]> mj.ucw.cz Git - ads2.git/blob - 8-fft/8-fft.tex
Pridana originalni verze obrazku.
[ads2.git] / 8-fft / 8-fft.tex
1 \input lecnotes.tex
2 \prednaska{8}{Fourierova transformace}{(K.Jakubec, M.Polák a G.Ocsovszky)}
3
4 Násobení polynomù mù¾e mnohým pøipadat jako pomìrnì (algoritmicky) snadný problém. Asi ka¾dého hned napadne \uv{hloupý} algoritmus -- vezmeme koeficienty prvního polynomu a vynásobíme ka¾dý se v¹emi koeficienty druhého polynomu a pøíslu¹nì u toho vynásobíme i exponenty (stejnì jako to dìláme, kdy¾ násobíme polynomy na papíøe). Pokud stupeò prvního polynomu je $n$ a druhého $m$, tak èasová slo¾itost nám vyjde $\O(mn)$. To není a¾ tak ¹patné, v nejhor¹ím pøípadì se dostaneme na $\O(n^{2})$ (pokud $m = n$). Na první pohled se mù¾e zdát, ¾e rychleji to prostì nejde (pøeci musíme v¾dy vynásobit \uv{ka¾dý s ka¾dým}). Ve skuteènosti to ale rychleji fungovat mù¾e, ale k tomu je potøeba znát trochu tajemný algoritmus FFT neboli {\I Fast Fourier Transform}.
5
6
7 \ss{Trochu algebry na zaèátek:}
8 \>Libovolný polynom $P$ stupnì $n$ mù¾e být reprezentován dvìma rùznými zpùsoby:
9
10 \itemize\ibull
11 \:svými koeficienty, èili èísly $a_{0}, a_{1}, \ldots ,a_{n}$, nebo
12 \:svými hodnotami v $n$ rùzných bodech $x_{0}, x_{1}, \ldots , x_{n}$, èili èísly $P(x_{0}),$ $P(x_{1}),$ $\ldots , P(x_{n})$.
13 \endlist
14
15 \ss{Konvence}
16 \>Celé polynomy oznaèujeme velkými písmeny, jednotlivé èleny polynomù pak pøíslu¹nými malými písmeny. (Pø.: Polynom $W$ stupnì $n$ má èleny $w_{1}, w_{2},\ldots, w_{n}$.)
17
18 \>Pov¹imnìme si jedné skuteènosti -- máme-li dva polynomy $A$ a $B$ stupnì $n$ a body $x_{0}, \ldots, x_{k}$, pak platí $C(x_{k}) = A(x_{k}) \cdot B(x_{k}), k = 0,1,2, \ldots, n.$ Toto èiní tento druhý zpùsob reprezentace polynomu velice atraktivním pro násobení. Problémem je, ¾e typicky máme polynom zadaný koeficienty a ne hodnotami v bodech. Tím pádem potøebujeme nìjaký hodnì rychlý algorimtus (tj. rychlej¹í ne¾ kvadratický, jinak bychom si nepomohli oproti hloupému algoritmu) na pøevod polynomu z jedné reprezentace do druhé a zase zpìt.
19
20 Dále bychom si mìli uvìdomit, ¾e stupeò na¹eho výsledného polynomu $C$ bude $\leq 2n$ (kde $n$ je stupeò výchozích polynomù). To snad netøeba nijak vysvìtlovat, ka¾dý si to snadno ovìøí, jen dodáme, ¾e pokud chceme polynom $C$ reprezentovat pomocí jeho hodnot v bodech, musíme vzít alespoò $2n$ bodù. Tímto konèí malá algebraická vsuvka.
21
22 \s{Idea, jak by mìl algoritmus pracovat:}
23 \algo
24 \:Vybereme $2n$ bodù $x_{0}, x_{1}, \ldots , x_{2n}$.
25 \:V tìchto bodech vyhodnotíme polynomy $A$ a $B$.
26 \:Nyní ji¾ v lineárním èase získáme polynom $C$ (viz vý¹e).
27 \:Inverznì pøevedeme hodnoty polynomu $C$ v $2n$ bodech na jeho koeficienty.
28 \endalgo
29
30 \>Je asi vidìt, ¾e klíèové jsou kroky 2 a 4. Vybrání bodù jistì stihneme pohodlnì v lineárním èase a vynásobení samotných hodnot té¾ (máme $2n$ bodù a $C(x_{k}) = A(x_{k}) \cdot B(x_{k}), k = 0,1,2, \ldots , 2n$, tak¾e na to nepotøebujeme více ne¾ $2n$ násobení).
31
32 Celý trik spoèívá v chytrém vybrání onìch bodù, ve kterých budeme polynomy vyhodnocovat. Je na to potøeba vìdìt pár zajímavostí o komplexních èíslech, na stránce Matrina Mare¹e jsou k dispozici slajdy, zde to bude zapsáno o trochu struènìji.
33
34 \ss{  Vyhodnocení polynomu metodou Rozdìl a panuj (algoritmus FFT):}
35 Mìjme polynom $P$ øádu $n$ a chceme jej vyhodnotit v $n$ bodech. Vybereme si body tak, aby byly spárované, èili $\pm x_{0}, \pm x_{1}, \ldots , \pm x_{n/2} $. To nám výpoèet urychlí, proto¾e pak se druhé mocniny $x_{j}$ shodují s druhými mocninami $-x_{j}$.
36
37 Polynom $P$ rozlo¾íme na dvì èásti, první obsahuje èleny se sudými exponenty, druhá s lichými:
38 $P(x) = p_{0}x^{0} + p_{2}x^{2} + \ldots + p_{n-2}x^{n-2} + p_{1}x^{1} + p_{3}x^{3} + \ldots + p_{n-1}x^{n-1}$
39
40 $S(x^{2}) = p_{0}x^{0} + p_{2}x^{2} + \ldots + p_{n - 2}x^{n - 2}$,
41 $L(x^{2}) = p_{1}x^{1} + p_{3}x^{3} + \ldots + p_{n - 1}x^{n - 1}$
42
43 \>Tak¾e obecnì $P(x) = S(x^{2}) + xL(x^{2})$ a $P(-x) = S(x^{2}) - xL(x^{2})$.
44 Jinak øeèeno, vyhodnocování $P$ v $n$ bodech se nám smrskne na vyhodnocení $S(x)$ a $L(x)$ (oba jsou polynomy stupnì $n/2$ a vyhodcujeme je nyní v $x^{2}$) v $n/2$ bodech (proto¾e $(x_{i})^{2} = (-x_{i})^{2}$).
45
46 \s{Pøíklad:}
47 $3 + 4x + 6x^{2} + 2x^{3} + x^{4} + 10x^{5} = (3 + 6x^{2} + x^{4}) + x(4 + 2x^{2} + 10x^{4})$.
48
49
50 Teï nám ov¹em vyvstane problém s oním párováním -- druhá mocina pøece nemù¾e být záporná a tím pádem u¾ v druhé úrovni rekurze body spárované nebudou. Z tohoto dùvodu musíme pou¾ít komplexní èísla -- tam druhé mocniny záporné býti mohou. Jako $x_{0}, \ldots , x_{n-1} $ si zvolíme $n$-tou primitvní odmocninu z jedné (oznaèíme si ji jako $\omega$). Máme $n$ $n$-tých primitivních odmocnin z jednièky, rovnomìrnì rozesetých po jednotkové kru¾nici, BÚNO $n=2^{k}, k \in N$ (jinak viz slajdy Martina Mare¹e). Jednotlivé odmociny vypadají takto: $1, \omega, \omega^{2}, \ldots , \omega^{n - 1} $, kde $\omega = e^{2 \pi i/ n}$.
51
52 \s{Dvì poznámky:}
53 \itemize\ibull
54 \:primitivní $n$-té odmocniny z jednièky jsou spárované, èili $\omega^{j} = -\omega^{n/2 + j}$,
55 \:umocníme-li v¹echny na druhou, vznikne nám $n/2$ $n/2$-tých odmocnin z jedné, které jsou i nadále spárované.
56 \endlist
57
58 \ss{Tak a teï koneènì ten slavný algoritmus:}
59 \>FFT($P$, $ \omega$)
60
61 \>{\sl Vstup:} $p_{0}, \ldots , p_{n-1}$, koeficienty polynomu $P$, a $\omega$, $n-$tá odmocina z jedné.
62
63 \>{\sl Výstup:} Hodnoty polynomu v~bodech $1, \omega, \omega^{2}, \ldots , \omega^{n - 1}$, èili èísla $P(1), P(\omega), P(\omega^{2}),$ $\ldots , P(\omega^{n - 1})$.
64
65 \algo
66 \:Pokud $n = 1$, vra» $P_{0}$ a konec.
67 \:Jinak rozdìl $P$ na sudé a liché koeficienty rekurzivnì zavolej FFT($S$, $\omega^{2}$) a FFT($L$, $\omega^{2}$).
68 \:Pro $j = 0, \ldots , n - 1$ spoèítej: $P(\omega^{j}) = S(\omega^{2j}) + \omega^{j} \cdot L(\omega^{2j})$.
69
70 \endalgo
71
72
73 \s{Èasová slo¾itost:}
74 \>$T(n)=2T(n/2) + \O(n) \Rightarrow$ slo¾itost $\O(n \log n)$, stejnì jako MergeSort.
75
76
77
78
79 Máme tedy algoritmus, který \uv{pøevede} koeficienty polynomu na hodnoty tohoto polynomu v rùzných bodech .
80 Ale potøebujeme také algoritmus, který doká¾e reprezentaci polynomu pomocí hodnot pøevést zpìt na koeficienty polynomu.
81 Tedy nìjaký inverzní algoritmus. Definujeme si DFT - diskrétní Fourierovu transformaci, která vyu¾ívá
82  maticovou reprezentaci a s její¾ pomocí získáme hledaný algoritmus.
83
84 \s{Definice:}
85 >{\I Diskretní Fourierova transformace} $(DFT)$
86 je funkce $f: { {\bb C} ^n} \rightarrow { {\bb C} ^n}$, kde $y=f(x) \equiv \forall j \ y_{j} = \sum \limits ^{n-1}_{k=0} x_{k} . \omega ^{k}$.
87
88 \s{Poznámka:}
89 Vezmeme polynom, který má $x_{kj}$ jako koeficienty a vyhodnotíme ho v~bodì 
90 $\omega ^{j} [y_{j} = x(\omega^{j})] \Rightarrow {f}$ je linearní $\Rightarrow$ mù¾eme napsat $f(x) = \Omega . x ,\ \Omega _{jk} =\omega ^{jk}$, kde $\Omega$ je matice.
91
92
93 \s{Jak najít inverzní matici?} Víme, ¾e $\Omega =\Omega ^{T}$ proto¾e $\omega ^{jk} = \omega ^{kj}$.
94
95 \ss{Jak vypadají øádky této matice?}
96 Vyu¾ijeme následující lemma, které si ale napøed doká¾eme :)
97
98 \ss{Lemma:}
99
100 \quad $\Omega _{j} \cdot \Omega _{k} = \left\{
101 {\displaystyle 0 \ldots j\neq k}\atop
102 {\displaystyle 1 \ldots j=k}
103 \right.$.
104
105 \s{Dùkaz:}
106 \proof Souèin
107 $$\Omega _{j} \Omega _{k} = \sum \limits ^{n-1}_{l=0} \Omega _{jl} \overline{\Omega _{kl}} = \sum \limits _{l} \omega ^{jl} \overline{\omega ^{kl}} = \sum \limits _{l} \omega ^{jl} \omega ^{-kl} = \sum \limits _{l} \omega ^{(j-k)l } = \sum \limits ^{n-1}_{l=0} (\omega^{j-k}) ^{l}, $$
108
109 proto¾e $ \overline{\omega^{kl}} = \overline{\omega} ^{kl} = {({1 \over \omega} )}^{kl} = \omega ^{-kl}$.
110
111 \itemize\ibull
112 \:Pokud $j\neq k$, pou¾ijeme vzoreèek pro souèet geometrické posloupnosti, kde $a_{1}=1$ a $q=\omega ^{(j-k) }$ a dostaneme ${{\omega^{(j-k)n} -1} \over {\omega^{(j-k)} -1}} ={1-1 \over @ -1} = {0 \over \neq 0} = 0$.
113
114 \:Pokud $j=k \sum \limits ^{n-1}_{l=0} (\omega ^{0}) ^{l} = n$.
115 \endlist
116 \qed
117
118
119
120 \s{Dùsledek:} \quad $\Omega \cdot \overline{\Omega} = nE$.
121
122
123 \>Jedná se o skalární souèin (jako pøedtím, èili prvek na pozici $ij$ je $0$ nebo $n$) $\Rightarrow\Omega^{-1} = {1 \over n} \overline{\Omega}$.
124
125
126 \>Na¹li jsme inverzi:
127
128 $\Omega({1 \over n} \overline{\Omega}) = {1 \over n}\Omega \cdot \overline{\Omega} = E$, \quad
129 $\Omega^{-1}_{jk} = {1 \over n}\overline{\omega^{jk}} = {1 \over n}\omega^{-jk} = {1 \over n} {(\omega^{-1})}^{jk}$, \quad
130 kde $\omega^{-1}$ je $\overline{\omega}$.
131
132
133 \>Ná¹ algoritmus poèítá tedy i inverzní transformaci, pouze místo $\omega_n$ pou¾ijeme komplexnì zdru¾ené
134  $\overline{\omega_n}$ a matici vynásobíme $(1/n)$. Co¾ je skvìlé -- 
135  staèí znát pouze jeden algoritmus u~kterého staèí v~jednom pøípadì pou¾ít transformovanou matici a vydìlit $n$.
136
137 \s{Vìta:} Pro $n= 2^k$ lze DFT na ${\bb C}^n$ spoèítat v~èase $\O(n \log n)$ a DFT$^{-1}$ takté¾.
138
139 \s{Dùsledek:}
140
141 \>Polynomy stupnì $n$ lze násobit v èase $\O(n \log n)$:
142 $\O(n \log n)$ pro vyhodnocení, $\O(n)$ pro vynásobení a $\O(n \log n)$ pro pøevedení zpìt.
143
144 \s{Pou¾ití:}
145
146 \itemize\ibull
147
148 \:Zpracování signálu -- rozklad na siny a cosiny o~rùzných frekvencích $\Rightarrow$ spektrální rozklad.
149 \:komprese dat -- napøíklad formát JPEG.
150 \:Násobení dlouhých èísel v èase $\O(n \log n)$.
151 \endlist
152
153 \s{Hardwareová implementace FFT -- takzvaná motýlková m:}
154
155 \figure{img.eps}{Pøíklad prùbìhu algoritmu na vstupu velikosti 8}{3in}
156
157
158 \>Obrázek ukazuje zapojení kombinaèního obvodu pro DFT pro vstup velikosti 8. Èíslo $\log n$ znaèí poèet hladin, tj. u nás $\log 8 = 3$ hladiny.
159
160 \>Základem je kombinaèní obvod tzv. motýlek. (Na obrázku znázornìn dvìma èarami, pøekøí¾enými v jejich støedech). Co motýlek dìlá? Podívejme se na následující obrázek.
161
162 \figure{img2.eps}{Kombinaèní obvod tzv. motýlek}{3in}
163
164 \>vstup jsou komplexní èísla $x_1$ a $x_2$ a výstup komplexní èísla $y_1$ a $y_2$
165 \>$y_1 = x_1 + \omega^j \cdot x_2$
166 \>$y_2 = x_1 - \omega^j \cdot x_2$
167
168 \>kde index $j$ znaèí
169
170 \>V¹imìme si poøadí vstupních hodnot(koeficientù). Èísla jsou v binarním tvaru 0-7 pøeètená pozpátku.
171
172 \s{Z toho:}
173
174 \itemize\ibull
175 \:Kombinaèní obvod pro DFT
176 s~$\O(\log n)$ hladinami
177 a $\O(n)$ hradly na hladinì.
178 \:Nerekurzivní algoritmus (postupujeme zleva) v~èase $\O(n \log n)$.
179
180 \endlist
181
182
183 \bye