]> mj.ucw.cz Git - ads2.git/blob - 3-goldberg/3-goldberg.tex
Goldberg: Oprava preklepu.
[ads2.git] / 3-goldberg / 3-goldberg.tex
1 \input lecnotes.tex
2
3 \prednaska{3}{Goldbergùv algoritmus}{(zapsala Markéta Popelová)}
4
5 Pøedstavíme si~nový algoritmus pro~hledání maximálního toku v~síti, který se~uká¾e být stejnì dobrý jako {\I Dinicùv algoritmus} ($\O(MN^{2})$) a~po~nìkolika vylep¹eních bude i~lep¹í. Nejdøíve si~pøipomeòme definice, které budeme potøebovat:
6
7 \s{Definice:} Mìjme sí» $S=(V,E,z,s,c)$, tok~$f$ a~libovolný vrchol~$v$. Pak $f^{\Delta}(v)$ nazýváme {\I pøebytek} ve~vrcholu~$v$ a~definujeme ho takto: $$f^{\Delta}(v):=\sum_{uv \in E}{f(uv)} - \sum_{vu \in E}{f(vu)}.$$ Pøebytek ve~vrcholu~$v$ je tedy souèet v¹eho, co do~vrcholu~$v$ pøiteèe, minus souèet v¹eho, co z~$v$ odteèe.
8
9 \s{Definice:} Dále pro~libovolnou hranu~$uv \in E$ definujeme její {\I rezervu} následovnì:
10 $$r(uv) = c(uv) - f(uv) + f(vu).$$ Rezerva hrany znaèí, co je¹tì je mo¾no po~této hranì poslat.
11
12 \s{Poznámka:} Dále budeme oznaèovat písmenem~$N$ poèet vrcholù a~$M$ poèet hran, tedy~$N = \vert V \vert$ a~$M = \vert E \vert$.
13
14 Goldbergùv algoritmus na~rozdíl od~Dinicova algoritmu zaèíná s~ohodnocením hran, které pravdìpodobnì není tokem (budeme ho nazývat {\I vlna}), a~postupnì ho zmen¹uje a¾ na~korektní tok.
15
16 \s{Definice:} Funkce $f:E \rightarrow {\bb R}_{0}^{+}$ je {\I vlna} v~síti~$(V, E, z, s, c)$ tehdy, kdy¾ jsou splnìny následující dvì podmínky:
17         \numlist\ndotted
18         \:$\forall e \in E : f(e) \leq c(e)$ (vlna na hranì nepøekroèí kapacitu hrany)
19         \:$ \forall v \in V \setminus \{z, s\} : f^{\Delta}(v) \geq 0$ (pøebytek ve vrcholu je nezáporný).
20         \endlist
21
22 \s{Pozorování:} Ka¾dý tok~$f$ je také vlna, ale opaènì to obvykle platit nemusí.
23
24 \s{Operace:} {\I Pøevedení pøebytku}
25
26 Algoritmus bude potøebovat pøevádìt pøebytky z~vrcholu~$u$ na~sousední vrchol~$v$. Mìjme hranu~$uv$ s~kladnou rezervou $r(uv) > 0$ a~kladným pøebytkem ve~vrcholu~$u$: $f^\Delta(u) > 0$. Èást pøebytku budeme chtít poslat z~vrcholu~$u$ do~vrcholu~$v$. Vezmeme $\delta := \min (f^\Delta(u), r(uv))$ a~po~hranì~$uv$ po¹leme tok o velikosti~$\delta$. Výsledná situace bude vypadat následovnì:
27         \itemize\ibull
28         \:$f'^\Delta(u) = f^\Delta(u) - \delta$.
29         \:$f'^\Delta(v) = f^\Delta(v) + \delta$.
30         \:$r'(uv) = r(uv) - \delta$.
31         \:$r'(vu) = r(vu) + \delta$.
32         \endlist
33         
34 Kdybychom ov¹em nepøidali ¾ádnou jinou podmínku, ná¹ algoritmus by se~mohl krásnì zacyklit (napø. posílat pøebytek z~$u$ do~$v$ a~zase zpátky). Abychom se~tomu vyhnuli, zavedeme {\I vý¹ku vrcholu} $h: V \to {\bb N}$ a~dovolíme pøevádìt pøebytek pouze z~vy¹¹ího vrcholu~$u$ na~ni¾¹í $v$: $h(u) > h(v)$.
35
36 \s{Shrnutí:} Podmínky pro~pøevedení pøebytku po~hranì $uv \in E$:
37         \numlist\ndotted
38         \:Ve~vrcholu~$u$ je nenulový pøebytek: $f^{\Delta}(u) > 0$.
39         \:Vrchol~$u$ je vý¹ ne¾ vrchol~$v$: $h(u) > h(v)$.
40         \:Hrana~$uv$ má nenulovou rezervu: $r(uv)>0$.
41         \endlist
42
43
44 \s{Operace:} Pro~vrchol~$u \in V$ definujme {\I zvednutí vrcholu}:
45 Pokud bìhem výpoètu narazíme ve~vrcholu~$u$ na~pøebytek, který nelze nikam pøevést, zvìt¹íme vý¹ku vrcholu~$u$ o~jednièku, tj. $h(u) \leftarrow h(u)+1$.
46
47
48 \s{Algoritmus (Goldbergùv)}
49
50 \algo
51 \:$\forall v \in V: h(v)\leftarrow 0$ (v¹em vrcholùm nastavíme poèáteèní vý¹ku nula) a~$h(z)\leftarrow N$ (zdroj zvedneme do~vý¹ky~$N$).
52 \:$\forall e \in E: f(e)\leftarrow 0$ (po~hranách nejdøíve nenecháme protékat nic) a~$\forall zu \in E : f(zu)\leftarrow c(zu)$ (ze~zdroje pustíme maximální mo¾nou vlnu).
53 \:Dokud $\exists u \in V \setminus \{z,s\}: f^{\Delta}(u)>0$:
54 \::Pokud $\exists v \in V: uv \in E,~r(uv)>0$ a~$h(u)>h(v)$, pak pøevedeme pøebytek po~hranì z~$u$ do~$v$.
55 \::V~opaèném pøípadì zvedneme $u$:~$h(u) \leftarrow h(u) + 1$..
56 \:Vrátíme tok~$f$ jako výsledek.
57 \endalgo
58
59 \noindent
60 Nyní bude následovat nìkolik lemmat a~invariantù, jimi¾ doká¾eme správnost a~èasovou slo¾itost Goldbergova algoritmu.
61
62 \s{Invariant A (základní):}
63         \numlist \ndotted
64         \:Funkce~$f$ je v~ka¾dém kroku algoritmu vlna.
65         \:$h(v)$ nikdy neklesá pro~¾ádné~$v$.
66         \:$h(z)=N$ a~$h(s)=0$ po~celou dobu bìhu algoritmu.
67         \endlist
68
69 \proof Indukcí dle poètu prùchodù cyklem (3. -- 5. krok algoritmu).
70
71 Na zaèátku je v¹e v~poøádku ($f$ je nulová funkce, pøebytky v¹ech vrcholù jsou nezáporné, tedy~$f$ je vlna, $h(z)=N$ a~$h(s)=0$). V~prùbìhu se~tyto hodnoty mìní pouze pøi:
72         \itemize\ibull
73         \:Pøevedení po~hranì~$uv$: Po hranì~$uv$ se~nepo¹le více ne¾ její rezerva. Pøebytek~$u$ se~sní¾í, ale nejménì na~nulu. Pøebytek~$v$ se~zvý¹í. Tedy~$f$ zùstává vlnou. Vý¹ky se~nemìní.
74         \:Zvednutí vrcholu~$u$: Mìní pouze vý¹ky -- a~to vrcholù rùzných od zdroje èi stoku -- a~pouze se zvy¹ují.
75         \qeditem
76         \endlist
77
78 \s{Invariant S (o~Spádu):} Neexistuje hrana $uv \in E: r(uv)>0$ \& $h(u) > h(v)+1$ (s~kladnou rezervou a~spádem vìt¹ím ne¾ jedna).
79
80 \proof Indukcí dle bìhu algoritmu.
81
82 Na zaèátku mají v¹echny hrany ze~zdroje rezervu nulovou a~v¹echny ostatní vedou mezi vrcholy s~vý¹kou 0. V~prùbìhu by se~tento invariant mohl pokazit pouze dvìma zpùsoby:
83         \itemize\ibull
84         \:Zvednutím vrcholu~$u$, ze~kterého vede hrana~$uv$ s~kladnou rezervou a~spádem 1. Tento pøípad nemù¾e nastat, nebo» hranu zvedáme pouze tehdy, kdy¾ neexistuje vrchol~$v$ takový, ¾e hrana~$uv$ má kladnou rezervu a~spád alespoò 1. Takový vrchol v~na¹em pøípadì existuje, proto se~místo zvednutí vrcholu~$u$ po¹le pøebytek po~hranì~$uv$.
85         \:Zvìt¹ením rezervy hrany se~spádem vìt¹ím ne¾ 1. Toto také nemù¾e nastat, nebo» rezervu bychom mohli zvìt¹it jedinì tak, ¾e bychom poslali nìco v~protismìru -- a~to nesmíme, jeliko¾ bychom poslali pøebytek z~ni¾¹ího vrcholu na~vy¹¹í.
86         \qeditem
87         \endlist
88
89 \s{Definice:} Cestu~$P$ nazveme {\I nenasycenou}, pokud v¹echny její hrany mají kladnou rezervu. Neboli $\forall e \in P: r(e) > 0$.
90
91 \s{Lemma K (o~Korektnosti):} Kdy¾ se~algoritmus zastaví, je~$f$ maximální tok.
92
93 \proof Dùkaz rozlo¾me do~dvou krokù. Nejdøíve uká¾eme, ¾e~$f$ je tok, a~pak jeho maximalitu.
94
95         \numlist\ndotted
96         \:Nech» se~algoritmus zastavil. Pak nemohl existovat ¾ádný vrchol~$v$ (kromì zdroje a~stoku) s~kladným pøebytkem. Tedy $\forall v \in V~\setminus \{z,s\}: f^\Delta(v) = 0$. (Víme ji¾, ¾e~$f$ je po~celou dobu vlna, tak¾e pøebytek nemù¾e být nikdy záporný.) V~tom pøípadì splòuje~$f$ podmínky toku.
97         \:Pro spor pøedpokládejme, ¾e tok~$f$ není maximální. Pak existuje nenasycená cesta ze~zdroje do~stoku. Vezmìme si~libovolnou takovou cestu. Zdroj je stále ve~vý¹ce~$N$ a~spotøebiè ve~vý¹ce 0 (viz invariant A). Tato cesta tedy pøekonává vý¹ku~$N$, ale mù¾e mít nejvý¹e~$N-1$ hran. Proto existuje alespoò jedna hrana se~spádem alespoò 2. Tato hrana tedy nemù¾e mít kladnou rezervu (viz invariant S). Tato cesta proto nemù¾e být zlep¹ující, co¾ je spor. Tím jsme dokázali, ¾e~$f$ je nutnì maximální tok.
98         \qeditem
99         \endlist
100         
101 \s{Lemma C (Cesta):} Mìjme vrchol $v \in V$. Pokud $f^{\Delta}(v) > 0$, pak existuje nenasycená cesta z~vrcholu~$v$ do~zdroje.
102
103 \proof
104 Pro vrchol~$v \in V$ s $f^{\Delta}(v) > 0$ definujme mno¾inu $A := \{ u \in V : \exists$ nenasycená cesta z~$v$ do~$u \}$.
105
106 Seètìme pøebytky ve~v¹ech vrcholech mno¾iny~$A$. Pøebytek ka¾dého vrcholu se~spoèítá jako souèet tokù do~nìj vstupujících minus souèet tokù z~nìj vystupujících. V¹echny hrany, jejich¾ oba vrcholy le¾í v~$A$, se~jednou pøiètou a~jednou odeètou. Proto nás budou zajímat pouze hrany mezi~$A$ a~$V \setminus A$.
107
108  $$\sum_{u \in A}f^{\Delta}(u) = \underbrace{ \sum_{ab \in E \cap ( (V \setminus A) \times A )} f(ab) }\limits_{=0} -  \underbrace{ \sum_{ab \in E \cap (  A \times (V \setminus A) )} f(ab) }\limits_{\geq 0}~\leq~0.$$
109
110 Uka¾me si, proè je první svorka rovna nule. Mìjme vrcholy $a \in V \setminus A$ a~$b \in A$ takové, ¾e $ab\in E$. O~nich víme, ¾e $r(ba) = 0$ (jinak by~$a$ patøilo do~$A$) $\Rightarrow f(ba) = c(ba) \Rightarrow f(ab)=0$. Proto do~$A$ nic nepøitéká.
111
112 \figure{Goldberg01.eps}{Obrázek k dùkazu lemmatu C}{0.2\hsize}
113
114 Proè je druhá svorka nezáporná, je zøejmé, nebo» tok na~hranì je v¾dy nezáporný a~souèet nezáporných èísel je nezáporné èíslo.
115
116 Proto $\sum_{u \in A}{f^\Delta(u) \le 0}$. Zároveò v¹ak v~$A$ je aspoò jeden vrchol s~kladným pøebytkem, toti¾~$v$, proto v~$A$ musí být také vrchol se~záporným pøebytkem -- a~jediný takový je zdroj. Tím je dokázáno, ¾e $z \in A$, tedy ¾e vede nenasycená cesta z~vrcholu~$v$ do~zdroje.
117
118 \qed
119
120 \s{Invariant V (Vý¹ka):} $\forall v \in V$ platí $h(v)\leq 2N$.
121
122 \proof
123 Kdyby existoval vrchol~$v$ s~vý¹kou $h(v) > 2N$, tak by musel být nìkdy zvednut z~vý¹ky~$2N$. Tehdy musel mít kladný pøebytek $f^\Delta(v)>0$ (jinak by nemohl být zvednut). Dle lemmatu C musela existovat nenasycená cesta z~$v$ do~zdroje. Tato cesta mìla spád alespoò~$N$, ale mohla mít nejvý¹e~$N-1$ hran (jinak by to nebyla cesta v~síti na~$N$ vrcholech). Tudí¾ musela na~této cestì existovat hrana se~spádem alespoò 2, co¾ je spor s~invariantem S (nebo» v¹echny hrany této cesty mají z~definice nenasycené cesty kladné rezervy).
124 \qed
125
126 \s{Lemma Z (poèet Zvednutí):} Poèet v¹ech zvednutí je maximálnì~$2N^{2}$.
127
128 \proof
129 Staèí si~uvìdomit, ¾e ka¾dý vrchol mù¾eme zvednout maximálnì~$2N$-krát a~vrcholù je~$N$.
130 \qed
131
132 Teï nám je¹tì zbývá urèit poèet provedených pøevedení. Bude se~nám hodit, kdy¾ pøevedení rozdìlíme na~dva druhy:
133
134 \s{Definice:} Øekneme, ¾e pøevedení je {\I nasycené}, pokud po~pøevodu rezerva na~hranì~$uv$ klesla na~nulu, tedy $r(uv)=0$. V~opaèném pøípadì je {\I nenasycené}, a~tehdy urèitì klesne pøebytek ve~vrcholu~$u$ na~nulu, tedy $f^{\Delta}(u) = 0$ (pøi~nasyceném pøevedení se~to~ale mù¾e stát také).
135
136 \s{Lemma S (naSycená pøevedení):} Poèet v¹ech nasycených pøevedení je nejvý¹~$NM$.
137
138 \proof
139 Pro ka¾dou hranu~$uv$ spoèítejme poèet nasycených pøevedení (tedy takových pøevedení, ¾e po~nich klesne rezerva hrany na~nulu). Abychom dvakrát nasycenì pøevedli pøebytek (nebo jeho èást) z~vrcholu~$u$ do~vrcholu~$v$, tak jsme museli~$u$ mezitím alespoò dvakrát zvednout:
140
141 Po~prvním nasyceném pøevedení z~vrcholu~$u$ do~vrcholu~$v$ se~vynulovala rezerva hrany~$uv$. Uvìdomme si, ¾e pøi~této operaci muselo být~$u$ vý¹e ne¾~$v$, a~dokonce víme, ¾e bylo vý¹e pøesnì o~1 (viz lemma~S). Po~této hranì tedy nemù¾eme u¾~nic více pøevést. Aby do¹lo k~druhému nasycenému pøevedení z~$u$ do~$v$, musíme nejprve opìt zvý¹it rezervu hrany~$uv$. Jediný zpùsob, jak toho lze dosáhnout, je pøevést èást pøebytku z~$v$ zpátky do~$u$. K~tomu se~musí~$v$ dostat (alespoò o~1) vý¹e ne¾~$u$. Po~pøelití bude rezerva~$uv$ opìt kladná. A~abychom provedli nasycené pøevedení znovu ve~smìru z~$u$ do~$v$, musíme zase~$u$ dostat (alespoò o~1) vý¹e ne¾~$v$. Proto musíme~$u$ alespoò o~2 zvednout -- nejprve na~úroveò~$v$ a~pak je¹tì o~1 vý¹e.
142
143
144 Ukázali jsme si~tedy, ¾e mezi ka¾dými dvìma nasycenými pøevedeními jsme vrchol~$u$ zvedli alespoò dvakrát. Nicménì libovolnou hranu mù¾eme zvednout nejvý¹e~$2N$-krát (viz invariant V). V¹ech hran je~$M$, tudí¾ poèet v¹ech nasycených pøevedení je nejvý¹e~$NM$.
145 \qed
146
147 \s{Lemma N (Nenasycená pøevedení):} Poèet v¹ech nenasycených pøevedení je~$\O(N^2M)$.
148
149 \proof
150 Dùkaz provedeme pomocí potenciálové metody -- nadefinujme si~následující funkci jako potenciál:
151  $$ \Phi := \sum_{\scriptstyle{v: f^{\Delta}(v) > 0} \atop \scriptstyle{v \ne z,s}} h(v). $$
152 Nyní se~podívejme, jak se~ná¹ potenciál bìhem algoritmu vyvíjí a~jaké má vlastnosti:
153
154         \itemize\ibull
155         \:Na poèátku je $ \Phi = 0 $.
156         \:Bìhem celého algoritmu je $ \Phi \ge 0 $, nebo» je souètem nezáporných èlenù.
157         \:Zvednutí vrcholu zvý¹í $\Phi$ o~jednièku (Aby byl vrchol zvednut, musel mít kladný pøebytek $\Rightarrow$ vrchol do~sumy ji¾ pøispíval, teï jen pøispìje èíslem o 1 vy¹¹ím.). Ji¾ víme, ¾e za~celý prùbìh algoritmu je v¹ech zvednutí maximálnì~$2N^2$, proto zvedáním vrcholù zvý¹íme potenciál dohromady nejvý¹e o~$2N^2$.
158         \:Nasycené pøevedení zvý¹í~$\Phi$ nejvý¹e o~$2N$, proto¾e buï po~pøevodu hranou~$uv$ v~$u$ zùstal nìjaký pøebytek, tak¾e se~mohl potenciál zvý¹it nejvý¹e o~$h(v) \leq 2N$, nebo je pøebytek v~$u$ po~pøevodu nulový a~potenciál se~dokonce o~jedna sní¾il. Za~celý prùbìh tak dojde k~maximálnì~$NM$ takovýmto pøevedením, díky nim¾ se~potenciál zvý¹í maximálnì o~$2N^2M$.
159         \:Koneènì kdy¾ pøevádíme po~hranì~$uv$ nenasycenì, tak od~potenciálu urèitì odeèteme vý¹ku vrcholu~$u$ (nebo» se~vynuluje pøebytek ve~vrcholu~$u$) a~mo¾ná pøièteme vý¹ku vrcholu~$v$. Jen¾e $h(v) = h(u) - 1$, a~proto nenasycené pøevedení potenciál v¾dy sní¾í alespoò o~jedna.
160         \endlist
161
162 \>Z~tohoto rozboru chování potenciálu~$\Phi$ v~prùbìhu algoritmu získáváme, ¾e poèet v¹ech nenasycených pøevedení mù¾e být nejvý¹e $2N^2 + 2N^2M$, co¾ je $\O(N^2M)$.
163 \qed
164
165 \s{Implementace:}
166
167 Budeme si~pamatovat seznam~$P$ v¹ech vrcholù~$v \ne z,s$ s~kladným pøebytkem. Neboli
168 $$P = \{ v \in V \setminus \{z,s\} ~\vert~ f^{\Delta}(v) > 0 \}.$$
169 Kdy¾ mìníme pøebytek nìjakého vrcholu, mù¾eme ná¹ seznam v~konstantním èase aktualizovat (napø. tak, ¾e si~ka¾dý vrchol pamatuje pozici, na~které v~seznamu~$P$ je). V~konstantním èase také umíme odpovìdìt, zda existuje nìjaký vrchol s~pøebytkem.
170
171 Dále si~pro ka¾dý vrchol~$u \in V$ budeme pamatovat~$L(u)$-seznam hran~$uv \in E$ takových, které vedou dolù (mají spád alespoò 1) a~kladnou rezervu. Neboli
172 $$L(u) = \{ uv \in E ~\vert~ v \in V,~ r(uv) > 0,~ h(v) < h(u)\}.$$
173 Díky tomu mù¾eme pøistupovat k~patøièným sousedùm~$u$ v~èase $\O(1)$, stejnì jako pøidávat hrany do~$L(u)$, resp. je mazat. Opìt ka¾dá hrana si~bude pamatovat pozici, na~které se~nachází v~seznamu~$L$.
174
175 \s{Rozbor èasové slo¾itosti algoritmu:}
176
177 \numlist\ndotted
178 \:Inicializace vý¹ek \dots $\O(1)$.
179 \:Inicializace vlny~$f$ \dots $\O(M)$.
180 \:Výbìr vrcholu~$u$ s~kladným pøebytkem -- vezmeme první vrchol v~$P$ \dots $\O(1)$.
181 \:Výbìr vrcholu~$v$, do~kterého vede z~$u$ hrana s~kladnou rezervou a~který je ní¾e ne¾~$u$ -- vezmeme první hranu z~$L(u)$ \dots $\O(1)$.
182         
183         Pøevedení pøebytku: \dots $\O(1)$.
184                 \itemize\idot
185                 \:Nasycené pøevedení \dots $\O(1)$.
186                         \itemize\idot
187                         \:Rezerva hrany~$uv$ klesne na~nulu $\Rightarrow$ hrana~$uv$ vypadne z~$L(u)$ \dots $\O(1)$.
188                         \:Pøebytek vrcholu~$v$ se~zvý¹í $\Rightarrow$ pokud je¹tì nebyl v~seznamu~$P$, tak se~tam pøidá \dots $\O(1)$.
189                         \:Pøebytek vrcholu~$u$ mo¾ná také klesne na~nulu $\Rightarrow$ pak by vrchol~$u$ vypadnul z~$P$ \dots $\O(1)$.
190                         \endlist
191                 \:Nenasycené pøevedení \dots $\O(1)$.
192                         \itemize\idot
193                         \:Rezerva hrany~$uv$ zùstane nezáporná $\Rightarrow$ hrana~$uv$ zùstane v~$L(u)$ \dots $\O(1)$.
194                         \:Vynuluje se~pøebytek vrcholu~$u$~$\Rightarrow$ vrchol $u$ vypadne z~$P$ \dots~$\O(1)$.
195                         \:Pøebytek vrcholu~$v$ se~zvý¹í~$\Rightarrow$ pokud je¹tì nebyl v~seznamu~$P$, tak se~tam pøidá \dots $\O(1)$.
196                         \endlist
197                 \endlist
198 \:Zvednutí vrcholu~$u$ \dots $\O(N)$.
199
200         Musíme obejít v¹echny hrany do~$u$ a~z~$u$, kterých je nejvý¹e~$2N-2$, porovnat vý¹ky a~pøípadnì tyto hrany~$uv$ odebrat ze~seznamu~$L(u)$ resp. pøidat do~$L(v)$. Abychom pro~odebrání hrany~$uv$ ze~seznamu~$L(u)$ nemuseli procházet celý seznam, budeme si~$\forall v \in V$ pamatovat je¹tì $L^{-1}(v) := $ seznam ukazatelù na~hrany~$uv$ v~seznamech~$L(u)$.
201 \endlist
202
203 Vidíme, ¾e ka¾dé zvednutí je sice drahé, ale je jich zase pomìrnì málo. Naopak pøevádìní pøebytkù je èastá operace, tak¾e je výhodné, ¾e trvá konstantní èas.
204
205 \s{Shrnutí:}
206
207 \itemize\ibull
208 \:V¹ech zvednutí je $\O(N^2)$ (viz lemma Z), ka¾dé trvá $\O(N) \dots \O(N^3).$
209 \:V¹ech nasycených pøevedení je $\O(NM)$ (viz lemma S), ka¾dé trvá $\O(1) \dots \O(NM).$
210 \:V¹ech nenasycených pøevedení je $\O(N^2M)$ (viz lemma N), ka¾dé trvá $\O(1) \dots \O(N^2M).$
211 \endlist
212
213 Dohromady má tedy Goldbergùv algoritmus èasovou slo¾itost $\O(N^2M)$. Vidíme, ¾e u¾ v~tomto obecném pøípadì to není hor¹í ne¾ Dinicùv algoritmus. Pøí¹tì si~uká¾eme, ¾e mù¾e mít i~mnohem lep¹í. Nejdøíve ale zformulujme v¹echna dokázaná tvrzení do~následující vìty:
214
215 \s{Vìta:} Goldbergùv algoritmus najde maximální tok v~èase $\O(N^2M)$.
216
217 \s{Pozorování:} Pokud bychom volili v¾dy nejvy¹¹í z~vrcholù s~pøebytkem, tak by se~mohl algoritmus chovat lépe. Podívejme se~na~to pozornìji a~vylep¹ený Goldebrgùv algoritmus oznaème G'..
218
219 \s{Algoritmus (Vylep¹ený Goldbergùv algoritmus)}
220
221 \algo
222 \:$\forall v \in V: h(v)\leftarrow 0$ (v¹em vrcholùm nastavíme poèáteèní vý¹ku nula) a~$h(z)\leftarrow N$ (zdroj zvedneme do~vý¹ky~$N$).
223 \:$\forall e \in E: f(e)\leftarrow 0$ (po~hranách nejdøíve nenecháme protékat nic) a~$\forall zu \in E : f(zu)\leftarrow c(zu)$ (ze~zdroje pustíme maximální mo¾nou vlnu).
224 \:Dokud $\exists u \in V \setminus \{z,s\}: f^{\Delta}(u)>0$:
225 \::Vybereme z~vrcholù s~pøebytkem ten s~nejvy¹¹í vý¹kou, oznaèíme ho~$u$.
226 \:::Pokud $\exists v \in V: uv \in E,~r(uv)>0$ a~$h(u)>h(v)$, pak pøevedeme pøebytek po~hranì z~$u$ do~$v$.
227 \:::V~opaèném pøípadì zvedneme $u$:~$h(u) \leftarrow h(u) + 1$.
228 \:Vrátíme tok~$f$ jako výsledek.
229 \endalgo
230
231 Rozmysleme si, o~kolik bude vylep¹ený algoritmus G' lep¹í ne¾ ten pùvodní. Ten pùvodní mìl èasovou slo¾itost $\O(N^2M)$ a~pøevládal èlen, který odpovídal nenasyceným pøevedením. Zkusme tedy právì poèet nenasycených pøevedení odhadnout ve~vylep¹eném algoritmu o~nìco tìsnìji.
232
233 \s{Lemma N' (Nenasycená pøevedení):} Algoritmus G' provede~$\O(N^3)$ nenasycených pøevedení.
234
235 \proof
236 Dokazovat budeme opìt pomocí potenciálové metody. Zadefinujme si~potenciál {\I nejvy¹¹í hladinu s~pøebytkem}:
237 $$H := \max \{ h(v) \mid v \neq z,s ~\&~ f^\Delta(v) > 0\}.$$
238 Rozdìlíme bìh algoritmu na~{\I fáze}. Ka¾dá fáze konèí tím, ¾e~se~$H$ zmìní. Jak se~mù¾e zmìnit? Buï se~$H$ zvý¹í, co¾ znamená, ¾e~nìjaký vrchol s~pøebytkem v~nejvy¹¹í hladinì byl o~1 zvednut, nebo se~$H$ sní¾í. My víme, ¾~ zvednutí je v~celém algoritmu $\O(N^2)$. Zároveò si~mù¾eme uvìdomit, ¾e~$H$ je nezáporný potenciál, kdy sní¾ení i~zvý¹ení ho zmìní o~1, tedy poèet sní¾ení bude stejný jako poèet zvý¹ení, a~proto obojího je~$\O(N^2)$. Tudí¾ poèet fází je také~$\O(N^2)$.
239
240 Je dùle¾ité, ¾e~bìhem jedné fáze provedeme nejvý¹e jedno nenasycené pøevedení z~ka¾dého vrcholu. Po~ka¾dém nenasyceném pøevedení po~hranì $uv$ se~toti¾ vynuluje pøebytek v~$u$ a~aby se~provedlo dal¹í nenasycené pøevedení z~vrcholu~$u$, muselo by nejdøíve být co~pøevádìt. Muselo by tedy do~$u$ nìco pøitéci. My ale víme, ¾e pøevádíme pouze shora dolù a~$u$ je v~nejvy¹¹í hladinì (to zajistí právì to vylep¹ení algoritmu), tedy nejdøíve by musel být nìjaký jiný vrchol zvednut. Tím by se~ale zmìnilo~$H$ a~skonèila by tato fáze.
241
242 Proto poèet v¹ech nenasycených pøevedení bìhem jedné fáze je nejvý¹e~$N$. A ji¾ jsme dokázali, ¾e~fází je~$\O(N^2)$. Tedy poèet v¹ech nenasycených pøevedení je~$\O(N^3)$.
243 \qed
244
245 Tento odhad je hezký, ale stále není tìsný a~algoritmus se~chová lépe. Doka¾me si~je¹tì jeden tìsnìj¹í odhad na~poèet nenasycených pøevedení.
246
247 \s{Lemma N'' (Nenasycená pøevedení):} Poèet nenasycených pøevedení je~$\O(N^2 \sqrt{M})$.
248
249 \s{Poznámka:} Tato èasová slo¾itost je výhodná napøíklad pro~øídké grafy. Ty mají toti¾ pomìrnì malý poèet hran.
250
251 \proof
252 Rozdìlme si~fáze na~dva druhy: laciné a~drahé podle toho, kolik se~v~nich provede nenasycených pøevedení. Zvolme si~nìjaké nezáporné~$K$. Zatím nebudeme urèovat jeho hodnotu. Uvidíme, ¾e~èasová slo¾itost algoritmu bude závislá na~tomto parametru~$K$. Proto jeho hodnotu zvolíme a¾ pozdìji a~to tak, aby byla slo¾itost co nejni¾¹í.
253
254 {\I Laciné fáze} budou ty, bìhem nich¾ se~provede nejvý¹e~$K$ nenasycených pøevedení. {\I Drahé fáze} budou ty ostatní, tedy takové, bìhem nich¾ se~provede více jak~$K$ nenasycených pøevedení.
255
256 Teï potøebujeme odhadnout, kolik nás budou stát oba typy fází. Zaènìme s~tìmi jednodu¹¹ími -- s~lacinými. Víme, ¾e~v¹ech fází je~$\O(N^2)$. Tìch laciných bude tedy urèitì také~$O(N^2)$. Nenasycených pøevedení se~bìhem jedné laciné fáze provede nejvíce~$K$. Tedy celkem se~bìhem laciných fází provede~$\O(N^2K)$ nenasycených pøevedení.
257
258 Pro~poèet nenasycených pøevedení v~drahých fázích si~zaveïme nový potenciál definovaný následovnì:
259 $$\Phi := \sum_{\scriptstyle{v \ne z,s} \atop \scriptstyle{f^{\Delta}(v) \ne 0}} {p(v) \over K},$$
260 kde~$p(v)$ je poèet takových vrcholù~$u$, které nejsou vý¹e ne¾~$v$. Neboli
261 $$p(v) = \vert \{ u \in V \mid h(u) \leq h(v) \} \vert.$$
262 Tedy platí, ¾e~$p(v)$ je v¾dy nezáporné a~nejvý¹e má hodnotu~$N$. Dále víme, ¾e~$\Phi$ bude v¾dy nezáporné (nebo» je to souèet nezáporných èlenù) a~nejvý¹e bude nabývat hodnoty~$N^2 \over K$. Rozmysleme si, jak nám ovlivní tento potenciál na¹e tøi operace:
263 \itemize\ibull
264 \:{\bf Zvednutí}: Za~ka¾dý zvednutý vrchol pøibude nejvý¹e~$N \over K$ (tento vrchol mù¾e být nadzvednut nejvý¹e nad~v¹echny ostatní vrcholy) a~mo¾ná nìco ubude (napø. kdy¾ vrchol vyzvedneme na~úroveò k~ostatním).
265 \:{\bf Nasycené pøevedení} po~hranì $uv$: Mù¾e vynulovat pøebytek ve~vrcholu~$u$, pak se~$\Phi$ sní¾í. Mù¾e zvý¹it pøebytek ve~$v$ z~nuly, pak se~$\Phi$ zvý¹í. Ale nejvý¹e se~zvý¹í o~$N \over K$, nebo» do~$\Phi$ pøibude jen jeden sèítanec za~vrchol $v$ a~ten pøispìje nejvý¹e hodnotou~$N \over K$ (pod ním mù¾e být nejvíce~$N$ vrcholù).
266 \:{\bf Nenasycená pøevedení} po~hranì $uv$ v~drahých fázích: Tato operace vynuluje pøebytek v~$u$, tedy~$\Phi$ klesne alespoò o~$p(u) \over K$. Zároveò mù¾e zvý¹it pøebytek ve~$v$ z~nuly, ale~$\Phi$ stoupne nejvý¹e o~$p(v) \over K$. Celkem tedy~$\Phi$ klesne alespoò o~$p(u) - p(v) \over K$.
267 \endlist
268 Uvìdomme si, ¾e~pokud pøevádíme po~hranì~$uv$, tak platí, ¾e~$h(u) = h(v) + 1$. Pak~$p(u) - p(v)$ je pøesnì poèet vrcholù na~hladinì~$H$. Tìch je alespoò tolik, kolik je nenasycených pøevedení bìhem jedné fáze (to jsme dokázali ji¾ v~lemmatu N'), a~my jsme si~zadefinovali, ¾e v~drahé fázi je poèet nenasycených pøevedení alespoò~$K$. Tedy~$p(u) - p(v) > K$. Proto bìhem jednoho nenasyceného pøevedení~$\Phi$ klesne alespoò o~${K \over K} = 1$. Nenasycená pøevedení potenciál nezvy¹ují.
269
270 Potenciál~$\Phi$ se~mù¾e zvìt¹it pouze pøi~operacích zvednutí a~nasycené pøevý¹ení. Zvednutí se~provede celkem~$(N^2)$ a~ka¾dé zvý¹í potenciál nejvý¹e o~$N \over K$. Nasycených pøevedení se provede celkem~$\O(NM)$ a~ka¾dé zvý¹í potenciál takté¾ nejvý¹e o~$N \over K$. Celkem se~tedy~$\Phi$ zvý¹í nejvý¹e o
271 $${N \over K} \O(N^2) + {N \over K} \O(NM) = \O \left({N^3 \over K} + {N^2M \over K}\right).$$
272
273 Teï vyu¾ijeme toho, ¾e~$\Phi$ je nezáporný potenciál, tedy kdy¾ ka¾dé nenasycené pøevdení v~drahé fázi sní¾í~$\Phi$ alespoò o~1, tak v¹ech nenasycených pøevdení v~drahých fázích je~$\O({N^3 \over K} + {N^2M \over K})$. U¾ jsme ukázali, ¾e~nenasycených pøevední v~laciných fázích je~$\O(N^2K)$. Proto celkem v¹ech nenasycených pøevedení je
274 $$\O \left(N^2K + {N^3 \over K} + {N^2M \over K} \right) = \O \left(N^2K + {N^2M \over K} \right)$$
275 (nebo» pro~souvislé grafy platí, ¾e~$M \geq N \Rightarrow N^2M \geq N^3$). A~my chceme, aby jich bylo co nejménì. Tato funkce má minimum tehdy, kdy¾ $N^2K = {N^2M \over K}$, èili $K = \sqrt{M}$.
276
277 Proto v¹ech nenasycených pøevedení je   $\O(N^2\sqrt{M})$.
278 \qed
279 \bye