132         [4] = 0xb2,
133         [5] = 0x76,
134         [6] = 0x7e,
135         [7] = 0xc2,
136         [8] = 0xfe,
137         [9] = 0xf6,
138         [10] = 0xea,
139         [11] = 0x3e,
140         [12] = 0x6c,
141         [13] = 0x9e,
142         [14] = 0x7c,
143         [15] = 0x78,
144 };
145
146 static void display_update(void)
147 {
148         // debug_puts("Display update\n");
149
150         byte cmds[4];
151         cmds[0] = 0;
152         cmds[1] = ctrl;
153         cmds[2] = ((disp[1] & 0x88) >> 3) | ((disp[1] & 0x44) >> 1) | ((disp[1] & 0x22) << 1) | ((disp[1] & 0x11) << 3);
154         cmds[3] = disp[0];
155         i2c_transfer7(I2C1, 0x76/2, (byte *) cmds, sizeof(cmds), NULL, 0);
156
157         cmds[2] = ((disp[3] & 0x88) >> 3) | ((disp[3] & 0x44) >> 1) | ((disp[3] & 0x22) << 1) | ((disp[3] & 0x11) << 3);
158         cmds[3] = disp[2];
159         i2c_transfer7(I2C1, 0x70/2, (byte *) cmds, sizeof(cmds), NULL, 0);
160
161         // debug_puts("Update done\n");
162 }
163
164 static void display_init(void)
165 {
166         debug_puts("I2C init\n");
167         i2c_peripheral_disable(I2C1);
168         i2c_set_speed(I2C1, i2c_speed_sm_100k, rcc_apb1_frequency / 1000000);
169         i2c_peripheral_enable(I2C1);
170
171         disp[0] = 0x10;
172         disp[1] = 0x10;
173         disp[2] = 0x10;
174         disp[3] = 0x10;
175         display_update();
176 }
177
178 /*** Infrared Remote Control ***/
179
180 static void ir_init(void)
181 {
182         debug_puts("IR init\n");
183
184         // TIM1 will measure pulses and spaces between them with 1μs resolution
185         timer_set_prescaler(TIM1, 71);          // 72 MHz / 72 = 1 MHz
186         timer_set_mode(TIM1, TIM_CR1_CKD_CK_INT, TIM_CR1_CMS_EDGE, TIM_CR1_DIR_UP);
187         timer_set_period(TIM1, 65535);
188         timer_update_on_overflow(TIM1);
189
190         // IC1 will trigger on TI1 (TIM1_CH1) falling edge
191         timer_ic_set_input(TIM1, TIM_IC1, TIM_IC_IN_TI1);
192         // timer_ic_set_filter(TIM1, TIM_IC1, TIM_IC_OFF);
193         timer_set_oc_polarity_low(TIM1, TIM_OC1);       // OC functions affect IC, too
194
195         // IC2 will trigger on TI1 (TIM1_CH1) rising edge
196         timer_ic_set_input(TIM1, TIM_IC2, TIM_IC_IN_TI1);
197         timer_set_oc_polarity_high(TIM1, TIM_OC2);
198
199         // OC3 will trigger on a break longer than 50 ms
200         timer_set_oc_mode(TIM1, TIM_OC3, TIM_OCM_ACTIVE);
201         timer_set_oc_value(TIM1, TIM_OC3, 30000);
202
203         // Program slave controller to reset the timer on IC1
204         timer_slave_set_trigger(TIM1, TIM_SMCR_TS_TI1FP1);
205         timer_slave_set_mode(TIM1, TIM_SMCR_SMS_RM);
206
207         // Request interrupts
208         timer_enable_irq(TIM1, TIM_DIER_CC1IE | TIM_DIER_CC2IE | TIM_DIER_CC3IE);
209         nvic_enable_irq(NVIC_TIM1_CC_IRQ);
210
211         // Enable ICs and OCs
212         timer_enable_oc_output(TIM1, TIM_OC1);
213         timer_enable_oc_output(TIM1, TIM_OC2);
214         timer_enable_oc_output(TIM1, TIM_OC3);
215
216         timer_enable_counter(TIM1);
217 }
218
219 // Circular queue of pulse durations
220 #define IR_MAX_PULSES 32
221 static u32 ir_pulses[IR_MAX_PULSES];    // Top 16 bits = mark, bottom 16 bits = space
222 static u16 ir_last_pulse;
223 static uint ir_pulses_rx, ir_pulses_tx;
224
225 #define IR_INF 0xffff
226
227 #define IR_MARK(x) (uint)((x) >> 16)
228 #define IR_SPACE(x) (uint)((x) & 0xffff)
229
230 static inline bool between(uint x, uint min, uint max)
231 {
232         return x >= min && x <= max;
233 }
234
235 static void ir_record_pulse(uint mark, uint space)
236 {
237         uint i = ir_pulses_tx;
238         ir_pulses_tx = (i + 1) % IR_MAX_PULSES;
239         if (ir_pulses_tx != ir_pulses_rx) {
240                 ir_pulses[i] = (mark << 16) | space;
241         } else {
242                 // Overflow detected
243                 ir_pulses[i] = (IR_INF << 16) | IR_INF;
244         }
245 }
246
247 void tim1_cc_isr(void)
248 {
249         if (TIM_SR(TIM1) & TIM_SR_CC1IF) {
250                 TIM_SR(TIM1) &= ~TIM_SR_CC1IF;
251                 u16 now = TIM_CCR1(TIM1);
252                 if (ir_last_pulse) {
253                         ir_record_pulse(ir_last_pulse, now - ir_last_pulse);
254                         ir_last_pulse = 0;
255                 }
256         }
257         if (TIM_SR(TIM1) & TIM_SR_CC2IF) {
258                 TIM_SR(TIM1) &= ~TIM_SR_CC2IF;
259                 ir_last_pulse = TIM_CCR2(TIM1);
260         }
261         if (TIM_SR(TIM1) & TIM_SR_CC3IF) {
262                 TIM_SR(TIM1) &= ~TIM_SR_CC3IF;
263                 if (ir_last_pulse) {
264                         ir_record_pulse(ir_last_pulse, IR_INF);
265                         ir_last_pulse = 0;
266                 }
267         }
268 }
269
270 static u32 ir_get_pulse(void)
271 {
272         u32 out = 0;
273
274         cm_disable_interrupts();
275         if (ir_pulses_rx != ir_pulses_tx) {
276                 out = ir_pulses[ir_pulses_rx];
277                 ir_pulses_rx = (ir_pulses_rx + 1) % IR_MAX_PULSES;
278         }
279         cm_enable_interrupts();
280         return out;
281 }
282
283 // Decoder for Onkyo RC-748S
284
285 static u32 ir_blink_start;
286
287 static void ir_decode(void)
288 {
289         u32 pulse = ir_get_pulse();
290         if (!pulse)
291                 return;
292
293         uint mark = IR_MARK(pulse);
294         uint space = IR_SPACE(pulse);
295
296 #ifdef IR_TEST
297         debug_printf("IR: %d %d\n", mark, space);
298         return;
299 #endif
300
301         static u16 ir_bits;
302         static u32 ir_code;
303 #define IR_ERR 0xff
304
305         // debug_printf("IR(%d): %d %d\n", ir_bits, mark, space);
306
307         if (space == IR_INF) {
308                 ir_bits = 0;
309         } else if (ir_bits == IR_ERR) {
310                 // Error state
311         } else if (ir_bits == 0) {
312                 // Start?
313                 if (between(mark, 8900, 9200)) {
314                         if (between(space, 4200, 4600)) {
315                                 ir_bits = 1;
316                                 ir_code = 0;
317                         } else if (between(space, 2000, 2300)) {
318                                 debug_printf("IR: => REP\n");
319                                 ir_bits = IR_ERR;
320                         }
321                 }
322         } else {
323                 if (between(mark, 500, 700)) {
324                         ir_bits++;
325                         if (between(space, 400, 700)) {
326                                 // 0
327                         } else if (between(space, 1500, 1800)) {
328                                 // 1
329                                 ir_code |= 1U << (33 - ir_bits);
330                         } else {
331                                 ir_bits = IR_ERR;
332                         }
333                         if (ir_bits == 33) {
334                                 debug_printf("IR: => %08x\n", (uint)ir_code);
335                                 disp[3] |= 0x01;
336                                 ir_blink_start = ms_ticks;
337                                 display_update();
338                                 ir_bits = IR_ERR;
339                                 ep82_send(ir_code);
340                         }
341                 } else {
342                         ir_bits = IR_ERR;
343                 }
344         }
345 }
346
347 /*** USB ***/
348
349 static usbd_device *usbd_dev;
350
351 enum usb_string {
352         STR_MANUFACTURER = 1,
353         STR_PRODUCT,
354         STR_SERIAL,
355 };
356
357 static char usb_serial_number[13];
358
359 static const char *usb_strings[] = {
360         "United Computer Wizards",
361         "Workshop Clock",
362         usb_serial_number,
363 };
364
365 static const struct usb_device_descriptor device = {
366         .bLength = USB_DT_DEVICE_SIZE,
367         .bDescriptorType = USB_DT_DEVICE,
368         .bcdUSB = 0x0200,
369         .bDeviceClass = 0xFF,
370         .bDeviceSubClass = 0,
371         .bDeviceProtocol = 0,
372         .bMaxPacketSize0 = 64,
373         .idVendor = 0x4242,
374         .idProduct = 0x000d,
375         .bcdDevice = 0x0000,
376         .iManufacturer = STR_MANUFACTURER,
377         .iProduct = STR_PRODUCT,
378         .iSerialNumber = STR_SERIAL,
379         .bNumConfigurations = 1,
380 };
381
382 static const struct usb_endpoint_descriptor endpoints[] = {{
383         // Bulk end-point for sending values to the display
384         .bLength = USB_DT_ENDPOINT_SIZE,
385         .bDescriptorType = USB_DT_ENDPOINT,
386         .bEndpointAddress = 0x01,
387         .bmAttributes = USB_ENDPOINT_ATTR_BULK,
388         .wMaxPacketSize = 64,
389         .bInterval = 1,
390 }, {
391         // Bulk end-point for receiving remote control keys
392         .bLength = USB_DT_ENDPOINT_SIZE,
393         .bDescriptorType = USB_DT_ENDPOINT,
394         .bEndpointAddress = 0x82,
395         .bmAttributes = USB_ENDPOINT_ATTR_BULK,
396         .wMaxPacketSize = 4,
397         .bInterval = 1,
398 }};
399
400 static const struct usb_interface_descriptor iface = {
401         .bLength = USB_DT_INTERFACE_SIZE,
402         .bDescriptorType = USB_DT_INTERFACE,
403         .bInterfaceNumber = 0,
404         .bAlternateSetting = 0,
405         .bNumEndpoints = 2,
406         .bInterfaceClass = 0xFF,
407         .bInterfaceSubClass = 0,
408         .bInterfaceProtocol = 0,
409         .iInterface = 0,
410         .endpoint = endpoints,
411 };
412
413 static const struct usb_dfu_descriptor dfu_function = {
414         .bLength = sizeof(struct usb_dfu_descriptor),
415         .bDescriptorType = DFU_FUNCTIONAL,
416         .bmAttributes = USB_DFU_CAN_DOWNLOAD | USB_DFU_WILL_DETACH,
417         .wDetachTimeout = 255,
418         .wTransferSize = 1024,
419         .bcdDFUVersion = 0x0100,
420 };
421
422 static const struct usb_interface_descriptor dfu_iface = {
423         .bLength = USB_DT_INTERFACE_SIZE,
424         .bDescriptorType = USB_DT_INTERFACE,
425         .bInterfaceNumber = 1,
426         .bAlternateSetting = 0,
427         .bNumEndpoints = 0,
428         .bInterfaceClass = 0xFE,
429         .bInterfaceSubClass = 1,
430         .bInterfaceProtocol = 1,
431         .iInterface = 0,
432
433         .extra = &dfu_function,
434         .extralen = sizeof(dfu_function),
435 };
436
437 static const struct usb_interface ifaces[] = {{
438         .num_altsetting = 1,
439         .altsetting = &iface,
440 }, {
441         .num_altsetting = 1,
442         .altsetting = &dfu_iface,
443 }};
444
445 static const struct usb_config_descriptor config = {
446         .bLength = USB_DT_CONFIGURATION_SIZE,
447         .bDescriptorType = USB_DT_CONFIGURATION,
448         .wTotalLength = 0,
449         .bNumInterfaces = 2,
450         .bConfigurationValue = 1,
451         .iConfiguration = 0,
452         .bmAttributes = 0x80,
453         .bMaxPower = 50,        // multiplied by 2 mA
454         .interface = ifaces,
455 };
456
457 static bool usb_configured;
458 static uint8_t usbd_control_buffer[64];
459
460 static bool usb_tx_in_flight;
461 static byte ep82_tx_buffer[4];
462
463 static byte disp_alive;
464
465 static void dfu_detach_complete(usbd_device *dev UNUSED, struct usb_setup_data *req UNUSED)
466 {
467         // Reset to bootloader, which implements the rest of DFU
468         debug_printf("Switching to DFU\n");
469         debug_flush();
470         scb_reset_core();
471 }
472
473 static enum usbd_request_return_codes dfu_control_cb(usbd_device *dev UNUSED,
474         struct usb_setup_data *req,
475         uint8_t **buf UNUSED,
476         uint16_t *len UNUSED,
477         void (**complete)(usbd_device *dev, struct usb_setup_data *req))
478 {
479         if (req->bmRequestType != 0x21 || req->bRequest != DFU_DETACH)
480                 return USBD_REQ_NOTSUPP;
481
482         *complete = dfu_detach_complete;
483         return USBD_REQ_HANDLED;
484 }
485
486 static void ep01_cb(usbd_device *dev, uint8_t ep UNUSED)
487 {
488         // We received a frame from the USB host
489         byte buf[8];
490         uint len = usbd_ep_read_packet(dev, 0x01, buf, 8);
491         debug_printf("USB: Host sent %u bytes\n", len);
492         if (len >= 5) {
493                 for (uint i=0; i<4; i++) {
494                         disp[i] &= 0x01;
495                         if (buf[i] < 16)
496                                 disp[i] |= disp_font[buf[i]];
497                 }
498                 disp[1] &= 0xfe;
499                 if (buf[4])
500                         disp[1] |= 0x01;
501                 display_update();
502                 disp_alive = 10;
503         }
504 }
505
506 static void ep82_send(u32 key_code)
507 {
508         if (!usb_configured)
509                 return;
510
511         if (usb_tx_in_flight) {
512                 debug_printf("USB: Send overrun!\n");
513                 return;
514         }
515
516         debug_printf("USB: Sending key to host\n");
517         put_u32_be(ep82_tx_buffer, key_code);
518         usbd_ep_write_packet(usbd_dev, 0x82, ep82_tx_buffer, 4);
519         usb_tx_in_flight = true;
520 }
521
522 static void ep82_cb(usbd_device *dev UNUSED, uint8_t ep UNUSED)
523 {
524         // We completed sending a frame to the USB host
525         usb_tx_in_flight = false;
526         debug_printf("USB: Key sending complete\n");
527 }
528
529 static void set_config_cb(usbd_device *dev, uint16_t wValue UNUSED)
530 {
531         usbd_register_control_callback(
532                 dev,
533                 USB_REQ_TYPE_CLASS | USB_REQ_TYPE_INTERFACE,
534                 USB_REQ_TYPE_TYPE | USB_REQ_TYPE_RECIPIENT,
535                 dfu_control_cb);
536         usbd_ep_setup(dev, 0x01, USB_ENDPOINT_ATTR_BULK, 64, ep01_cb);
537         usbd_ep_setup(dev, 0x82, USB_ENDPOINT_ATTR_BULK, 4, ep82_cb);
538         usb_configured = true;
539         usb_tx_in_flight = false;
540 }
541
542 static void reset_cb(void)
543 {
544         debug_printf("USB: Reset\n");
545         usb_configured = false;
546 }
547
548 static volatile bool usb_event_pending;
549
550 void usb_lp_can_rx0_isr(void)
551 {
552         /*
553          *  We handle USB in the main loop to avoid race conditions between
554          *  USB interrupts and other code. However, we need an interrupt to
555          *  up the main loop from sleep.
556          *
557          *  We set up only the low-priority ISR, because high-priority ISR handles
558          *  only double-buffered bulk transfers and isochronous transfers.
559          */
560         nvic_disable_irq(NVIC_USB_LP_CAN_RX0_IRQ);
561         usb_event_pending = 1;
562 }
563
564 static void usb_init(void)
565 {
566         // Simulate USB disconnect
567         gpio_set_mode(GPIOA, GPIO_MODE_OUTPUT_50_MHZ, GPIO_CNF_OUTPUT_OPENDRAIN, GPIO11 | GPIO12);
568         gpio_clear(GPIOA, GPIO11 | GPIO12);
569         delay_ms(100);
570
571         usbd_dev = usbd_init(
572                 &st_usbfs_v1_usb_driver,
573                 &device,
574                 &config,
575                 usb_strings,
576                 ARRAY_SIZE(usb_strings),
577                 usbd_control_buffer,
578                 sizeof(usbd_control_buffer)
579         );
580         usbd_register_reset_callback(usbd_dev, reset_cb);
581         usbd_register_set_config_callback(usbd_dev, set_config_cb);
582         usb_event_pending = 1;
583 }
584
585 /*** Main ***/
586
587 int main(void)
588 {
589         clock_init();
590         gpio_init();
591         usart_init();
592
593         tick_init();
594         desig_get_unique_id_as_dfu(usb_serial_number);
595
596         debug_printf("Hello, world!\n");
597
598         usb_init();
599         display_init();
600         ir_init();
601
602         u32 last_blink = 0;
603
604         for (;;) {
605                 if (ms_ticks - last_blink >= 500) {
606                         debug_led_toggle();
607                         last_blink = ms_ticks;
608                         if (disp_alive) {
609                                 if (!--disp_alive) {
610                                         disp[0] = (disp[0] & 0x01) | 0x10;
611                                         disp[1] = (disp[1] & 0x01) | 0x10;
612                                         disp[2] = (disp[2] & 0x01) | 0x10;
613                                         disp[3] = (disp[3] & 0x01) | 0x10;
614                                 }
615                         }
616                         display_update();
617                 }
618
619                 if ((disp[3] & 0x01) && ms_ticks - ir_blink_start >= 100) {
620                         disp[3] &= 0xfe;
621                         display_update();
622                 }
623
624                 ir_decode();
625
626                 if (usb_event_pending) {
627                         usbd_poll(usbd_dev);
628                         usb_event_pending = 0;
629                         nvic_clear_pending_irq(NVIC_USB_LP_CAN_RX0_IRQ);
630                         nvic_enable_irq(NVIC_USB_LP_CAN_RX0_IRQ);
631                 }
632
633                 wait_for_interrupt();
634         }
635
636         return 0;
637 }