1 * Minimum Spanning Trees
5 o Red/Blue meta-algorithm
7 o Contractive algorithms
9 * Fine Details of Computation
16 * Advanced MST Algorithms
18 o Minor-closed classes
19 o Fredman-Tarjan algorithm
21 o Linear-time verification
22 o A randomized algorithm
23 o Special cases and related problems
25 * Approaching Optimality
30 o An optimal algorithm
32 * Dynamic MST algorithms
34 o (Semi-)dynamic algorithms
36 o Fully dynamic connectivity
39 * Ranking Combinatorial Objects
41 o Ranking and unranking
42 o Ranking of permutations
43 o Ranking of k-permutations
44 o Restricted permutations
45 o Hatcheck lady and other derangements
47 . ?? general perspective ??
53 - move TOC to the beginning of the book
57 - G has to be connected, so m=O(n)
61 - cite Eisner's tutorial \cite{eisner:tutorial}
62 - Some algorithms (most notably Fredman-Tarjan) do not need flattening
63 - use the notation for contraction by a set
64 - mention bugs in Valeria's verification paper
65 * Lemma: deletion of a non-MST edge does not alter the MST
69 - degree-restricted cases and arborescences
70 - bounded expansion classes?
75 - the general perspective: is it only a technical trick?
76 - ranking of permutations on general sets, relationship with integer sorting
77 - JN: explain approx scheme
78 - JN: 4.5.1: neslo by preci isolovat nejaky vlstnosti restriction matrices
79 tak aby byl speedup? Staci napr predpokladat 4.5.2 (jako to postulovat)
80 co je to vlastne za matice co splnuji 4.5.2
81 - JN: bounded-degree restriction graphs; would it imply general speedup?
85 - use \delta(X) notation
86 - unify use of n(G) vs. n
87 - introduce \widehat\O early
91 - formatting of multi-line \algin, \algout
92 - use calligraphic letters from ams?
96 - each chapter should make clear in which model we work
97 - clean up bibliography
101 - structure of a Q-heap