]> mj.ucw.cz Git - ads1.git/blob - 8-ds/8-ds.tex
DS: Korektury od Karla
[ads1.git] / 8-ds / 8-ds.tex
1 \input ../lecnotes.tex
2
3 % Vkladani obrazku
4 \input ../mjipe.tex
5 \def\treepic#1{
6 \medskip
7 \IpeInput{treepic/t#1.ipe}
8 \medskip
9 }
10
11 \prednaska{8}{Datové struktury}{}
12
13 Co si mù¾eme pøedstavit pod pojmem datová struktura? V na¹ich programech èasto chceme
14 nìkteré vìci abstrahovat (pou¾itím funkcí, objektù\dots). Proè tedy nezkusit
15 abstrahovat i operace s daty? Napøed si urèíme, co s na¹imi daty budeme provádìt a pak
16 vymyslíme jejich co nejrychlej¹í reprezentaci.
17
18 Mù¾eme tøeba chtít udr¾ovat koneènou mno¾inu $X$ prvkù z nìjakého universa $X\subseteq
19 U$. Kde universum mohou být napøíklad pøirozená èísla, tedy universum mù¾e být
20 nekoneèné narozdíl od $X$.
21
22 Na na¹ich datech budeme chtít provádìt následující operace: 
23 \itemize\ibull
24 \:{\it Insert} -- vlo¾it novou polo¾ku
25 \:{\it Delete} -- smazat polo¾ku
26 \:{\it Find} -- najít polo¾ku
27 \endlist
28
29 Jak mìøit èasovou slo¾itost? Urèitì nechceme mìøit vùèi délce vstupu, proto¾e ho
30 nemusíme mít celý najednou ve struktuøe. Èasovou slo¾itost jednotlivých operací
31 poèítejme vzhledem k poètu prvkù obsa¾ených v datové struktuøe.
32
33 Také mù¾eme chtít udr¾ovat slovník, tedy mno¾inu dvojic $(k, v)$ kde $k\in U$ se
34 nazývá klíè a $v$ hodnota. Dále pøedpokládejme, ¾e $U$ je lineárnì uspoøádaná a s prvky
35 pracujeme v konstantním èase.
36
37 Dále budeme zkoumat jen slovník, proto¾e mno¾ina je jen jeho speciálním pøípadem.
38
39 Po slovníku budeme chtít:
40 \itemize\ibull
41 \:{\it Insert($k$, $v$)} -- vlo¾it novou hodnotu spolu s klíèem
42 \:{\it Delete($k$)} -- smazat polo¾ku podle klíèe
43 \:{\it Find($k$)} -- najít polo¾ku podle klíèe
44 \endlist
45
46 V následující tabulce jsou nìkteré mo¾né zpùsoby reprezentace na¹í datové struktury.
47
48 \settabs 4 \columns
49 \+                      & Insert        & Delete        & Find \cr
50 \+ pole                 & $\Theta (1)$  & $\Theta (n)$  & $\Theta (n)$ \cr
51 \+ setøídìné pole       & $\Theta (n)$  & $\Theta (n)$  & $\Theta (\log n)$ \cr
52 \+ spojový seznam       & $\Theta (1)$  & $\Theta (n)$  & $\Theta (n)$ \cr
53 \+ setøídìný seznam     & $\Theta (n)$  & $\Theta (n)$  & $\Theta (n)$ \cr
54 \+ vyhledávací stromy   & $\Theta (\log n)$     & $\Theta (\log n)$     & $\Theta (\log n)$ \cr
55
56 \s{Pozorování:} Proces binárního vyhledávání v~setøídìném poli se dá reprezentovat
57 binárním vyhledávacím stromem.
58
59 \s{Definice:} {\I Binární strom:} Strom je binární, pokud je zakoøenìný a ka¾dý vrchol
60 má nejvý¹e dva syny, u nich¾ rozli¹ujeme, který je levý a který pravý.
61
62 \s{Definice:} Pro vrchol $v$ znaèíme:
63 \itemize\ibull
64 \:$l(v)$ a $p(v)$ -- levý a pravý syn vrcholu $v$
65 \:$L(v)$ a $P(v)$ -- levý a pravý podstrom vrcholu $v$
66 \:$S(v)$ -- pøíslu¹ný podstrom s~koøenem $v$
67 \:$h(v)$ -- hloubka stromu $S(v)$ -- délka nejdel¹í cesty z koøene do listu
68 \endlist
69
70 \s{Definice:} {\I Binární vyhledávací strom} (BVS): Binární strom je vyhledávací,
71 pokud v~ka¾dém vrcholu je ulo¾ena dvojice (klíè, hodnota) [ztoto¾níme vrchol s~klíèem]
72 a pro v¹echny vrcholy platí: $\left ( \forall u \in L(v) : u < v \right ) $ $ \&$ $
73 \left ( \forall u \in P(v) : u > v \right)$.
74
75 \s{Pøíklady binárních vyhledávacích stromù:}
76
77 \treepic{2}
78
79 Jak budou tedy vypadat operace {\it Find}, {\it Insert} a {\it Delete} na~binárním
80 vyhledávacím stromu?
81
82 {\bo Find$(v,x)$:}
83 \algo
84 \:Pokud $v = \emptyset \Rightarrow$ vrátíme $\emptyset$.
85 \:Pokud $v = x \Rightarrow$ vrátíme $v$.
86 \:Pokud $v < x \Rightarrow$ vrátíme $\<Find>(p(v),x)$.
87 \:Pokud $v > x \Rightarrow$ vrátíme $\<Find>(l(v),x)$.
88 \endalgo
89
90 {\bo Insert$(v,x)$:}
91 \algo
92 \:Jako \<Find> a na~konci pøidáme list.
93 \endalgo
94
95 {\bo Delete$(v)$:}
96 \algo
97 \:Pokud $v$ je list $\Rightarrow$ jednodu¹e list utrhneme.
98 \:Pokud $v$ má jednoho syna $\Rightarrow$ vrchol \uv{vyøízneme}.
99 \:Jinak má $v$ oba syny $\Rightarrow$ do vrcholu vlo¾íme minimum z $P(v)$, minimum u¾
100 umíme smazat proto¾e je to buï list nebo má jen pravého syna.
101 \endalgo
102
103 \s{Poznámka:} Pokud má vrchol $v$ pøi operaci {\it Delete} oba syny, je vlo¾ení minima
104 z $P(v)$ ekvivalentní s~vlo¾ením maxima z $L(v)$.
105
106 \break 
107
108 \s{Pøíklady operací  {\it Insert} a {\it Delete} na~BVS:}
109 \treepic{1}
110 \treepic{3}
111
112 Èasová slo¾itost v¹ech tøí operací je $\Theta(\<hloubka stromu>)$, co¾ mù¾e být
113 $\Theta(n)$, kdy¾ budeme mít smùlu a strom bude (témìø) lineární spojový seznam.
114 Takovéto degenerované stromy vzniknou snadno, napøíklad pøidáváním setøídìné
115 posloupnosti. Naopak kdy¾ bude strom pìknì vyvá¾enì vystavìný dostaneme slo¾itost
116 $\Theta(\log{n})$. Vidíme tedy, ¾e slo¾itost operací stojí a padá s~hloubkou stromu.
117 Proto by se nám líbilo, aby mìl ná¹ strom v¾dy hloubku $\Theta(\log{n})$. Podívejme se
118 tedy, jak se dá navrhnout binární vyhledávací strom, aby tuto podmínku splòoval \dots
119
120 \h{Vyvá¾ené binární vyhledávací stromy}
121
122 \s{Definice:} {\I Dokonalá vyvá¾enost:} Strom je dokonale vyvá¾ený, pokud pro v¹echny
123 jeho vrcholy platí: $\left \vert \vert L(v)\vert - \vert P(v)\vert \right \vert \leq 1
124 $.
125
126 Takto definovaný binární strom bude mít urèitì logaritmickou hloubku. Jak takový strom
127 ale konstruovat? To se nám podaøí buï staticky, nebo na~nìm budou operace dra¾¹í ne¾
128 $\Theta(\log{n})$.
129
130 \s{Statická konstrukce dokonale vyvá¾eného BVS:} Vybereme prostøední prvek ze
131 setøídìného pole (tedy medián posloupnosti) a dáme ho do~koøene stromu. Jeho syny pak
132 vystavíme rekurzivnì z~levé a pravé pùlky pole. Celá konstrukce tedy trvá $\O(n)$.
133
134 \s{Lemma:} buï {\it Insert} nebo {\it Delete} v dokonale vyvá¾eném BVS trvají $\Omega(n)$ (ve
135 skuteènosti oba, ale dùkaz je mnohem obtí¾nìj¹í).
136
137 \proof Nech» $n=2^k-1$. Pak má dokonale vyvá¾ený BVS urèený tvar a je jednoznaèné, co
138 je v koøeni. Nech» nejmen¹í èíslo ve stromì je $x$ a nejvìt¹í je $x+n-1$.
139
140 Proveïme posloupnost operací $$\<Insert>(x+n), \<Delete>(x), \<Insert>(x+n+1),
141 \<Delete>(x+1)
142 \dots$$ v¾dy se aspoò polovina listù posune o patro vý¹. Víme ¾e listù v na¹em stromì
143 je $(n+1)/2$. Tedy aspoò jedna z operací {\it Insert} nebo {\it Delete} trvá $\Omega (n)$.
144
145 Vidíme tedy, ¾e to ná¹ problém pøíli¹ neøe¹í. Potøebovali bychom, aby se strom dal
146 také efektivnì udr¾ovat. Zkusíme proto slab¹í podmínku:
147
148 \s{Definice:} {\I Hloubková vyvá¾enost:} Strom je hloubkovì vyvá¾ený, pokud pro
149 v¹echny jeho vrcholy platí: $\left \vert h(L(v)) - h(P(v)) \right \vert \leq 1 $.
150
151 Stromùm s~hloubkovým vyvá¾ením se øíká {\I AVL stromy} (objeviteli je ru¹tí
152 matematikové G. M. Adìµson-Veµskij a E. M. Landis, podle nich jsou také pojmenovány) a
153 platí o~nich následující lemma:
154
155 \s{Lemma:} AVL strom na~$n$ vrcholech má hloubku $ \Theta(\log{n}) $.
156
157 \proof Uva¾me posloupnost $A_k = $ minimální poèet vrcholù AVL stromù hloubky $k$.
158 Staèí ukázat, ¾e $A_k$ roste exponenciálnì.
159
160 Jak bude vypadat minimální AVL strom o $k$ hladinách? S poètem hladin urèitì poroste
161 poèet vrcholù, proto pro ka¾dý vrchol budeme chtít, aby se hloubky jeho synù li¹ily.
162 Tedy koøen bude mít syna hloubky $k-1$ a syna hloubky $k-2$, takové ¾e jeho synové
163 jsou minimální AVL stromy o daném poètu hladin.
164
165 Podívejme se na minimální AVL stromy:
166 $$\eqalign{
167 A_0 &= 1 \cr
168 A_1 &= 2 \cr
169 A_2 &= 4 \cr
170 A_3 &= 7 \cr
171 &\vdots \cr
172 A_k &= 1 + A_{k - 1} + A_{k - 2}. \cr
173 }$$
174
175 Rekurentní vzorec jsme dostali rekurzivním stavìním stromu hloubky $k$: nový koøen a 2
176 podstromy o~hloubkách $k - 1$ a $k - 2$.
177
178 Vidíme tedy, ¾e $A_n = F_{n + 2} - 1$. (Mù¾eme dokázat napø. indukcí.) Teï nám ji¾
179 staèí dokázat, ¾e posloupnost $A_k$ roste aspoò exponenciálnì.
180
181 Indukcí doká¾eme, ¾e $ A_k \geq 2^{k \over 2} $. První indukèní krok jsme si u¾
182 ukázali, teï pro $ k \geq 2 $ platí: $ A_k = 1 + A_{k - 1} + A_{k - 2} > 2^{{k - 1}
183 \over 2} + 2^{{k - 2} \over 2} = 2^{k \over 2} \cdot (2^{-{1 \over 2}} + 2^{-1}) \cong
184 2^{k \over 2} \cdot 1.21 > 2^{k \over 2}.$
185
186 Tímto jsme dokázali, ¾e na~ka¾dé hladinì je minimálnì exponenciálnì vrcholù, co¾ nám
187 zaruèuje hloubku $\O(\log{n})$. Druhou nerovnost nahlédneme zkoumáním $B_k$
188 maximálního poètu vrcholù AVL stromu hloubky $k$.
189 \qed
190
191 \bye