]> mj.ucw.cz Git - saga.git/blob - adv.tex
Corrections: Chapter 3.
[saga.git] / adv.tex
1 \ifx\endpart\undefined
2 \input macros.tex
3 \fi
4
5 \chapter{Advanced MST Algorithms}
6
7 \section{Minor-closed graph classes}\id{minorclosed}%
8
9 The contractive algorithm given in Section~\ref{contalg} has been found to perform
10 well on planar graphs, but in the general case its time complexity was not linear.
11 Can we find any broader class of graphs where this algorithm is still efficient?
12 The right context turns out to be the minor-closed graph classes, which are
13 closed under contractions and have bounded density.
14
15 \defn\id{minordef}%
16 A~graph~$H$ is a \df{minor} of a~graph~$G$ (written as $H\minorof G$) iff it can be obtained
17 from a~subgraph of~$G$ by a sequence of simple graph contractions (see \ref{simpcont}).
18
19 \defn
20 A~class~$\cal C$ of graphs is \df{minor-closed}, when for every $G\in\cal C$ and
21 every minor~$H$ of~$G$, the graph~$H$ lies in~$\cal C$ as well. A~class~$\cal C$ is called
22 \df{non-trivial} if at least one graph lies in~$\cal C$ and at least one lies outside~$\cal C$.
23
24 \example
25 Non-trivial minor-closed classes include:
26 \itemize\ibull
27 \:planar graphs,
28 \:graphs embeddable in any fixed surface (i.e., graphs of bounded genus),
29 \:graphs embeddable in~${\bb R}^3$ without knots or without interlocking cycles,
30 \:graphs of bounded tree-width or path-width.
31 \endlist
32
33 \para
34 Many of the nice structural properties of planar graphs extend to
35 minor-closed classes, too (see Lov\'asz \cite{lovasz:minors} for a~nice survey
36 of this theory and Diestel \cite{diestel:gt} for some of the deeper results).
37 The most important property is probably the characterization
38 of such classes in terms of their forbidden minors.
39
40 \defn
41 For a~class~$\cal H$ of graphs we define $\Forb({\cal H})$ as the class
42 of graphs that do not contain any of the graphs in~$\cal H$ as a~minor.
43 We will call $\cal H$ the set of \df{forbidden (or excluded) minors} for this class.
44 We will often abbreviate $\Forb(\{M_1,\ldots,M_n\})$ to $\Forb(M_1,\ldots,M_n)$.
45
46 \obs
47 For every~${\cal H}\ne\emptyset$, the class $\Forb({\cal H})$ is non-trivial
48 and closed on minors. This works in the opposite direction as well: for every
49 minor-closed class~$\cal C$ there is a~class $\cal H$ such that ${\cal C}=\Forb({\cal H})$.
50 One such~$\cal H$ is the complement of~$\cal C$, but smaller ones can be found, too.
51 For example, the planar graphs can be equivalently described as the class $\Forb(K_5, K_{3,3})$
52 --- this follows from the Kuratowski's theorem (the theorem speaks of forbidden
53 subdivisions, but while in general this is not the same as forbidden minors, it
54 is for $K_5$ and $K_{3,3}$). The celebrated theorem by Robertson and Seymour
55 guarantees that we can always find a~finite set of forbidden minors:
56
57 \thmn{Excluded minors, Robertson \& Seymour \cite{rs:wagner}}
58 For every non-trivial minor-closed graph class~$\cal C$ there exists
59 a~finite set~$\cal H$ of graphs such that ${\cal C}=\Forb({\cal H})$.
60
61 \proof
62 This theorem has been proven in a~long series of papers on graph minors
63 culminating with~\cite{rs:wagner}. See this paper and follow the references
64 to the previous articles in the series.
65 \qed
66
67 \para
68 For analysis of the contractive algorithm,
69 we will make use of another important property --- the bounded density of
70 minor-closed classes. The connection between minors and density dates back to
71 Mader in the 1960's and it can be proven without use of the Robertson-Seymour
72 theory.
73
74 \defn\id{density}%
75 Let $G$ be a~graph and $\cal C$ be a class of graphs. We define the \df{edge density}
76 $\varrho(G)$ of~$G$ as the average number of edges per vertex, i.e., $m(G)/n(G)$. The
77 edge density $\varrho(\cal C)$ of the class is then defined as the infimum of $\varrho(G)$ over all $G\in\cal C$.
78
79 \thmn{Mader \cite{mader:dens}}
80 For every $k\in{\bb N}$ there exists $h(k)\in{\bb R}$ such that every graph
81 of average degree at least~$h(k)$ contains a~subdivision of~$K_{k}$ as a~subgraph.
82
83 \proofsketch
84 (See Lemma 3.5.1 in \cite{diestel:gt} for a~complete proof in English.)
85
86 Let us fix~$k$ and prove by induction on~$m$ that every graph of average
87 degree at least~$2^m$ contains a~subdivision of some graph with $k$~vertices
88 and $m$~edges (for $k\le m\le {k\choose 2}$). When we reach $m={k\choose 2}$, the theorem follows
89 as the only graph with~$k$ vertices and~$k\choose 2$ edges is~$K_k$.
90
91 The base case $m=k$: Let us observe that when the average degree
92 is~$a$, removing any vertex of degree less than~$a/2$ does not decrease the
93 average degree. A~graph with $a\ge 2^k$ therefore has a~subgraph
94 with minimum degree $\delta\ge a/2=2^{k-1}$. Such subgraph contains
95 a~cycle on more than~$\delta$ vertices, in other words a~subdivision of
96 the cycle~$C_k$.
97
98 Induction step: Let~$G$ be a~graph with average degree at least~$2^m$ and
99 assume that the theorem already holds for $m-1$. Without loss of generality,
100 $G$~is connected. Consider a~maximal set $U\subseteq V$ such that the subgraph $G[U]$
101 induced by~$U$ is connected and the graph $G\sgc U$ ($G$~with $U$~contracted to
102 a~single vertex) has average degree at least~$2^m$ (such~$U$ exists, because
103 $G=G\sgc U$ whenever $\vert U\vert=1$). Now consider the subgraph~$H$ induced
104 in~$G$ by the neighbors of~$U$. Every $v\in V(H)$ must have $\deg_H(v) \ge 2^{m-1}$,
105 as otherwise we can add this vertex to~$U$, contradicting its
106 maximality. By the induction hypothesis, $H$ contains a~subdivision of some
107 graph~$R$ with $k$~vertices and $m-1$ edges. Any two non-adjacent vertices
108 of~$R$ can be connected in the subdivision by a~path lying entirely in~$G[U]$,
109 which reveals a~subdivision of a~graph with $m$~edges. \qed
110
111 \thmn{Density of minor-closed classes, Mader~\cite{mader:dens}}
112 Every non-trivial minor-closed class of graphs has finite edge density.
113
114 \proof
115 Let~$\cal C$ be any such class, $X$~its excluded minor with the smallest number
116 of vertices~$x$.
117 As $X\minorof K_x$, the class $\cal C$ is entirely contained in ${\cal C}'=\Forb(K_x)$, so
118 $\varrho({\cal C}) \le \varrho({\cal C}')$ and therefore it suffices to prove the
119 theorem for classes excluding a~single complete graph~$K_x$.
120
121 We will show that $\varrho({\cal C})\le 2h(x)$, where $h$~is the function
122 from the previous theorem. If any $G\in{\cal C}$ had more than $2h(x)\cdot n(G)$
123 edges, its average degree would be at least~$h(x)$, so by the previous theorem
124 $G$~would contain a~subdivision of~$K_x$ and hence $K_x$ as a~minor.
125 \qed
126
127 \rem
128 Minor-closed classes share many other interesting properties, for example bounded chromatic
129 numbers of various kinds, as shown by Theorem 6.1 of \cite{nesetril:minors}.
130
131 Let us return to the analysis of our algorithm.
132
133 \thmn{MST on minor-closed classes, Mare\v{s} \cite{mm:mst}}\id{mstmcc}%
134 For any fixed non-trivial minor-closed class~$\cal C$ of graphs, the Contractive Bor\o{u}vka's
135 algorithm (\ref{contbor}) finds the MST of any graph of this class in time
136 $\O(n)$. (The constant hidden in the~$\O$ depends on the class.)
137
138 \proof
139 Following the proof for planar graphs (\ref{planarbor}), we denote the graph considered
140 by the algorithm at the beginning of the $i$-th Bor\o{u}vka step by~$G_i$ and its number of vertices
141 and edges by $n_i$ and $m_i$ respectively. Again the $i$-th phase runs in time $\O(m_i)$
142 and we have $n_i \le n/2^i$, so it remains to show a linear bound for the $m_i$'s.
143
144 Since each $G_i$ is produced from~$G_{i-1}$ by a sequence of edge contractions,
145 all $G_i$'s are minors of the input graph.\foot{Technically, these are multigraph contractions,
146 but followed by flattening, so they are equivalent to contractions on simple graphs.}
147 So they also belong to~$\cal C$ and by the Density theorem $m_i\le \varrho({\cal C})\cdot n_i$.
148 The time complexity is therefore $\sum_i \O(m_i) = \sum_i \O(n_i) = \O(\sum_i n/2^i) = \O(n)$.
149 \qed
150
151 \paran{Local contractions}\id{nobatch}%
152 The contractive algorithm uses ``batch processing'' to perform many contractions
153 in a single step. It is also possible to perform them one edge at a~time,
154 batching only the flattenings. A~contraction of an edge~$uv$ can be done
155 in time~$\O(\deg(u))$ by removing all edges incident with~$u$ and inserting them back
156 with $u$ replaced by~$v$. Therefore we need to find a lot of vertices with small
157 degrees. The following lemma shows that this is always the case in minor-closed
158 classes.
159
160 \lemman{Low-degree vertices}\id{lowdeg}%
161 Let $\cal C$ be a graph class with density~$\varrho$ and $G\in\cal C$ a~graph
162 with $n$~vertices. Then at least $n/2$ vertices of~$G$ have degree at most~$4\varrho$.
163
164 \proof
165 Assume the contrary: Let there be at least $n/2$ vertices with degree
166 greater than~$4\varrho$.  Then $\sum_v \deg(v) > n/2
167 \cdot 4\varrho = 2\varrho n$, which is in contradiction with the number
168 of edges being at most $\varrho n$.
169 \qed
170
171 \rem
172 The proof can be also viewed
173 probabilistically: let $X$ be the degree of a vertex of~$G$ chosen uniformly at
174 random. Then $\E X \le 2\varrho$, hence by the Markov's inequality
175 ${\rm Pr}[X > 4\varrho] < 1/2$, so for at least $n/2$ vertices~$v$ we have
176 $\deg(v)\le 4\varrho$.
177
178 \algn{Local Bor\o{u}vka's Algorithm, Mare\v{s} \cite{mm:mst}}%
179 \algo
180 \algin A~graph~$G$ with an edge comparison oracle and a~parameter~$t\in{\bb N}$.
181 \:$T\=\emptyset$.
182 \:$\ell(e)\=e$ for all edges~$e$.
183 \:While $n(G)>1$:
184 \::While there exists a~vertex~$v$ such that $\deg(v)\le t$:
185 \:::Select the lightest edge~$e$ incident with~$v$.
186 \:::Contract~$e$.
187 \:::$T\=T + \ell(e)$.
188 \::Flatten $G$, removing parallel edges and loops.
189 \algout Minimum spanning tree~$T$.
190 \endalgo
191
192 \thm
193 When $\cal C$ is a minor-closed class of graphs with density~$\varrho$, the
194 Local Bor\o{u}vka's Algorithm with the parameter~$t$ set to~$4\varrho$ 
195 finds the MST of any graph from this class in time $\O(n)$. (The constant
196 in the~$\O$ depends on~the class.)
197
198 \proof
199 Let us denote by $G_i$, $n_i$ and $m_i$ the graph considered by the
200 algorithm at the beginning of the $i$-th iteration of the outer loop,
201 and the number of its vertices and edges respectively. As in the proof
202 of the previous algorithm (\ref{mstmcc}), we observe that all the $G_i$'s
203 are minors of the graph~$G$ given as the input.
204
205 For the choice $t=4\varrho$, the Lemma on low-degree vertices (\ref{lowdeg})
206 guarantees that at the beginning of the $i$-th iteration, at least $n_i/2$ vertices
207 have degree at most~$t$. Each selected edge removes one such vertex and
208 possibly increases the degree of another one, so at least $n_i/4$ edges get selected.
209 Hence $n_i\le 3/4\cdot n_{i-1}$ and $n_i\le n\cdot (3/4)^i$, so the
210 algorithm terminates after $\O(\log n)$ iterations.
211
212 Each selected edge belongs to $\mst(G)$, because it is the lightest edge of
213 the trivial cut $\delta(v)$ (see the Blue rule, Lemma \ref{rbma}).
214 The steps 6 and~7 therefore correspond to the operation
215 described by the Contraction Lemma (\ref{contlemma}) and when
216 the algorithm stops, $T$~is indeed the minimum spanning tree.
217
218 It remains to analyse the time complexity of the algorithm. Since $G_i\in{\cal C}$, we know that
219 $m_i\le \varrho n_i \le \varrho n/2^i$.
220 We will show that the $i$-th iteration is carried out in time $\O(m_i)$.
221 Steps 5 and~6 run in time $\O(\deg(v))=\O(t)$ for each~$v$, so summed
222 over all $v$'s they take $\O(tn_i)$, which is $\O(n_i)$ for a fixed class~$\cal C$.
223 Flattening takes $\O(m_i)$ as already noted in the analysis of the Contracting
224 Bor\o{u}vka's Algorithm (see \ref{contiter}).
225
226 The whole algorithm therefore runs in time $\O(\sum_i m_i) = \O(\sum_i n/2^i) = \O(n)$.
227 \qed
228
229 \paran{Back to planar graphs}%
230 For planar graphs, we can obtain a sharper version of the low-degree lemma
231 showing that the algorithm works with $t=8$ as well (we had $t=12$ from
232 $\varrho=3$). While this does not change the asymptotic time complexity
233 of the algorithm, the constant-factor speedup can still delight the hearts of
234 its practical users.
235
236 \lemman{Low-degree vertices in planar graphs}%
237 Let $G$ be a planar graph with $n$~vertices. Then at least $n/2$ vertices of~$v$
238 have degree at most~8.
239
240 \proof
241 It suffices to show that the lemma holds for triangulations (if there
242 are any edges missing, the situation can only get better) with at
243 least 4 vertices. Since $G$ is planar, we have $\sum_v \deg(v) < 6n$.
244 The numbers $d(v):=\deg(v)-3$ are non-negative and $\sum_v d(v) < 3n$,
245 so by the same argument as in the proof of the general lemma, for at least $n/2$
246 vertices~$v$ it holds that $d(v) < 6$, and thus $\deg(v) \le 8$.
247 \qed
248
249 \rem\id{hexa}%
250 The constant~8 in the previous lemma is the best we can have.
251 Consider a $k\times k$ triangular grid. It has $n=k^2$ vertices, $\O(k)$ of them
252 lie on the outer face and they have degree at most~6, the remaining $n-\O(k)$ interior
253 vertices have degree exactly~6. Therefore the number of faces~$f$ is $6/3\cdot n=2n$,
254 ignoring terms of order $\O(k)$. All interior triangles can be properly colored with
255 two colors, black and white. Now add a~new vertex inside each white face and connect
256 it to all three vertices on the boundary of that face (see the picture). This adds $f/2 \approx n$
257 vertices of degree~3 and it increases the degrees of the original $\approx n$ interior
258 vertices to~9, therefore about a~half of the vertices of the new planar graph
259 has degree~9.
260
261 \figure{hexangle.eps}{\epsfxsize}{The construction from Remark~\ref{hexa}}
262
263 \rem
264 The observation in~Theorem~\ref{mstmcc} was also independently made by Gustedt \cite{gustedt:parallel},
265 who studied a~parallel version of the Contractive Bor\o{u}vka's algorithm applied
266 to minor-closed classes.
267
268 %--------------------------------------------------------------------------------
269
270 \section{Iterated algorithms}\id{iteralg}%
271
272 We have seen that the Jarn\'\i{}k's Algorithm \ref{jarnik} runs in $\Theta(m\log n)$ time.
273 Fredman and Tarjan \cite{ft:fibonacci} have shown a~faster implementation
274 using their Fibonacci heaps. In this section, we will convey their results and we
275 will show several interesting consequences.
276
277 The previous implementation of the algorithm used a binary heap to store all edges
278 separating the current tree~$T$ from the rest of the graph, i.e., edges of the cut~$\delta(T)$.
279 Instead of that, we will remember the vertices adjacent to~$T$ and for each such vertex~$v$ we
280 will maintain the lightest edge~$uv$ such that $u$~lies in~$T$. We will call these edges \df{active edges}
281 and keep them in a~Fibonacci heap, ordered by weight.
282
283 When we want to extend~$T$ by the lightest edge of~$\delta(T)$, it is sufficient to
284 find the lightest active edge~$uv$ and add this edge to~$T$ together with the new vertex~$v$.
285 Then we have to update the active edges as follows. The edge~$uv$ has just ceased to
286 be active. We scan all neighbors~$w$ of the vertex~$v$. When $w$~is already in~$T$, no action
287 is needed. If $w$~is outside~$T$ and it was not adjacent to~$T$ (there is no active edge
288 remembered for it so far), we set the edge~$vw$ as active. Otherwise we check the existing
289 active edge for~$w$ and replace it by~$vw$ if the new edge is lighter.
290
291 The following algorithm shows how these operations translate to insertions, decreases
292 and deletions in the heap.
293
294 \algn{Active Edge Jarn\'\i{}k; Fredman and Tarjan \cite{ft:fibonacci}}\id{jarniktwo}%
295 \algo
296 \algin A~graph~$G$ with an edge comparison oracle.
297 \:$v_0\=$ an~arbitrary vertex of~$G$.
298 \:$T\=$ a tree containing just the vertex~$v_0$.
299 \:$H\=$ a~Fibonacci heap of active edges stored as pairs $(u,v)$ where $u\in T,v\not\in T$, ordered by the weights $w(uv)$, and initially empty.
300 \:$A\=$ a~mapping of vertices outside~$T$ to their active edges in the heap; initially all elements undefined.
301 \:\<Insert> all edges incident with~$v_0$ to~$H$ and update~$A$ accordingly.
302 \:While $H$ is not empty:
303 \::$(u,v)\=\<DeleteMin>(H)$.
304 \::$T\=T+uv$.
305 \::For all edges $vw$ such that $w\not\in T$:
306 \:::If there exists an~active edge~$A(w)$:
307 \::::If $vw$ is lighter than~$A(w)$, \<Decrease> $A(w)$ to~$(v,w)$ in~$H$.
308 \:::If there is no such edge, then \<Insert> $(v,w)$ to~$H$ and set~$A(w)$.
309 \algout Minimum spanning tree~$T$.
310 \endalgo
311
312 \paran{Analysis}%
313 To analyse the time complexity of this algorithm, we will use the standard
314 theorem on~complexity of the Fibonacci heap:
315
316 \thmn{Fibonacci heaps, Fredman and Tarjan \cite{ft:fibonacci}} The~Fibonacci heap performs the following operations
317 with the indicated amortized time complexities:
318 \itemize\ibull
319 \:\<Insert> (insertion of a~new element) in $\O(1)$,
320 \:\<Decrease> (decreasing the value of an~existing element) in $\O(1)$,
321 \:\<Merge> (merging of two heaps into one) in $\O(1)$,
322 \:\<DeleteMin> (deletion of the minimal element) in $\O(\log n)$,
323 \:\<Delete> (deletion of an~arbitrary element) in $\O(\log n)$,
324 \endlist
325 \>where $n$ is the number of elements present in the heap at the time of
326 the operation.
327
328 \proof
329 See Fredman and Tarjan \cite{ft:fibonacci} for both the description of the Fibonacci
330 heap and the proof of this theorem.
331 \qed
332
333 \thm
334 Algorithm~\ref{jarniktwo} with the Fibonacci heap finds the MST of the input graph in time~$\O(m+n\log n)$.
335
336 \proof
337 The algorithm always stops, because every edge enters the heap~$H$ at most once.
338 As it selects exactly the same edges as the original Jarn\'\i{}k's algorithm,
339 it gives the correct answer.
340
341 The time complexity is $\O(m)$ plus the cost of the heap operations. The algorithm
342 performs at most one \<Insert> or \<Decrease> per edge and exactly one \<DeleteMin>
343 per vertex. There are at most $n$ elements in the heap at any given time,
344 thus by the previous theorem the operations take $\O(m+n\log n)$ time in total.
345 \qed
346
347 \cor
348 For graphs with edge density at least $\log n$, this algorithm runs in linear time.
349
350 \remn{Other heaps}%
351 We can consider using other kinds of heaps that have the property that inserts
352 and decreases are faster than deletes. Of course, the Fibonacci heaps are asymptotically
353 optimal (by the standard $\Omega(n\log n)$ lower bound on sorting by comparisons, see
354 for example \cite{clrs}), so the other data structures can improve only
355 multiplicative constants or offer an~easier implementation.
356
357 A~nice example is the \df{$d$-regular heap} --- a~variant of the usual binary heap
358 in the form of a~complete $d$-regular tree. \<Insert>, \<Decrease> and other operations
359 involving bubbling the values up spend $\O(1)$ time at a~single level, so they run
360 in~$\O(\log_d n)$ time. \<Delete> and \<DeleteMin> require bubbling down, which incurs
361 comparison with all~$d$ sons at every level, so they spend $\O(d\log_d n)$.
362 With this structure, the time complexity of the whole algorithm
363 is $\O(nd\log_d n + m\log_d n)$, which suggests setting $d=m/n$, yielding $\O(m\log_{m/n}n)$.
364 This is still linear for graphs with density at~least~$n^{1+\varepsilon}$.
365
366 Another possibility is to use the 2-3-heaps \cite{takaoka:twothree} or Trinomial
367 heaps \cite{takaoka:trinomial}. Both have the same asymptotic complexity as Fibonacci
368 heaps (the latter even in the worst case, but it does not matter here) and their
369 authors claim faster implementation. For integer weights, we can use Thorup's priority
370 queues described in \cite{thorup:pqsssp} which have constant-time \<Insert> and \<Decrease>
371 and $\O(\log\log n)$ time \<DeleteMin>. (We will however omit the details since we will
372 show a~faster integer algorithm soon.)
373
374 \paran{Combining MST algorithms}%
375 As we already noted, the improved Jarn\'\i{}k's algorithm runs in linear time
376 for sufficiently dense graphs. In some cases, it is useful to combine it with
377 another MST algorithm, which identifies a~part of the MST edges and contracts
378 them to increase the density of the graph. For example, we can perform several Bor\o{u}vka
379 steps  and then find the rest of the MST by the Active Edge Jarn\'\i{}k's algorithm.
380
381 \algn{Mixed Bor\o{u}vka-Jarn\'\i{}k}
382 \algo
383 \algin A~graph~$G$ with an edge comparison oracle.
384 \:Run $\log\log n$ Bor\o{u}vka steps (\ref{contbor}), getting a~MST~$T_1$.
385 \:Run the Active Edge Jarn\'\i{}k's algorithm (\ref{jarniktwo}) on the resulting
386   graph, getting a~MST~$T_2$.
387 \:Combine $T_1$ and~$T_2$ to~$T$ as in the Contraction lemma (\ref{contlemma}).
388 \algout Minimum spanning tree~$T$.
389 \endalgo
390
391 \thm
392 The Mixed Bor\o{u}vka-Jarn\'\i{}k algorithm finds the MST of the input graph in time $\O(m\log\log n)$.
393
394 \proof
395 Correctness follows from the Contraction lemma and from the proofs of correctness of the respective algorithms.
396 As~for time complexity: The first step takes $\O(m\log\log n)$ time
397 (by Lemma~\ref{contiter}) and it gradually contracts~$G$ to a~graph~$G'$ of size
398 $m'\le m$ and $n'\le n/\log n$. The second step then runs in time $\O(m'+n'\log n') = \O(m)$
399 and both trees can be combined in linear time, too.
400 \qed
401
402 \paran{Iterating Jarn\'\i{}k's algorithm}%
403 Actually, there is a~much better choice of the algorithms to combine: use the
404 Active Edge Jarn\'\i{}k's algorithm multiple times, each time stopping it after a~while.
405 A~good choice of the stopping condition is to place a~limit on the size of the heap.
406 We start with an~arbitrary vertex, grow the tree as usually and once the heap gets too large,
407 we conserve the current tree and start with a~different vertex and an~empty heap. When this
408 process runs out of vertices, it has identified a~sub-forest of the MST, so we can
409 contract the edges of~this forest and iterate.
410
411 \algn{Iterated Jarn\'\i{}k; Fredman and Tarjan \cite{ft:fibonacci}}\id{itjar}%
412 \algo
413 \algin A~graph~$G$ with an edge comparison oracle.
414 \:$T\=\emptyset$. \cmt{edges of the MST}
415 \:$\ell(e)\=e$ for all edges~$e$. \cmt{edge labels as usually}
416 \:$m_0\=m$.
417 \:While $n>1$: \cmt{We will call iterations of this loop \df{phases}.}
418 \::$F\=\emptyset$. \cmt{forest built in the current phase}
419 \::$t\=2^{\lceil 2m_0/n \rceil}$. \cmt{the limit on heap size}
420 \::While there is a~vertex $v_0\not\in F$:
421 \:::Run the Active Edge Jarn\'\i{}k's algorithm (\ref{jarniktwo}) from~$v_0$, stop when:
422 \::::all vertices have been processed, or
423 \::::a~vertex of~$F$ has been added to the tree, or
424 \::::the heap has grown to more than~$t$ elements.
425 \:::Denote the resulting tree~$R$.
426 \:::$F\=F\cup R$.
427 \::$T\=T\cup \ell[F]$. \cmt{Remember MST edges found in this phase.}
428 \::Contract all edges of~$F$ and flatten~$G$.
429 \algout Minimum spanning tree~$T$.
430 \endalgo
431
432 \nota
433 For analysis of the algorithm, let us denote the graph entering the $i$-th
434 phase by~$G_i$ and likewise with the other parameters. Let the trees from which
435 $F_i$~has been constructed be called $R_i^1, \ldots, R_i^{z_i}$. The
436 non-indexed $G$, $m$ and~$n$ will correspond to the graph given as~input.
437
438 \para
439 However the choice of the parameter~$t$ can seem mysterious, the following
440 lemma makes the reason clear:
441
442 \lemma\id{ijphase}%
443 Each phase of the Iterated Jarn\'\i{}k's algorithm runs in time~$\O(m)$.
444
445 \proof
446 During the $i$-th phase, the heap always contains at most~$t_i$ elements, so it takes
447 time~$\O(\log t_i)=\O(m/n_i)$ to delete an~element from the heap. The trees~$R_i^j$
448 are edge-disjoint, so there are at most~$n_i$ \<DeleteMin>'s over the course of the phase.
449 Each edge is considered at most twice (once per its endpoint), so the number
450 of the other heap operations is~$\O(m_i)$. Together, it equals $\O(m_i + n_i\log t_i) = \O(m_i+m) = \O(m)$.
451 \qed
452
453 \lemma\id{ijsize}%
454 Unless the $i$-th phase is final, the forest~$F_i$ consists of at most $2m_i/t_i$ trees.
455
456 \proof
457 As every edge of~$G_i$ is incident with at most two trees of~$F_i$, it is sufficient
458 to establish that there are at least~$t_i$ edges incident with every such tree, including
459 edges connecting two vertices of the same tree.
460
461 The forest~$F_i$ evolves by additions of the trees~$R_i^j$. Let us consider the possibilities
462 how the algorithm could have stopped growing the tree~$R_i^j$:
463 \itemize\ibull
464 \:the heap had more than~$t_i$ elements (step~10): since the each elements stored in the heap
465   corresponds to a~unique edge incident with~$R_i^j$, we have enough such edges;
466 \:the algorithm just added a~vertex of~$F_i$ to~$R_i^j$ (step~9): in this case, an~existing
467   tree of~$F_i$ is extended, so the number of edges incident with it cannot decrease;\foot{%
468   This is the place where we needed to count the interior edges as well.}
469 \:all vertices have been processed (step~8): this can happen only in the final phase.
470 \qeditem
471 \endlist
472
473 \thm\id{itjarthm}%
474 The Iterated Jarn\'\i{}k's algorithm finds the MST of the input graph in time
475 $\O(m\timesbeta(m,n))$, where $\beta(m,n):=\min\{ i \mid \log^{(i)}n \le m/n \}$.
476
477 \proof
478 Phases are finite and in every phase at least one edge is contracted, so the outer
479 loop is eventually terminated. The resulting subgraph~$T$ is equal to $\mst(G)$, because each $F_i$ is
480 a~subgraph of~$\mst(G_i)$ and the $F_i$'s are glued together according to the Contraction
481 lemma (\ref{contlemma}).
482
483 Let us bound the sizes of the graphs processed in the individual phases. As the vertices
484 of~$G_{i+1}$ correspond to the components of~$F_i$, by the previous lemma $n_{i+1}\le
485 2m_i/t_i$. Then $t_{i+1} = 2^{\lceil 2m/n_{i+1} \rceil} \ge 2^{2m/n_{i+1}} \ge 2^{2m/(2m_i/t_i)} = 2^{(m/m_i)\cdot t_i} \ge 2^{t_i}$,
486 therefore:
487 $$
488 \left. \vcenter{\hbox{$\displaystyle t_i \ge 2^{2^{\scriptstyle 2^{\scriptstyle\rddots^{\scriptstyle m/n}}}} $}}\;\right\}
489 \,\hbox{a~tower of~$i$ exponentials.}
490 $$
491 As soon as~$t_i\ge n$, the $i$-th phase is final, because at that time
492 there is enough space in the heap to process the whole graph without stopping. So~there are
493 at most~$\beta(m,n)$ phases and we already know that each phase runs in linear
494 time (Lemma~\ref{ijphase}).
495 \qed
496
497 \cor
498 The Iterated Jarn\'\i{}k's algorithm runs in time $\O(m\log^* n)$.
499
500 \proof
501 $\beta(m,n) \le \beta(1,n) \le \log^* n$.
502 \qed
503
504 \cor\id{ijdens}%
505 When we use the Iterated Jarn\'\i{}k's algorithm on graphs with edge density
506 at least~$\log^{(k)} n$ for some $k\in{\bb N}^+$, it runs in time~$\O(km)$.
507
508 \proof
509 If $m/n \ge \log^{(k)} n$, then $\beta(m,n)\le k$.
510 \qed
511
512 \paran{Integer weights}%
513 The algorithm spends most of the time in phases which have small heaps. Once the
514 heap grows to $\Omega(\log^{(k)} n)$ for any fixed~$k$, the graph gets dense enough
515 to guarantee that at most~$k$ phases remain. This means that if we are able to
516 construct a~heap of size $\Omega(\log^{(k)} n)$ with constant time per operation,
517 we can get a~linear-time algorithm for MST. This is the case when the weights are
518 integers:
519
520 \thmn{MST for integer weights, Fredman and Willard \cite{fw:transdich}}\id{intmst}%
521 MST of a~graph with integer edge weights can be found in time $\O(m)$ on the Word-RAM.
522
523 \proof
524 We will combine the Iterated Jarn\'\i{}k's algorithm with the Q-heaps from Section \ref{qheaps}.
525 We modify the first pass of the algorithm to choose $t=\log n$ and use the Q-heap tree instead
526 of the Fibonacci heap. From Theorem \ref{qh} and Remark \ref{qhtreerem} we know that the
527 operations on the Q-heap tree run in constant time, so the modified first phase takes time~$\O(m)$.
528 Following the analysis of the original algorithm in the proof of Theorem \ref{itjarthm} we obtain
529 $t_2\ge 2^{t_1} = 2^{\log n} = n$, so the algorithm stops after the second phase.\foot{%
530 Alternatively, we can use the Q-heaps directly with $k=\log^{1/4}n$ and then the algorithm stops
531 after the third phase.}
532 \qed
533
534 \paran{Further improvements}%
535 Gabow et al.~\cite{gabow:mst} have shown how to speed up the Iterated Jarn\'\i{}k's algorithm to~$\O(m\log\beta(m,n))$.
536 They split the adjacency lists of the vertices to small buckets, keep each bucket
537 sorted and consider only the lightest edge in each bucket until it is removed.
538 The mechanics of the algorithm is complex and there is a~lot of technical details
539 which need careful handling, so we omit the description of this algorithm.
540 A~better algorithm will be shown in Chapter~\ref{optchap}.
541
542 %--------------------------------------------------------------------------------
543
544 \section{Verification of minimality}\id{verifysect}%
545
546 Now we will turn our attention to a~slightly different problem: given a~spanning
547 tree, how to verify that it is minimum? We will show that this can be achieved
548 in linear time and it will serve as a~basis for a~randomized linear-time
549 MST algorithm in Section~\ref{randmst}.
550
551 MST verification has been studied by Koml\'os \cite{komlos:verify}, who has
552 proven that $\O(m)$ edge comparisons are sufficient, but his algorithm needed
553 super-linear time to find the edges to compare. Dixon, Rauch and Tarjan \cite{dixon:verify}
554 have later shown that the overhead can be reduced
555 to linear time on the RAM using preprocessing and table lookup on small
556 subtrees. Later, King has given a~simpler algorithm in \cite{king:verifytwo}.
557
558 In this section, we will follow Koml\'os's steps and study the comparisons
559 needed, saving the actual efficient implementation for later.
560
561 \para
562 To verify that a~spanning tree~$T$ is minimum, it is sufficient to check that all
563 edges outside~$T$ are $T$-heavy (by the Minimality Theorem, \ref{mstthm}). In fact, we will be
564 able to find all $T$-light edges efficiently. For each edge $uv\in E\setminus T$,
565 we will find the heaviest edge of the tree path $T[u,v]$ and compare its weight
566 to $w(uv)$. It is therefore sufficient to solve the following problem:
567
568 \problem
569 Given a~weighted tree~$T$ and a~set of \df{query paths} $Q \subseteq \{ T[u,v] \mid u,v\in V(T) \}$
570 specified by their endpoints, find the heaviest edge \df{(peak)} of every path in~$Q$.
571
572 \paran{Bor\o{u}vka trees}%
573 Finding the peaks can be burdensome if the tree~$T$ is degenerated,
574 so we will first reduce it to the same problem on a~balanced tree. We run
575 the Bor\o{u}vka's algorithm on~$T$, which certainly produces $T$ itself, and we
576 record the order, in which the subtrees have been merged, in another tree~$B(T)$.
577 The peak queries on~$T$ can be then easily translated to peak queries on~$B(T)$.
578
579 \defn
580 For a~weighted tree~$T$ we define its \df{Bor\o{u}vka tree} $B(T)$ as a~rooted tree which records
581 the execution of the Bor\o{u}vka's algorithm run on~$T$. The leaves of $B(T)$
582 are all the vertices of~$T$, an~internal vertex~$v$ at level~$i$ from the bottom
583 corresponds to a~component tree~$C(v)$ formed in the $i$-th iteration of the algorithm. When
584 a~tree $C(v)$ selects an adjacent edge~$e$ and gets merged with some other trees to form
585 a~component $C(u)$, we add an~edge $uv$ to~$B(T)$ and set its weight to $w(e)$.
586
587 \figure{bortree.eps}{\epsfxsize}{An octipede and its Bor\o{u}vka tree}
588
589 \obs
590 As the algorithm finishes with a~single component in the last phase, the Bor\o{u}vka tree
591 is really a~tree. All its leaves are on the same level and each internal vertex has
592 at least two sons. Such trees will be called \df{complete branching trees.}
593
594 \lemma
595 For every tree~$T$ and every pair of its vertices $x,y\in V(T)$, the peak
596 of the path $T[x,y]$ has the same weight as the peak of~the path $B(T)[x,y]$.
597
598 \proof
599 Let us denote the path $T[x,y]$ by~$P$ and its heaviest edge by~$h=ab$. Similarly,
600 let us use $P'$ for $B(T)[x,y]$ and $h'$ for the heaviest edge of~$P'$.
601
602 We will first prove that~$h$ has its counterpart of the same weight in~$P'$,
603 so $w(h') \ge w(h)$. Consider the lowest vertex $u$ of~$B(T)$ such that the
604 component $C(u)$ contains both $a$ and~$b$, and consider the sons $v_a$ and $v_b$ of~$u$
605 for which $a\in C(v_a)$ and $b\in C(v_b)$. As the edge~$h$ must have been
606 selected by at least one of these components, we assume without loss of generality that
607 it was $C(v_a)$, and hence we have $w(uv_a)=w(h)$. We will show that the
608 edge~$uv_a$ lies in~$P'$, because exactly one of the vertices $x$, $y$ lies
609 in~$C(v_a)$. Both cannot lie there, since it would imply that $C(v_a)$,
610 being connected, contains the whole path~$P$, including~$h$. On the other hand,
611 if $C(v_a)$ contained neither~$x$ nor~$y$, it would have to be incident with
612 another edge of~$P$ different from~$h$, so this lighter edge would be selected
613 instead of~$h$.
614
615 In the other direction: for any edge~$uv\in P'$, the tree~$C(v)$ is incident
616 with at least one edge of~$P$, so the selected edge must be lighter or equal
617 to this edge and hence also to~$h$.
618 \qed
619
620 \para
621 We will simplify the problem even further: For an~arbitrary tree~$T$, we split each
622 query path $T[x,y]$ to two half-paths $T[x,a]$ and $T[a,y]$ where~$a$ is the
623 \df{lowest common ancestor} of~$x$ and~$y$ in~$T$. It is therefore sufficient to
624 consider only paths that connect a~vertex with one of its ancestors.
625
626 When we combine the two transforms, we get:
627
628 \lemman{Balancing of trees}\id{verbranch}%
629 For each tree~$T$ on $n$~vertices and a~set~$Q$ of $q$~query paths on~$T$, it is possible
630 to find a~complete branching tree~$T'$, together with a~set~$Q'$ of paths on~$T'$,
631 such that the weights of the heaviest edges of the paths in~$Q$ can be deduced from
632 the same of the paths in~$Q'$. The tree $T'$ has at most $2n$ vertices and $\O(\log n)$
633 levels. The set~$Q'$ contains at most~$2q$ paths and each of them connects a~vertex of~$T'$
634 with one of its ancestors. The construction of~$T'$ involves $\O(n)$ comparisons
635 and the transformation of the answers takes $\O(q)$ comparisons.
636
637 \proof
638 The tree~$T'$ will be the Bor\o{u}vka tree for~$T$, obtained by running the
639 contractive version of the Bor\o{u}vka's algorithm (Algorithm \ref{contbor})
640 on~$T$. The algorithm runs in linear time, for example because trees are planar
641 (Theorem \ref{planarbor}). We therefore spend $\O(n)$ comparisons in it.
642
643 As~$T'$ has~$n$ leaves and it is a~complete branching tree, it has at most~$n$ internal vertices,
644 so~$n(T')\le 2n$ as promised. Since the number of iterations of the Bor\o{u}vka's
645 algorithm is $\O(\log n)$, the depth of the Bor\o{u}vka tree must be logarithmic as well.
646
647 For each query path $T[x,y]$ we find the lowest common ancestor of~$x$ and~$y$
648 and split the path by the two half-paths. This produces a~set~$Q'$ of at most~$2q$ half-paths.
649 The peak of every original query path is then the heavier of the peaks of its halves.
650 \qed
651
652 \paran{Bounding comparisons}%
653 We will now describe a~simple variant of the depth-first search which finds the
654 peaks of all query paths of the balanced problem. As we promised,
655 we will take care of the number of comparisons only, as long as all other operations
656 are well-defined and they can be performed in polynomial time.
657
658 \defn
659 For every edge~$e=uv$, we consider the set $Q_e$ of all query paths containing~$e$.
660 The vertex of a~path, that is closer to the root, will be called the \df{top} of the path,
661 the other vertex its \df{bottom.}
662 We define arrays $T_e$ and~$P_e$ as follows: $T_e$ contains
663 the tops of the paths in~$Q_e$ in order of their increasing depth (we
664 will call them \df{active tops} and each of them will be stored exactly once). For
665 each active top~$t=T_e[i]$, we define $P_e[i]$ as the peak of the path $T[v,t]$.
666
667 \obs
668 As for every~$i$ the path $T[v,T_e[i+1]]$ is contained within $T[v,T_e[i]]$,
669 the edges of~$P_e$ must have non-increasing weights, that is $w(P_e[i+1]) \le
670 w(P_e[i])$.
671 This leads to the following algorithm:
672
673 \alg $\<FindPeaks>(u,p,T_p,P_p)$ --- process all queries located in the subtree rooted
674 at~$u$ entered from its parent via an~edge~$p$.
675 \id{findpeaks}
676
677 \algo
678 \:Process all query paths whose bottom is~$u$ and record their peaks.
679 This is accomplished by finding the index~$i$ of each path's top in~$T_p$ and reading
680 the desired edge from~$P_p[i]$.
681
682 \:For every son~$v$ of~$u$, process the edge $e=uv$:
683
684 \::Construct the array of tops~$T_e$ for the edge~$e$: Start with~$T_p$, remove
685    the tops of the paths that do not contain~$e$ and add the vertex~$u$ itself
686    if there is a~query path which has~$u$ as its top and whose bottom lies somewhere
687    in the subtree rooted at~$v$.
688
689 \::Prepare the array of the peaks~$P_e$: Start with~$P_p$, remove the entries
690    corresponding to the tops that are no longer active. If $u$ became an~active
691    top, append~$e$ to the array.
692
693 \::Finish~$P_e$:
694    Since the paths leading to all active tops have been extended by the
695    edge~$e$, compare $w(e)$ with weights of the edges recorded in~$P_e$ and replace
696    those edges which are lighter by~$e$.
697    Since $P_p$ was sorted, we can use binary search
698    to locate the boundary between the lighter and heavier edges in~$P_e$.
699
700 \::Recurse on~$v$: call $\<FindPeaks>(v,e,T_e,P_e)$.
701 \endalgo
702
703 \>As we need a~parent edge to start the recursion, we add an~imaginary parent
704 edge~$p_0$ of the root vertex~$r$, for which no queries are defined. We can
705 therefore start with $\<FindPeaks>(r,p_0,\emptyset,\emptyset)$.
706
707 Let us account for the comparisons:
708
709 \lemma\id{vercompares}%
710 When the procedure \<FindPeaks> is called on the balanced problem, it
711 performs $\O(n+q)$ comparisons, where $n$ is the size of the tree and
712 $q$ is the number of query paths.
713
714 \proof
715 We will calculate the number of comparisons~$c_i$ performed when processing the edges
716 going from the $(i+1)$-th to the $i$-th level of the tree.
717 The levels are numbered from the bottom, so leaves are at level~0 and the root
718 is at level $\ell\le \lceil \log_2 n\rceil$. There are $n_i\le n/2^i$ vertices
719 at the $i$-th level, so we consider exactly $n_i$ edges. To avoid taking a~logarithm
720 of zero, we define $\vert T_e\vert=1$ for $T_e=\emptyset$.
721 \def\eqalign#1{\null\,\vcenter{\openup\jot
722   \ialign{\strut\hfil$\displaystyle{##}$&$\displaystyle{{}##}$\hfil
723       \crcr#1\crcr}}\,}
724 $$\vcenter{\openup\jot\halign{\strut\hfil $\displaystyle{#}$&$\displaystyle{{}#}$\hfil&\quad#\hfil\cr
725 c_i &\le \sum_e \left( 1 + \log \vert T_e\vert \right)&(Total cost of the binary searches.)\cr
726     &\le n_i + \sum_e \log\vert T_e\vert&(We sum over $n_i$ edges.)\cr
727     &\le n_i + n_i \cdot {\sum_e \log\vert T_e\vert \over n_i}&(Consider the average of logarithms.) \cr
728     &\le n_i + n_i \cdot \log{\sum_e \vert T_e\vert \over n_i}&(Logarithm is concave.) \cr
729     &\le n_i + n_i \cdot \log{q+n\over n_i}&(Bound the number of tops by queries.) \cr
730     &= n_i \cdot \left( 1 + \log\left({q+n\over n}\cdot{n\over n_i}\right) \right)\cr
731     &= n_i + n_i\log{q+n\over n} + n_i\log{n\over n_i}.\cr
732 }}$$
733 Summing over all levels, we estimate the total number of comparisons as:
734 $$
735 c = \sum_i c_i = \left( \sum_i n_i \right) + \left( \sum_i n_i \log{q+n\over n}\right) + \left( \sum_i n_i \log{n\over n_i}\right).
736 $$
737 The first part is equal to~$n$, the second one to $n\log((q+n)/n)\le q+n$. For the third
738 one, we would like to plug in the bound $n_i \le n/2^i$, but we unfortunately have one~$n_i$
739 in the denominator. We save the situation by observing that the function $f(x)=x\log(n/x)$
740 is decreasing\foot{We can easily check the derivative: $f(x)=(x\ln n-x\ln x)/\ln 2$, so $f'(x)\cdot \ln2 =
741 \ln n - \ln x - 1$. We want $f'(x)<0$ and therefore $\ln x > \ln n - 1$, i.e., $x > n/e$.}
742 for $x > n/e$, so for $i\ge 2$ it holds that:
743 $$
744 n_i\log{n\over n_i} \le {n\over 2^i}\cdot\log{n\over n/2^i} = {n\over 2^i} \cdot i.
745 $$
746 We can therefore rewrite the third part as:
747 $$\eqalign{
748 \sum_i n_i\log{n\over n_i} &\le n_0\log{n\over n_0} + n_1\log{n\over n_1} + n\cdot\sum_{i\ge 2}{i\over 2^i} \le\cr
749 &\le n\log1 + n_1\cdot {n\over n_1} + n\cdot\O(1) = \O(n).\cr
750 }$$
751 Putting all three parts together, we conclude that:
752 $$
753 c \le n + (q+n) + \O(n) = \O(n+q). \qedmath
754 $$
755
756 \para
757 When we combine this lemma with the above reduction from general trees to balanced trees, we get the following theorem:
758
759 \thmn{Verification of the MST, Koml\'os \cite{komlos:verify}}\id{verify}%
760 For every weighted graph~$G$ and its spanning tree~$T$, it is sufficient to
761 perform $\O(m)$ comparisons of edge weights to determine whether~$T$ is minimum
762 and to find all $T$-light edges in~$G$.
763
764 \proof
765 We first transform the problem to finding all peaks of a~set
766 of query paths in~$T$ (these are exactly the paths covered by the edges
767 of $G\setminus T$). We use the reduction from Lemma \ref{verbranch} to get
768 an~equivalent problem with a~full branching tree and a~set of parent-descendant
769 paths. The reduction costs $\O(m+n)$ comparisons.
770 Then we run the \<FindPeaks> procedure (Algorithm \ref{findpeaks}) to find
771 the tops of all query paths. According to Lemma \ref{vercompares}, this spends another $\O(m+n)$
772 comparisons. Since we (as always) assume that~$G$ is connected, $\O(m+n)=\O(m)$.
773 \qed
774
775 \paran{Applications}%
776 The problem of computing path maxima or minima in a~weighted tree has several other interesting
777 applications. One of them is computing minimum cuts separating given pairs of vertices in a~given
778 weighted undirected graph~$G$. We construct a~Gomory-Hu tree~$T$ for the graph as described in \cite{gomoryhu}
779 (see also \cite{bhalgat:ght} for a~more efficient algorithm running in time
780 $\widetilde\O(mn)$ for unit-cost graphs). The crucial property of this tree is that for every two
781 vertices $u$, $v$ of the graph~$G$, the minimum-cost edge on $T[u,v]$ has the same cost
782 as the minimum cut separating $u$ and~$v$ in~$G$. Since the construction of~$T$ generally
783 takes $\Omega(n^2)$ time, we could of course invest this time in precomputing the minima for
784 all pairs of vertices. This would however require quadratic space, so we can better use
785 the method of this section which fits in $\O(n+q)$ space for $q$~queries.
786
787 \paran{Dynamic verification}%
788 A~dynamic version of the problem is also often considered. It calls for a~data structure
789 representing a~weighted forest with operations for modifying the structure of the forest
790 and querying minima or maxima on paths. Sleator and Tarjan have shown in \cite{sleator:trees}
791 how to do this in $\O(\log n)$ time amortized per operation, which leads to
792 an~implementation of the Dinic's maximum flow algorithm \cite{dinic:flow}
793 in time $\O(mn\log n)$.
794
795 %--------------------------------------------------------------------------------
796
797 \section{Verification in linear time}\id{verifysect}%
798
799 We have proven that $\O(m)$ edge weight comparisons suffice to verify minimality
800 of a~given spanning tree. Now we will show an~algorithm for the RAM
801 which finds the required comparisons in linear time. We will follow the idea
802 of King from \cite{king:verifytwo}, but as we have the power of the RAM data structures
803 from Section~\ref{bitsect} at our command, the low-level details will be easier,
804 especially the construction of vertex and edge labels.
805
806 \para
807 First of all, let us make sure that the reduction to fully branching trees
808 in the Balancing lemma (\ref{verbranch}) can be made run in linear time. As already noticed
809 in the proof, the Bor\o{u}vka's algorithm runs in linear time. Constructing
810 the Bor\o{u}vka tree in the process adds at most a~constant overhead to every
811 step of the algorithm.
812
813 Finding the common ancestors is not trivial, but Harel and Tarjan have shown
814 in \cite{harel:nca} that linear time is sufficient on the RAM. Several more
815 accessible algorithms have been developed since then (see the Alstrup's survey
816 paper \cite{alstrup:nca} and a~particularly elegant algorithm described by Bender
817 and Falach-Colton in \cite{bender:lca}). Any of them implies the following
818 theorem:
819
820 \thmn{Lowest common ancestors}\id{lcathm}%
821 On the RAM, it is possible to preprocess a~tree~$T$ in time $\O(n)$ and then
822 answer lowest common ancestor queries presented online in constant time.
823
824 \cor
825 The reductions in Lemma \ref{verbranch} can be performed in time $\O(m)$.
826
827 \para
828 Having the balanced problem at hand, it remains to implement the procedure \<FindPeaks>
829 of Algorithm \ref{findpeaks} efficiently. We need a~compact representation of
830 the arrays $T_e$ and~$P_e$, which will allow to reduce the overhead of the algorithm
831 to time linear in the number of comparisons performed. To achieve
832 this goal, we will encode the arrays in RAM vectors (see Section \ref{bitsect}
833 for the vector operations).
834
835 \defn
836
837 \em{Vertex identifiers:} Since all vertices processed by the procedure
838 lie on the path from the root to the current vertex~$u$, we modify the algorithm
839 to keep a~stack of these vertices in an~array. We will often refer to each vertex by its
840 index in this array, i.e., by its depth. We will call these identifiers \df{vertex
841 labels} and we note that each label requires only $\ell=\lceil \log\lceil\log n\rceil\rceil$
842 bits. As every tree edge is uniquely identified by its bottom vertex, we can
843 use the same encoding for \df{edge labels.}
844
845 \em{Slots:} As we are going to need several operations which are not computable
846 in constant time on the RAM, we precompute tables for these operations
847 like we did in the Q-heaps (cf.~Lemma \ref{qhprecomp}). A~table for word-sized
848 arguments would take too much time to precompute, so we will generally store
849 our data structures in \df{slots} of $s=\lceil 1/3\cdot\log n\rceil$ bits each.
850 We will soon show that it is possible to precompute a~table of any reasonable
851 function whose arguments fit in two slots.
852
853 \em{Top masks:} The array~$T_e$ will be represented by a~bit mask~$M_e$ called the \df{top mask.} For each
854 of the possible tops~$t$ (i.e., the ancestors of the current vertex), we store
855 a~single bit telling whether $t\in T_e$. Each top mask fits in $\lceil\log n\rceil$
856 bits and therefore in a~single machine word. If needed, it can be split to three slots.
857 Unions and intersections of sets of tops then translate to $\band$/$\bor$
858 on the top masks.
859
860 \em{Small and big lists:} The heaviest edge found so far for each top is stored
861 by the algorithm in the array~$P_e$. Instead of keeping the real array,
862 we store the labels of these edges in a~list encoded in a~bit string.
863 Depending on the size of the list, we use one of two possible encodings:
864 \df{Small lists} are stored in a~vector that fits in a~single slot, with
865 the unused fields filled by a~special constant, so that we can easily infer the
866 length of the list.
867
868 If the data do not fit in a~small list, we use a~\df{big list} instead. It
869 is stored in $\O(\log\log n)$ words, each of them containing a~slot-sized
870 vector. Unlike the small lists, we use the big lists as arrays. If a~top~$t$ of
871 depth~$d$ is active, we keep the corresponding entry of~$P_e$ in the $d$-th
872 field of the big list. Otherwise, we keep that entry unused.
873
874 We want to perform all operations on small lists in constant time,
875 but we can afford spending time $\O(\log\log n)$ on every big list. This
876 is true because whenever we use a~big list, $\vert T_e\vert = \Omega(\log n/\log\log n)$,
877 hence we need $\log\vert T_e\vert = \Omega(\log\log n)$ comparisons anyway.
878
879 \em{Pointers:} When we need to construct a~small list containing a~sub-list
880 of a~big list, we do not have enough time to see the whole big list. To handle
881 this, we introduce \df{pointers} as another kind of edge identifiers.
882 A~pointer is an~index to the nearest big list on the path from the small
883 list containing the pointer to the root. As each big list has at most $\lceil\log n\rceil$
884 fields, the pointer fits in~$\ell$ bits, but we need one extra bit to distinguish
885 between regular labels and pointers.
886
887 \lemman{Precomputation of tables}
888 When~$f$ is a~function of up to two arguments computable in polynomial time, we can
889 precompute a~table of the values of~$f$ for all values of arguments that fit
890 in a~single slot. The precomputation takes $\O(n)$ time.
891
892 \proof
893 Similar to the proof of Lemma \ref{qhprecomp}. There are $\O(2^{2s}) = \O(n^{2/3})$
894 possible values of arguments, so the precomputation takes time $\O(n^{2/3}\cdot\poly(s))
895 = \O(n^{2/3}\cdot\poly(\log n)) = \O(n)$.
896 \qed
897
898 \example
899 As we can afford spending $\O(n)$ time on preprocessing,
900 we can assume that we can compute the following functions in constant time:
901
902 \itemize\ibull
903 \:$\<Weight>(x)$ --- the Hamming weight of a~slot-sized number~$x$
904 (we already considered this operation in Algorithm \ref{lsbmsb}, but we needed
905 quadratic word size for it). We can easily extend this function to $\log n$-bit numbers
906 by splitting the number in three slots and adding their weights.
907
908 \:$\<FindKth>(x,k)$ --- the $k$-th set bit from the top of the slot-sized
909 number~$x$. Again, this can be extended to multi-slot numbers by calculating
910 the \<Weight> of each slot first and then finding the slot containing the
911 $k$-th~\1.
912
913 \:$\<Bits>(m)$ --- for a~slot-sized bit mask~$m$, it returns a~small list
914 of the positions of the bits set in~$\(m)$.
915
916 \:$\<Select>(x,m)$ --- constructs a~slot containing the substring of $\(x)$
917 selected by the bits set in~$\(m)$.
918
919 \:$\<SubList>(x,m)$ --- when~$x$ is a~small list and~$m$ a bit mask, it returns
920 a~small list containing the elements of~$x$ selected by the bits set in~$m$.
921 \endlist
922
923 \para
924 We will now show how to perform all parts of the procedure \<FindPeaks>
925 in the required time. We will denote the size of the tree by~$n$ and the
926 number of query paths by~$q$.
927
928 \lemma
929 Depths of all vertices and all top masks can be computed in time $\O(n+q)$.
930
931 \proof
932 Run depth-first search on the tree, assign the depth of a~vertex when entering
933 it and construct its top mask when leaving it. The top mask can be obtained
934 by $\bor$-ing the masks of its sons, excluding the level of the sons and
935 including the tops of all query paths that have their bottoms at the current vertex
936 (the depths of the tops are already assigned).
937 \qed
938
939 \lemma\id{verth}%
940 The arrays $T_e$ and~$P_e$ can be indexed in constant time.
941
942 \proof
943 Indexing~$T_e$ is exactly the operation \<FindKth> applied on the corresponding
944 top mask~$M_e$.
945
946 If $P_e$ is stored in a~big list, we calculate the index of the particular
947 slot and the position of the field inside the slot. This field can be then
948 extracted using bit masking and shifts.
949
950 If it is a~small list, we extract the field directly, but we have to
951 dereference it in case it is a pointer. We modify the recursion in \<FindPeaks>
952 to pass the depth of the lowest edge endowed with a~big list and when we
953 encounter a~pointer, we index this big list.
954 \qed
955
956 \lemma\id{verhe}%
957 For an~arbitrary active top~$t$, the corresponding entry of~$P_e$ can be
958 extracted in constant time.
959
960 \proof
961 We look up the precomputed depth~$d$ of~$t$ first.
962 If $P_e$ is stored in a~big list, we extract the $d$-th entry of the list.
963 If the list is small, we find the position of the particular field
964 by counting bits of the top mask~$M_e$ at position~$d$ and higher
965 (this is \<Weight> of $M_e$ with the lower bits masked out).
966 \qed
967
968 \lemma\id{verfh}%
969 The procedure \<FindPeaks> processes an~edge~$e$ in time $\O(\log \vert T_e\vert + q_e)$,
970 where $q_e$~is the number of query paths having~$e$ as its bottom edge.
971
972 \proof
973 The edge is examined in steps 1, 3, 4 and~5 of the algorithm. We will show how to
974 perform each of these steps in constant time if $P_e$ is a~small list or
975 $\O(\log\log n)$ if it is big.
976
977 \em{Step~1} looks up $q_e$~tops in~$P_e$ and we already know from Lemma \ref{verhe}
978 how to do that in constant time per top.
979
980 \em{Step~3} is trivial as we have already computed the top masks and we can
981 reconstruct the entries of~$T_e$ in constant time according to Lemma \ref{verth}.
982
983 \em{Step~5} involves binary search on~$P_e$ in $\O(\log\vert T_e\vert)$ comparisons,
984 each of them indexes~$P_e$, which is $\O(1)$ again by Lemma \ref{verth}. Rewriting the
985 lighter edges is $\O(1)$ for small lists by replication and bit masking, for a~big
986 list we do the same for each of its slots.
987
988 \em{Step~4} is the only non-trivial one. We already know which tops to select
989 (we have the top masks $M_e$ and~$M_p$ precomputed), but we have to carefully
990 extract the sublist.
991 We need to handle these four cases:
992
993 \itemize\ibull
994 \:\em{Small from small:} We use $\<Select>(T_e,T_p)$ to find the fields of~$P_p$
995 that shall be deleted by a~subsequent call to \<SubList>. Pointers
996 can be retained as they still refer to the same ancestor list.
997
998 \:\em{Big from big:} We can copy the whole~$P_p$, since the layout of the
999 big lists is fixed and the items, which we do not want, simply end up as unused
1000 fields in~$P_e$.
1001
1002 \:\em{Small from big:} We use the operation \<Bits> to construct a~list
1003 of pointers (we use bit masking to add the ``this is a~pointer'' flags).
1004
1005 \:\em{Big from small:} First we have to dereference the pointers in the
1006 small list~$S$. For each slot~$B_i$ of the ancestor big list, we construct
1007 a~subvector of~$S$ containing only the pointers referring to that slot,
1008 adjusted to be relative to the beginning of the slot (we use \<Compare>
1009 and \<Replicate> from Algorithm \ref{vecops} and bit masking). Then we
1010 use a~precomputed table to replace the pointers by the fields of~$B_i$
1011 they point to. We $\bor$ together the partial results and we again have
1012 a~small list.
1013
1014 Finally, we have to spread the fields of this small list to the whole big list.
1015 This is similar: for each slot of the big list, we find the part of the small
1016 list keeping the fields we want (we call \<Weight> on the sub-words of~$M_e$ before
1017 and after the intended interval of depths) and we use a~tabulated function
1018 to shift the fields to the right locations in the slot (controlled by the
1019 sub-word of~$M_e$ in the intended interval).
1020 \qeditem
1021 \endlist
1022
1023 \>We are now ready to combine these steps and get the following theorem:
1024
1025 \thmn{Verification of MST on the RAM}\id{ramverify}%
1026 There is a~RAM algorithm which for every weighted graph~$G$ and its spanning tree~$T$
1027 determines whether~$T$ is minimum and finds all $T$-light edges in~$G$ in time $\O(m)$.
1028
1029 \proof
1030 Implement the Koml\'os's algorithm from Theorem \ref{verify} with the data
1031 structures developed in this section.
1032 According to Lemma \ref{verfh}, the algorithm runs in time $\sum_e \O(\log\vert T_e\vert + q_e)
1033 = \O(\sum_e \log\vert T_e\vert) + \O(\sum_e q_e)$. The second sum is $\O(m)$
1034 as there are $\O(1)$ query paths per edge, the first sum is $\O(\#\hbox{comparisons})$,
1035 which is $\O(m)$ by Theorem \ref{verify}.
1036 \qed
1037
1038 \>In Section \ref{kbestsect}, we will need a~more specialized statement:
1039
1040 \cor\id{rampeaks}%
1041 There is a~RAM algorithm which for every weighted tree~$T$ and a~set~$P$ of
1042 paths in~$T$ calculates the peaks of these paths in time $\O(n(T) + \vert P\vert)$.
1043
1044 \paran{Verification on the Pointer Machine}\id{pmverify}%
1045 Buchsbaum et al.~\cite{buchsbaum:verify} have recently shown that linear-time
1046 verification can be achieved even on the Pointer Machine. They first solve the
1047 problem of finding the lowest common ancestors for a~set of pairs of vertices
1048 by batch processing: They combine an~algorithm of time complexity $\O(m\timesalpha(m,n))$
1049 based on the Disjoint Set Union data structure with the framework of topological graph
1050 computations described in Section \ref{bucketsort}. Then they use a~similar
1051 technique for finding the peaks themselves.
1052
1053 \paran{Online verification}%
1054 The online version of this problem has turned out to be more difficult. It calls for an~algorithm
1055 that preprocesses the tree and then answers queries for peaks of paths presented online. Pettie
1056 \cite{pettie:onlineverify} has proven an~interesting lower bound based on the inverses of the
1057 Ackermann's function. If we want to answer queries within $t$~comparisons, we
1058 have to invest $\Omega(n\log\lambda_t(n))$ time into preprocessing.\foot{$\lambda_t(n)$ is the
1059 $t$-th row inverse of the Ackermann's function, $\alpha(n)$ is its diagonal inverse. See
1060 \ref{ackerinv} for the exact definitions.} This implies that with
1061 preprocessing in linear time, the queries require $\Omega(\alpha(n))$ time.
1062
1063 %--------------------------------------------------------------------------------
1064
1065 \section{A randomized algorithm}\id{randmst}%
1066
1067 When we analysed the Contractive Bor\o{u}vka's algorithm in Section~\ref{contalg},
1068 we observed that while the number of vertices per iteration decreases exponentially,
1069 the number of edges generally does not, so we spend $\Theta(m)$ time on every phase.
1070 Karger, Klein and Tarjan \cite{karger:randomized} have overcome this problem by
1071 combining the Bor\o{u}vka's algorithm with filtering based on random sampling.
1072 This leads to a~randomized algorithm which runs in linear expected time.
1073
1074 The principle of the filtering is simple: Let us consider any spanning tree~$T$
1075 of the input graph~$G$. Each edge of~$G$ that is $T$-heavy is the heaviest edge
1076 of some cycle, so by the Red lemma (\ref{redlemma}) it cannot participate in
1077 the MST of~$G$. We can therefore discard all $T$-heavy edges and continue with
1078 finding the MST on the reduced graph. Of course, not all choices of~$T$ are equally
1079 good, but it will soon turn out that when we take~$T$ as the MST of a~randomly selected
1080 subgraph, only a~small expected number of edges remains.
1081
1082 Selecting a~subgraph at random will unavoidably produce disconnected subgraphs
1083 at occasion, so we will drop the implicit assumption that all graphs are
1084 connected for this section and we will always search for the minimum spanning forest.
1085 As we already noted (\ref{disconn}), with a~little bit of care our
1086 algorithms and theorems keep working.
1087
1088 Since we need the MST verification algorithm for finding the $T$-heavy edges,
1089 we will assume that we are working on the RAM.
1090
1091 \lemman{Random sampling, Karger \cite{karger:sampling}}\id{samplemma}%
1092 Let $H$~be a~subgraph of~$G$ obtained by including each edge independently
1093 with probability~$p$. Let further $F$~be the minimum spanning forest of~$H$. Then the
1094 expected number of $F$-nonheavy\foot{That is, $F$-light edges and also edges of~$F$ itself.}
1095 edges in~$G$ is at most $n/p$.
1096
1097 \proof
1098 Let us observe that we can obtain the forest~$F$ by running the Kruskal's algorithm
1099 (\ref{kruskal}) combined with the random process producing~$H$ from~$G$. We sort all edges of~$G$
1100 by their weights and we start with an~empty forest~$F$. For each edge, we first
1101 flip a~biased coin (that gives heads with probability~$p$) and if it comes up
1102 tails, we discard the edge. Otherwise we perform a~single step of the Kruskal's
1103 algorithm: We check whether $F+e$ contains a~cycle. If it does, we discard~$e$, otherwise
1104 we add~$e$ to~$F$. At the end, we have produced the subgraph~$H$ and its MSF~$F$.
1105
1106 When we  exchange the check for cycles with flipping the coin, we get an~equivalent
1107 algorithm which will turn out to be more convenient to analyse:
1108 \algo
1109 \:If $F+e$ contains a~cycle, we immediately discard~$e$ (we can flip
1110 the coin, but we need not to, because the edge will be discarded regardless of
1111 the outcome). We note that~$e$ is $F$-heavy with respect to both the
1112 current state of~$F$ and the final MSF.
1113 \:If $F+e$ is acyclic, we flip the coin:
1114 \::If it comes up heads, we add~$e$ to~$F$. In this case, $e$~is neither $F$-light
1115    nor $F$-heavy.
1116 \::If it comes up tails, we discard~$e$. Such edges are $F$-light.
1117 \endalgo
1118
1119 The number of $F$-nonheavy edges is therefore equal to the total number of the coin
1120 flips in step~2 of this algorithm. We also know that the algorithm stops before
1121 it adds $n$~edges to~$F$. Therefore it flips at most as many coins as a~simple
1122 random process that repeatedly flips until it gets~$n$ heads. As waiting for
1123 every occurrence of heads takes expected time~$1/p$, waiting for~$n$ heads
1124 must take $n/p$. This is the bound we wanted to achieve.
1125 \qed
1126
1127 \para
1128 We will formulate the algorithm as a~doubly-recursive procedure. It alternatively
1129 performs steps of the Bor\o{u}vka's algorithm and filtering based on the above lemma.
1130 The first recursive call computes the MSF of the sampled subgraph, the second one
1131 finds the MSF of the original graph, but without the heavy edges.
1132
1133 As in all contractive algorithms, we use edge labels to keep track of the
1134 original locations of the edges in the input graph. For the sake of simplicity,
1135 we do not mention it in the algorithm explicitly.
1136
1137 \algn{MSF by random sampling --- the KKT algorithm}\id{kkt}%
1138 \algo
1139 \algin A~graph $G$ with an~edge comparison oracle.
1140 \:Remove isolated vertices from~$G$. If no vertices remain, stop and return an~empty forest.
1141 \:Perform two Bor\o{u}vka steps (iterations of Algorithm \ref{contbor}) on~$G$ and
1142   remember the set~$B$ of the edges having been contracted.
1143 \:Select a~subgraph~$H\subseteq G$ by including each edge independently with
1144   probability $1/2$.
1145 \:$F\=\msf(H)$ calculated recursively.
1146 \:Construct $G'\subseteq G$ by removing all $F$-heavy edges of~$G$.
1147 \:$R\=\msf(G')$ calculated recursively.
1148 \:Return $R\cup B$.
1149 \algout The minimum spanning forest of~$G$.
1150 \endalgo
1151
1152 \nota
1153 Let us analyse the time complexity of this algorithm by studying properties of its \df{recursion tree.}
1154 This tree describes the subproblems processed by the recursive calls. For any vertex~$v$
1155 of the tree, we denote the number of vertices and edges of the corresponding subproblem~$G_v$
1156 by~$n_v$ and~$m_v$ respectively.
1157 If $m_v>0$, the recursion continues: the left son of~$v$ corresponds to the
1158 call on the sampled subgraph~$H_v$, the right son to the reduced graph~$G^\prime_v$.
1159 (Similarly, we use letters subscripted with~$v$ for the state of the other variables
1160 of the algorithm.)
1161 The root of the recursion tree is obviously the original graph~$G$, the leaves are
1162 trivial graphs with no edges.
1163
1164 \obs
1165 The Bor\o{u}vka steps together with the removal of isolated vertices guarantee that the number
1166 of vertices drops at least by a~factor of four in every recursive call. The size of a~subproblem~$G_v$
1167 at level~$i$ is therefore at most $n/4^i$ and the depth of the tree is at most $\lceil\log_4 n\rceil$.
1168 As there are no more than~$2^i$ subproblems at level~$i$, the sum of all~$n_v$'s
1169 on that level is at most $n/2^i$, which is at most~$2n$ when summed over the whole tree.
1170
1171 We are going to show that the worst case of the KKT algorithm is not worse than
1172 of the plain contractive algorithm, while the average case is linear.
1173
1174 \lemma
1175 For every subproblem~$G_v$, the KKT algorithm runs in time $\O(m_v+n_v)$ plus the time
1176 spent on the recursive calls.
1177
1178 \proof
1179 We know from Lemma \ref{contiter} that each Bor\o{u}vka step takes time $\O(m_v+n_v)$.\foot{We
1180 add $n_v$ as the graph could be disconnected.}
1181 The selection of the edges of~$H_v$ is straightforward.
1182 Finding the $F_v$-heavy edges is not, but we have already shown in Theorem \ref{ramverify}
1183 that linear time is sufficient on the RAM.
1184 \qed
1185
1186 \thmn{Worst-case complexity of the KKT algorithm}
1187 The KKT algorithm runs in time $\O(\min(n^2,m\log n))$ in the worst case on the RAM.
1188
1189 \proof
1190 The argument for the $\O(n^2)$ bound is similar to the analysis of the plain
1191 contractive algorithm. As every subproblem~$G_v$ is a~simple graph, the number
1192 of its edges~$m_v$ is less than~$n_v^2$. By the previous lemma, we spend time
1193 $\O(n_v^2)$ on it. Summing over all subproblems yields $\sum_v \O(n_v^2) =
1194 \O((\sum_v n_v)^2) = \O(n^2)$.
1195
1196 In order to prove the $\O(m\log n)$ bound, it is sufficient to show that the total time
1197 spent on every level of the recursion tree is $\O(m)$. Suppose that $v$~is a~vertex
1198 of the recursion tree with its left son~$\ell$ and right son~$r$. Some edges of~$G_v$
1199 are removed in the Bor\o{u}vka steps, let us denote their number by~$b_v$.
1200 The remaining edges fall either to~$G_\ell = H_v$, or to $G_r = G^\prime_v$, or possibly
1201 to both.
1202
1203 We can observe that the intersection $G_\ell\cap G_r$ cannot be large: The edges of~$H_v$ that
1204 are not in the forest~$F_v$ are $F_v$-heavy, so they do not end up in~$G_r$. Therefore the
1205 intersection can contain only the edges of~$F_v$. As there are at most $n_v/4$ such edges,
1206 we have $m_\ell + m_r + b_v \le m_v + n_v/4$.
1207
1208 On the other hand, the first Bor\o{u}vka step selects at least $n_v/2$ edges,
1209 so $b_v \ge n_v/2$. The duplication of edges between $G_\ell$ and~$G_r$ is therefore
1210 compensated by the loss of edges by contraction and $m_\ell + m_r \le m_v$. So the total
1211 number of edges per level does not decrease and it remains to apply the previous lemma.
1212 \qed
1213
1214 \thmn{Expected complexity of the KKT algorithm}\id{kktavg}%
1215 The expected time complexity of the KKT algorithm on the RAM is $\O(m)$.
1216
1217 \proof
1218 The structure of the recursion tree depends on the random choices taken,
1219 but as its worst-case depth is at most~$\lceil \log_4 n\rceil$, the tree
1220 is always a~subtree of the complete binary tree of that depth. We will
1221 therefore prove the theorem by examining the complete tree, possibly with
1222 empty subproblems in some vertices.
1223
1224 The left edges of the tree (edges connecting a~parent with its left
1225 son) form a~set of \df{left paths.} Let us consider the expected time spent on
1226 a~single left path. When walking the path downwards from its top vertex~$r$,
1227 the expected size of the subproblems decreases exponentially: for a~son~$\ell$
1228 of a~vertex~$v$, we have $n_\ell \le n_v/4$ and $\E m_\ell = \E m_v/2$. The
1229 expected total time spend on the path is therefore $\O(n_r+m_r)$ and it remains
1230 to sum this over all left paths.
1231
1232 With the exception of the path going from the root of the tree,
1233 the top~$r$ of a~left path is always a~right son of a~unique parent vertex~$v$.
1234 Since the subproblem~$G_r$ has been obtained from its parent subproblem~$G_v$
1235 by filtering out all heavy edges, we can use the Sampling lemma (\ref{samplemma}) to show that
1236 $\E m_r \le 2n_v$. The sum of the expected sizes of all top subproblems is
1237 then $\sum_r n_r + m_r \le \sum_v 3n_v = \O(n)$. After adding the exceptional path
1238 from the root, we get $\O(m+n)=\O(m)$.
1239 \qed
1240
1241 \paran{High probability}%
1242 There is also a~high-probability version of the above theorem. According to
1243 Karger, Klein and Tarjan \cite{karger:randomized}, the time complexity
1244 of the algorithm is $\O(m)$ with probability $1-\exp(-\Omega(m))$. The proof
1245 again follows the recursion tree and it involves applying the Chernoff bound
1246 \cite{chernoff} to bound the tail probabilities.
1247
1248 \paran{Different sampling}%
1249 We could also use a~slightly different formulation of the Sampling lemma
1250 suggested by Chan \cite{chan:backward}. He changes the selection of the subgraph~$H$
1251 to choosing an~$mp$-edge subset of~$E(G)$ uniformly at random. The proof is then
1252 a~straightforward application of the backward analysis method. We however preferred
1253 the Karger's original version, because generating a~random subset of a~given size
1254 requires an~unbounded number of random bits in the worst case.
1255
1256 \paran{On the Pointer Machine}%
1257 The only place where we needed the power of the RAM is finding the heavy edges,
1258 so we can employ the pointer-machine verification algorithm mentioned in \ref{pmverify}
1259 to bring the results of this section to the~PM.
1260
1261 \endpart