]> mj.ucw.cz Git - ads2.git/blob - 1-kmp/1-kmp.tex
KMP: Prepsan uvod a sekce o znaceni
[ads2.git] / 1-kmp / 1-kmp.tex
1 \input lecnotes.tex
2
3 \prednaska{1}{Vyhledávání v~textu}{}
4
5 \h{Jehla v~kupce sena}
6
7 Uva¾ujme následující problém: máme nìjaký text~$\sigma$ délky~$S$ (seno), chceme v~nìm najít
8 v¹echny výskyty nìjakého podøetìzce~$\iota$ délky~$J$ (jehly). Seno pøitom bude øádovì del¹í
9 ne¾ jehla.
10
11 Triviální øe¹ení pøesnì podle definice by vypadalo následovnì: Zkusíme v¹echny mo¾né pozice,
12 kde by se v~senì mohla jehla nacházet, a pro ka¾dou z~nich otestujeme, zda tam opravdu je.
13 Pozic je øádovì~$S$, ka¾dé porovnání stojí a¾~$J$, celkovì tedy algoritmus bì¾í v~èase
14 $\O(SJ)$. (Rozmyslete si, jak by vypadaly vstupy, pro které skuteènì spotøebujeme tolik èasu.)
15
16 Zkusme jiný pøístup: nalezneme v~senì první znak jehly a od tohoto místa budeme porovnávat
17 dal¹í znaky. Pokud se pøestanou shodovat, pøepneme opìt na hledání prvního znaku. Jen¾e odkud?
18 Pokud od místa, kde nastala neshoda, sel¾e to tøeba pøi hledání jehly |kokos| v~senì |clanekokokosu|
19 -- neshoda nastane za~|koko| a zbylý |kos| nás neuspokojí. Nebo se mù¾eme vrátit a¾ k~výskytu
20 prvního znaku a pokraèovat tìsnì za ním, jen¾e to je toté¾, co dìlal triviální algoritmus,
21 tak¾e je to také stejnì pomalé.
22
23 V~této kapitole si uká¾eme algoritmus, který je o~trochu slo¾itìj¹í, ale nalezne v¹echny
24 výskyty v~èase $\O(S+J)$. Pak ho zobecníme, aby umìl hledat více rùzných jehel najednou.
25
26 \h{Øetìzce a abecedy}
27
28 Aby se nám o~øetìzcových algoritmech lépe psalo, udìlejme si nejprve poøádek
29 v~terminologii okolo øetìzcù.
30
31 \s{Definice:}
32 \itemize\ibull
33 \:{\I Abeceda $\Sigma$} je nìjaká koneèná mno¾ina {\I znakù,} z~nich¾ se
34   skládají na¹e øetìzce.
35 \:{\I $\Sigma^*$} je mno¾ina v¹ech {\I slov} neboli {\I øetìzcù} nad abecedou~$\Sigma$,
36   co¾ jsou koneèné posloupnosti znakù ze~$\Sigma$.
37 \endlist
38
39 \s{Pøíklady:}
40 Abeceda mù¾e být tvoøena tøeba písmeny |a| a¾~|z| nebo bity |0| a~|1|.
41 Potkáme ale i rozlehlej¹í abecedy, napøíklad dnes bì¾ná znaková sada UniCode
42 má $2^{16}$ znakù, v~novìj¹ích verzích dokonce $2^{31}$ znakù. Je¹tì extrémnìj¹ím
43 zpùsobem pou¾ívají øetìzce lingvisté: na èeský text se nìkdy dívají jako na~slovo
44 nad abecedou, její¾ prvky jsou èeská slova.
45
46 Pro na¹e úèely budeme pøedpokládat, ¾e abeceda je \uv{rozumnì malá}, èím¾ myslíme, ¾e
47 její velikost je konstantní a navíc dostateènì malá na to, abychom si mohli dovolit
48 ukládat do pamìti pole indexovaná znakem.
49
50 \s{Znaèení:}
51 \itemize\ibull
52 \:{\I Slova} budeme znaèit malými písmenky øecké abecedy $\alpha$, $\beta$, \dots
53 \:{\I Znaky} oznaèíme malými písmeny latinky $a$, $b$, \dots{} \hfil\break
54   Znak budeme pou¾ívat i ve~smyslu jednoznakového øetìzce.
55 \:{\I Èísla} budeme znaèit velkými písmeny $A$, $B$, \dots
56 \:{\I Délka slova} $\vert \alpha  \vert$ udává, kolika znaky je slovo tvoøeno.
57 \:{\I Prázdné slovo} znaèíme písmenem $\varepsilon$, je to jediné slovo délky~0.
58 \:{\I Zøetìzení} $\alpha\beta$ vznikne zapsáním slov $\alpha$ a~$\beta$ za sebe. Platí $\vert \alpha\beta  \vert=\vert \alpha \vert+\vert \beta \vert$, $\alpha\varepsilon=\varepsilon\alpha=\alpha$.
59 \:$\alpha[k]$ je $k$-tý znak slova $\alpha$, indexujeme od~$0$ do~$\vert\alpha\vert-1$.
60 \:$\alpha[k:\ell]$ je {\I podslovo} zaèínající $k$-tým znakem a konèící tìsnì pøed~$\ell$-tým.
61 Tedy $\alpha[k:\ell] = \alpha[k]\alpha[k+1]\ldots\alpha[\ell-1]$. Pokud $k\ge\ell$, je podslovo
62 prázdné. Pokud nìkterou z~mezí vynecháme, míní se $k=0$ nebo $\ell=\vert\alpha\vert$.
63 \:$\alpha[{}:\ell]$ je {\I prefix} (pøedpona) tvoøený prvními $\ell$ znaky øetìzce.
64 \:$\alpha[k:{}]$ je {\I suffix} (pøípona) od $k$-tého znaku do~konce øetìzce.
65 \:$\alpha[:] = \alpha$.
66 \endlist
67
68 \>Dodejme je¹tì, ¾e prázdné slovo je prefixem, suffixem i~podslovem jakéhokoliv slova vèetnì sebe sama.
69 Ka¾dé slovo je také prefixem, suffixem i~podslovem sebe sama. To se ne v¾dy hodí, pak budeme hovoøit
70 o~{\I vlastním} prefixu, suffixu èi podslovì, èím¾ myslíme, ¾e alespoò jeden znak nebude obsahovat.
71
72
73 \h{XXX}
74
75
76 \s{Pøíklad:} Vezmìme si napøíklad staré italské pøízvisko |barbarossa|, které znamená Rudovous. Pøedstavme si, ¾e takovéto slovo hledáme v~nìjakém textu, který zaèíná |barbar|. Víme, ¾e a¾ sem se nám hledaný øetìzec shodoval. Øeknìme, ¾e dal¹í písmenko textu se shodovat pøestane -- místo |o| naèteme napøíklad opìt |b|. {\I Hloupý algoritmus} by velil vrátit se k~|a| a~od~nìj hledat dál. Uvìdomme si ale, ¾e kdy¾ se vracíme z~|barbar| do~|arbar| (tedy øetìzce, který ji¾ známe), mù¾eme si pøedpoèítat, jak dopadne hledání, kdy¾ ho pustíme na~nìj. V~pøedpoèítaném bychom tedy chtìli ukládat, ¾e kdy¾ máme øetìzec |arbar|, tak |ar| a~|r| nám do~hledaného nepasuje a~a¾~|bar| se bude shodovat. Tedy místo toho, abychom spustili nové hledání od~|a|, mù¾eme ho spustit a¾~od~|b|. Co víc, my dokonce víme, jak dopadne to -- pokud toti¾ nastane neshoda po~pøeètení |barbar|, je to stejné, jako kdybychom pøeèetli pouze |bar|, na~které se (pùvodne neshodující se) |b| u¾ navázat dá. Kdyby se nedalo navázat ani tam, tak bychom opìt zkracovali... Nejen, ¾e tedy víme, kam se máme vrátit, ale víme dokonce i~to, co tam najdeme. 
77
78 My¹lenka, ke které míøíme, je pøedpoèítat si nìjakou tabulku, která nám bude øíkat, jak se máme pøi hledání vracet a~jak to dopadne, a~pak u¾ jenom prohlédávat s~pou¾itím této tabulky. 
79
80 Aby se nám o~tìchto algoritmech lépe mluvilo a~pøedev¹ím psalo, pojïme si povìdìt nìkolik definic.
81  
82 \h{Vyhledávací automat (Knuth, Morris, Pratt)}
83 {\I Vyhledávací automat} bude graf, jeho¾ vrcholùm budeme øíkat {\I stavy}. Jejich jména budou prefixy hledaného slova a~hrany budou odpovídat tomu, jak jeden prefix mù¾eme získat z~pøedchozího prefixu pøidáním jednoho písmene. Poèáteèní stav je prázdné slovo $\varepsilon$ a~koncový je celá $\iota$. Dopøedné hrany grafu budou popisovat pøechod mezi stavy ve~smyslu zvìt¹ení délky jména stavu (dopøedná funkce $h(\alpha)$, urèující znak na~dopøedné hranì z~$\alpha$). Zpìtné hrany grafu budou popisovat pøechod (zpìtná funkce $z(\alpha)$) mezi stavem $\alpha$ a~nejdel¹ím vlastním suffixem $\alpha$, který je prefixem $\iota$, kdy¾ nastane neshoda.
84
85 \figure{barb.eps}{Vyhledávací automat.}{4.1in}
86
87 \s{Hledej($\sigma$):}
88 \algo
89 \:$\alpha \leftarrow \varepsilon$.
90 \:Pro $x\in\sigma$ postupnì:
91 \:$\indent$Dokud $h(\alpha) \neq x~\&~\alpha \neq \varepsilon : \alpha \leftarrow z(\alpha)$. 
92 \:$\indent$Pokud $h(\alpha) = x: \alpha \leftarrow \alpha x$.
93 \:$\indent$Pokud $\alpha = \iota$, ohlásíme výskyt.
94 \endalgo
95
96 \>Vstupem je $\iota$, hledané slovo (jehla) délky $J=\vert \iota \vert$ a~$\sigma$, text (seno) délky $S=\vert \sigma \vert$.
97 \>Výstupem jsou v¹echny výskyty hledaného slova $\iota$ v~textu $\sigma$, tedy mno¾ina $\left\{ k \mid \sigma[k:k+J]=\iota \right\}$
98
99 Pojïme nyní dokázat, ¾e tento algoritmus správnì ohlásí v¹echny výskyty.
100
101 \s{Definice}: $\alpha(\tau) := $ stav automatu po~pøeètení $\tau$
102
103 \s{Invariant:} Pokud algoritmus pøeète nìjaký vstup, nachází se ve~stavu, který je nejdel¹ím suffixem pøeèteného vstupu, který je nìjakým stavem.
104 $\alpha(\tau) =$ nejdel¹í stav (nejdel¹í prefix jehly), který je suffixem $\tau$ (pøeèteného vstupu).
105
106 Pojïme si rozmyslet, ¾e z~tohoto invariantu ihned plyne, ¾e algoritmus najde to, co má. Kdykoli toti¾ ohlásí nìjaký výskyt, tak tam tento výskyt opravdu je. Kdykoli pak má nìjaký výskyt ohlásit, tak se v~této situaci jako suffix toho právì pøeèteného textu vyskytuje hledané slovo, pøièem¾ hledané slovo je urèitì stav a~zároveò nejdel¹í ze v¹ech existujících stavù. Tak¾e invariant opravdu øíká, ¾e jsme právì v~koncovém stavu a~algoritmus nám tedy ohlásí výskyt.
107
108 \proof {\I (invariantu)}
109 Indukcí podle kroku algoritmu. Na~zaèátku pro prázdný naètený vstup invariant triviálnì platí, tedy prázdný suffix $\tau$ je prefixem $\iota$. V~kroku $n$ máme naètený vstup $\tau$ a~k~nìmu pøipojíme znak $x$. Invariant nám øíká, ¾e nejdel¹í stav, který je suffixem, je nejdel¹í suffix, který je stavem. Nyní se ptáme, jaký je nejdel¹í stav, který se dá \uv{napasovat} na~konec øetìzce $\tau x$. Kdykoli v¹ak takovýto suffix máme, tak z~nìj mù¾eme $x$ na~konci odebrat, èím¾ dostaneme suffix slova $\tau$.
110
111 \>Tedy: pokud $\beta$ je neprázdným suffixem slova $\tau x$, pak $\beta = \gamma x$, kde $\gamma$ je suffix $\tau$.
112
113 Suffix, který máme sestrojit, tedy vznikne z~nìjakého suffixu slova $\tau$ pøipsáním~$x$. Chceme najít nejdel¹í suffix slova $\tau x$, který je stavem, tak¾e chceme najít i~nejdel¹í suffix pùvodního slova $\tau$, za který se dá pøidat $x$ tak, aby vy¹lo jméno stavu. Staèí tedy u¾ jen \uv{probírat} suffixy slova $\tau$ od~nejdel¹ího po~nejkrat¹í, zkou¹et k~nim pøidávat $x$ a~a¾ to pùjde, tak jsme na¹li nejdel¹í suffix $\tau x$. Pøesnì toto ov¹em algoritmus dìlá, nebo» zpìtná funkce mu v¾dy øekne nejbli¾¹í krat¹í suffix, který je stavem. Pokud pak nemù¾eme $x$ pøidat ani do~$\varepsilon$, pak je øe¹ením prázdný suffix. Algoritmus tedy funguje. \qed
114
115 Nyní pojïmì zkoumat to, jak je ve~skuteènosti ná¹ algoritmus rychlý. K tomu bychom si ale nejdøív mìli øíct, jak pøesnì budeme automat reprezentovat. V~algoritmu vystupují nìjaká porovnávání stavù, pøièem¾ není úplnì jasné, jak zaøídit, aby v¹e trvalo konstantnì dlouho. Vyjde nám to ale docela snadno. K reprezentaci automatu nám toti¾ budou staèit pouze dvì pole.
116
117 \s{Reprezentace automatu:}
118 Oèíslujeme si stavy délkami pøíslu¹ných prefixù, tedy èísly $0 \dots J$. Poté je¹tì potøebujeme nìjakým zpùsobem zakódovat dopøedné a~zpìtné hrany. Vzhledem k~tomu, ¾e z~ka¾dého vrcholu vede v¾dy nejvý¹e jedna dopøedná a~nejvý¹e jedna zpìtná, tak nám evidentnì staèí pamatovat si pro ka¾dý typ hran pouze jedno èíslo na~vrchol. Budeme mít tedy nìjaké pole dopøedných hran, které nám pro ka¾dý stav øekne, jakým písmenkem je nadepsaná dopøedná hrana ze stavu $I$ do~$I+1$. To jsou ale pøesnì písmenka jehly, tak¾e si staèí pamatovat jehlu samotnou. Èili z~$I$ do~$I+1$ vede hrana nadepsaná $\iota [I]$. Pro zpìtné hrany pak budeme potøebovat pole $Z$, které nám pro stav $I$ øekne èíslo stavu, do~kterého vede zpìtná hrana. Tedy $Z[I]$ je cíl zpìtné hrany ze stavu $I$.
119 S~touto reprezentací ji¾ doká¾eme na¹i hledací proceduru pøímoèaøe pøepsat tak, aby sahala pouze do~tìchto dvou polí:
120 \algo
121 \:$I \leftarrow 0$.
122 \:Pro znaky $x$ z~textu:
123 \:$\indent$Dokud $\iota[I] \neq x~\&~I \neq 0: I \leftarrow Z[I]$.
124 \:$\indent$Pokud $\iota[I] = x$, pak $I \leftarrow I + 1$.
125 \:$\indent$Pokud $I = J$, ohlásíme výskyt.
126 \endalgo
127
128 Zatím se v~algoritmu je¹tì skrývá drobná chyba -- toti¾ algoritmus se obèas zeptá na~dopøednou hranu z~posledního stavu. Pokud jsme právì ohlásili výskyt (jsme tedy v~posledním stavu) a~pøijde nìjaký dal¹í znak, algoritmus se ptá, zda je roven tomu, co je na~dopøedné hranì z~posledního stavu. Ta ale ov¹em neexistuje. Jednodu¹e to ale napravíme tak, ¾e si pøidáme fiktivní hranu, na~které se vyskytuje nìjaké \uv{nepísmenko} -- nìco, co se nerovná ¾ádnému jinému písmenku. Zajistíme tak, ¾e se po~této hranì nikdy nevydáme. Dodefinujeme tedy $\iota[J]$ odli¹nì od~v¹ech znakù.\foot{V jazyce C se toto dodefinování provede vlastnì zadarmo, nebo» ka¾dý øetìzec je v~nìm ukonèen znakem s~kódem nula, který se ve~vstupu nevyskytne\dots Algoritmus bude tedy fungovat i~bez tohoto dodefinování. V jiných jazycích je ale tøeba na~nìj nezapomenout!}
129
130 \s{Lemma:} Funkce {\I Hledej} bì¾í v~èase $\O(S)$.
131
132 \proof
133 Funkce {\I Hledej} chodí po~dopøedných a~zpìtných hranách. Dopøedných hran projdeme urèitì maximálnì tolik, kolik je délka sena. Pro ka¾dý znak pøeètený ze sena toti¾ jdeme nejvý¹e jednou po~dopøedné hranì. Se zpìtnými hranami se to má tak, ¾e na~jeden pøeètený znak z~textu se mù¾eme po~zpìtné hranì vracet maximálnì $J$-krát. Z~tohoto by nám v¹ak vy¹la slo¾itost $\O(JS)$, èím¾ bychom si nepomohli. Zachrání nás ale pøímoèarý potenciál. Uvìdomme si, ¾e chùze po~dopøedné hranì zvý¹í $I$ o~jedna a~chùze po~zpìtné hranì $I$ sní¾í alespoò o~jedna. Vzhledem k~tomu, ¾e $I$ není nikdy záporné a~na~zaèátku je nulové, zjistíme, ¾e krokù zpìt mù¾e být maximálnì tolik, kolik krokù dopøedu. Èasová slo¾itost hledání je tedy lineární vzhledem k~délce sena. \qed
134
135 Nyní nám zbývá na~první pohled malièkost -- toti¾ zkonstruovat automat. Zkonstruovat dopøedné hrany zvládneme zjevnì snadno, jsou toti¾ explicitnì popsané hledaným slovem. Tì¾¹í u¾ to bude pro hrany zpìtné. Vyu¾ijeme k~tomu následující pozorování:
136
137 \s{Pozorování:}
138 Pøedstavme si, ¾e automat u¾ máme hotový a~tím, ¾e budeme sledovat jeho chování, chceme zjistit, jak v~nìm vedou zpìtné hrany.
139 Vezmìme si nìjaký stav~$\beta$. To, kam z~nìj vede zpìtná hrana zjistíme tak, ¾e spustíme automat na~øetìzec $\beta$~bez prvního písmenka a~stav, ve~kterém se automat zastaví, je pøesnì ten, kam má vést i~zpìtná hrana z~$\beta$. Jinými slovy víme, ¾e $z(\beta) = \alpha (\beta[1:])$. 
140 Proè takováto vìc funguje? V¹imìme si, ¾e definice $z$ a~to, co nám o~$\alpha$ øíká invariant, je témìø toto¾né -- $z(\beta)$ je nejdel¹í vlastní suffix $\beta$, který je stavem, $\alpha(\beta)$ je nejdel¹í suffix $\beta$, který je stavem. Jediná odli¹nost je v~tom, ¾e definice $z$ narozdíl od~definice $\alpha$ zakazuje nevlastní suffixy. Jak nyní vylouèit suffix $\beta$, který by byl roven $\beta$ samotné? Zkrátíme $\beta$ o~první znak. Tím pádem v¹echny suffixy $\beta$ bez prvního znaku jsou stejné jako v¹echny vlastní suffixy $\beta$.
141
142 K èemu je toto pozorování dobré? Rozmysleme si, ¾e pomocí nìj u¾ doká¾eme zkonstruovat zpìtné hrany. Není to ale trochu divné, kdy¾ pøi simulování automatu na~øetìzec bez prvního znaku u¾ zpìtné hrany potøebujeme? Není. Za chvíli zjistíme, ¾e takto mù¾eme zji¹»ovat zpìtné hrany postupnì -- a~to tak, ¾e pou¾íváme v¾dy jenom ty, které jsme u¾ sestrojili.
143  
144 Takovémuhle pøístupu, kdy pøi konstruování chtìného u¾ pou¾íváme to, co chceme sestrojit, ale pouze ten kousek, který ji¾ máme hotový, se v~angliètinì øíká {\I bootstrapping}\foot{Z~tohoto slova vzniklo i~{\I bootování} poèítaèù, kdy operaèní systém v~podstatì zavádí sám sebe. Bootstrap znamená èesky ¹truple -- tedy oèko na~konci boty, které slou¾í k~usnadnìní nazouvání. A~jak souvisí ¹truple s~algoritmem? To se zase musíme vrátit k~pøíbìhùm o~baronu Prá¹ilovi, mezi nimi¾ je i~ten, ve~kterém baron Prá¹il vypráví o~tom, jak sám sebe vytáhl z~ba¾iny za ¹truple. Stejnì tak i~my budeme algoritmus konstruovat tím, ¾e se budeme sami vytahovat za ¹truple, tedy bootstrappovat.}.
145 V¹imnìme si, ¾e pøi výpoètu se vstupem $\beta$ projde automat jenom prvních $\vert \beta  \vert$ stavù. Automat se evidentnì nemù¾e dostat dál, proto¾e na~ka¾dý krok dopøedu (doprava) spotøebuje písmenko $\beta$. Tak¾e krokù doprava je maximálnì tolik, kolik je  $\vert \beta  \vert$. Jinými slovy kdybychom ji¾ mìli zkonstruované zpìtné hrany pro prvních  $\vert \beta  \vert$ stavù (tedy $0 \dots \vert \beta  \vert - 1$), tak pøi tomto výpoètu, který potøebujeme na~zkonstruování zpìtné hrany z~$\beta$, je¹tì tuto zpìtnou hranu nemù¾eme potøebovat. Vystaèíme si s~tìmi, které ji¾ máme zkonstruované.
146
147 Nabízí se tedy zaèít zpìtnou hranou z~prvního znaku (která vede evidentnì do~$\varepsilon$), pak postupnì brát dal¹í stavy a~pro ka¾dý z~nich si spoèítat, kdy spustíme automat na~jméno stavu bez prvního znaku a~tím získáme dal¹í zpìtnou hranu. Toto funguje, ale je to kvadratické \dots. Máme toti¾ $J$ stavù a~pro ka¾dý z~nich nám automat bì¾í v~èase a¾ lineárním s~$J$. Jak z~toho ven?
148
149 Z~prvního stavu povede zpìtná funkce do~$\varepsilon$. Pro dal¹í stavy chceme spoèítat zpìtnou funkci. Z~druhého stavu $\iota[0:2]$ tedy automat spustíme na~$\iota[1:2]$, dále pak na~$\iota[1:3]$, $\iota[1:4]$, atd. Ty øetìzce, pro které potøebujeme spo¹tìt automat, abychom dostali zpìtné hrany, jsou tedy ve~skuteènosti takové, ¾e ka¾dý dal¹í dostaneme roz¹íøením pøedchozího o~jeden znak. To jsou ale pøesnì ty stavy, kterými projde automat pøi zpracovávání øetìzce $\iota$ od~prvního znaku dál. Jedním prùchodem automatu nad jehlou bez prvního písmenka se tím pádem rovnou dozvíme v¹echny údaje, které potøebujeme.
150 Z~pøedchozího pozorování plyne, ¾e nikdy nebudeme potøebovat zpìtnou hranu, kterou jsme je¹tì nezkonstruovali a~jeliko¾ víme, ¾e jedno prohledání trvá lineárnì s~délkou toho, v~èem hledáme, tak toto celé pobì¾í v~lineárním èase. Dostaneme tedy následující algoritmus:
151
152 \s{Konstrukce zpìtné funkce:}
153 \algo
154 \:$Z[0] \leftarrow ?$, $Z[1] \leftarrow 0$.
155 \:$I \leftarrow 0$.
156 \:Pro $k = 2 \dots J$:
157 \::$I \leftarrow \<Krok>( I , \iota [k])$.
158 \::$Z[k] \leftarrow I$.
159 \endalgo
160
161 Zaèínáme tím, ¾e nastavíme zpìtnou hranu z~prvních dvou stavù, pøièem¾ $z[0]$ je nedefinované, proto¾e tuto zpìtnou hranu nikdy nepou¾íváme. Dále postupnì simulujeme výpoèet automatu nad slovem bez prvního znaku a~po ka¾dém kroku se dozvíme novou zpìtnou hranu. {\I Krokem} automatu pak není nic jiného ne¾ vnitøek (3. a~4. bod) na¹í hledací procedury. To, kam jsme se dostali, pak zaznamenáme jako zpìtnou funkci z~$k$.
162 Èili pou¹tíme automat na~jehlu bez prvního písmenka, provedeme v¾dy jeden krok automatu (pøes dal¹í písmenko jehly) a~zapamatujeme si, jakou zpìtnou funkci jsme zrovna dostali. Díky pozorováním navíc víme, ¾e zpìtné hrany konstruujeme správnì, nikdy nepou¾ijeme zpìtnou hranu, kterou jsme je¹tì nesestrojili a~víme i~to, ¾e celou konstrukci zvládneme v~lineárním èase s~délkou jehly.
163
164 \s{Vìta:} Algoritmus KMP najde v¹echny výskyty v~èase $O(J+S)$.
165
166 \proof
167 Lineární èas s~délkou jehly potøebujeme na~postavení automatu, lineární èas s~délkou sena pak potøebujeme na~samotné vyhledání.
168
169 \h{Rabinùv-Karpùv algoritmus}
170
171 Nyní si uká¾eme je¹tì jeden algoritmus na~hledání jedné jehly, který nebude mít v~nejhor¹ím pøípadì lineární slo¾itost, ale bude ji mít prùmìrnì. Bude daleko jednodu¹¹í a~uká¾e se, ¾e je v~praxi daleko rychlej¹í. Bude to algoritmus zalo¾ený na~hashování.
172
173
174 Pøedstavme si, ¾e máme seno délky $S$ a~jehlu délky $J$, a~vezmìme si nìjakou hashovací funkci, které dáme na~vstup $J$-tici znakù (tedy podslova dlouhá jako jehla). Tato hashovací funkce nám je pak zobrazí do~mno¾iny $\{0,\ldots,N-1\}$ pro nìjaké dost velké~$N$. Jak nám toto pomù¾e pøi hledání jehly? Vezmeme si libovolné \uv{okénko} délky $J$ a~ne¾ budeme zji¹»ovat, zda se v~nìm jehla vyskytuje, tak si spoèítáme hashovací funkci a~porovnáme ji s~hashem jehly. Èili ptáme se, jestli je hash ze sena od~nìjaké pozice $I$ do~pozice $I+J$ roven hashi jehly -- formálnì: $h(\sigma [I: I+J ]) = h(\iota)$. Teprve tehdy, kdy¾ zjistíme, ¾e se hodnota hashovací fce shoduje, zaèneme doopravdy porovnávat øetìzce.
175
176 Není to ale nìjaká hloupost? Mù¾e nám vùbec takováto konstrukce pomoci? Není to tak, ¾e na~spoèítání hashovací funkce z~$J$ znakù, potøebujeme tìch $J$ znakù pøeèíst, co¾ je stejnì rychlé, jako rovnou øetìzce porovnávat? Pou¾ijeme trik, který bude spoèívat v~tom, ¾e si zvolíme ¹ikovnou hashovací funkci. Udìláme to tak, abychom ji mohli pøi posunutí \uv {okénka} o~jeden znak doprava v~konstantním èase pøepoèítat. Chceme umìt z~$h(x_1 \dots x_j)$ spoèítat $h(x_2 \dots x_{j+1})$.
177 Na~zaèátku si tedy spoèítáme hash jehly a~první $J$-tice znakù sena. Pak ji¾ jenom posouváme \uv {okénko} o~jedna, pøepoèítáme hashovací funkci a~kdy¾ se shoduje s~hashem jehly, tak porovnáme. Budeme pøitom vìøit tomu, ¾e pokud se tam jehla nevyskytuje, pak máme hashovací funkci natolik rovnomìrnou, ¾e pravdìpodobnost toho, ¾e se pøesto strefíme do~hashe jehly, je $1/N$. Jinými slovy jenom v~jednom z~øádovì $N$ pøípadù budeme porovnávat fale¹nì -- tedy provedeme porovnání a~vyjde nám, ¾e výsledek je neshoda. V~prùmìrném pøípadì tedy mù¾eme stlaèit slo¾itost a¾ témìø k~lineární.
178
179 Podívejme se teï na~prùmìrnou èasovou slo¾itost. Budeme urèitì potøebovat èas na~projití jehly a~sena. Navíc strávíme nìjaký èas nad fale¹nými porovnáními, kterých bude v~prùmìru na~ka¾dý $N$-tý znak sena jedno porovnání s~jehlou -- tedy $SJ / N$, pøièem¾ $N$ mù¾eme zvolit dost velké na~to, abychom tento èlen dostali pod nìjakou rozumnou konstantu... Nakonec budeme potøebovat jedno porovnání na~ka¾dý opravdový výskyt, èemu¾ se nevyhneme. Pøipoèteme tedy je¹tì $J \cdot$ {\I $\sharp$výskytù}. Dostáváme tedy: $ \O(J+S+SJ/N+J \cdot$ {\I $\sharp$výskytù}).
180
181 Zbývá malièkost -- toti¾ kde vzít hashovací funkci, která toto v¹e splòuje. Jednu si uká¾eme. Bude to vlastnì takový hezký polynom:
182 $$h(x_1 \dots x_j) := \left(\sum_{I=1}^{J} x_I \cdot p^{J-I}\right) \bmod N.$$
183 Jinak zapsáno se tedy jedná o:
184 $$(x_1 \cdot p^{J-1} + x_2 \cdot p^{J-2} + \dots + x_J \cdot p^0 ) \bmod N.$$
185 Po posunutí okénka o~jedna chceme dostat:
186 $$(x_2 \cdot p^{J-1} + x_3 \cdot p^{J-2} + \dots + x_J \cdot p^1 + x_{J+1} \cdot p^0 ) \bmod N.$$
187 Kdy¾ se ale podíváme na~èleny tìchto dvou polynomù, zjistíme, ¾e se li¹í jen o~málo. Pùvodní polynom staèí pøenásobit~$p$, odeèíst první èlen s~$x_1$ a~naopak pøièíst chybìjící èlen $x_{J+1}$. Dostáváme tedy:
188 $$h(x_2 \dots x_{J+1}) = (p \cdot h(x_1 \dots x_J) - x_1 \cdot p^J + x_{J+1}) \bmod N.$$
189 Pøepoèítání hashovací funkce tedy není nic jiného, ne¾ pøenásobení té minulé~$p$, odeètení nìjakého násobku toho znaku, který vypadl z~okénka, a~pøiètení toho znaku, o~který se okénko posunulo. Pokud tedy máme k~dispozici aritmetické operace v~konstantním èase, zvládneme konstantnì pøepoèítávat i~hashovací funkci.
190
191 Tato hashovací funkce se dokonce nejen hezky poèítá, ale dokonce se i~opravdu \uv{hezky} chová (tedy \uv{rozumnì} náhodnì), pokud zvolíme vhodné~$p$. To bychom mìli zvolit tak, aby bylo rozhodnì nesoudìlné s~$N$ -- tedy $\<NSD>(p, N) = 1$. Aby se nám navíc dobøe projevilo modulo obsa¾ené v~hashovací funkci, mìlo by být~$p$ relativnì velké (lze dopoèítat, ¾e optimum je mezi $2/3 \cdot N$ a~$3/4 \cdot N$). S~takto zvoleným~$p$ se tato hashovací funkce chová velmi pøíznivì a~v~praxi má celý algoritmus takøka lineární èasovou slo¾itost (prùmìrnou).
192
193 \h{Hledání více øetìzcù najednou}
194 Nyní si zahrajeme tuté¾ hru, ov¹em v~trochu slo¾itìj¹ích kulisách. Podíváme se na~algoritmus, který si poradí i~s více ne¾ jednou jehlou. 
195 Mìjme tedy jehly $\iota_1 \dots \iota_n$, a~jejich délky $J_i = \vert \iota_i \vert $. Dále budeme potøebovat seno $\sigma$ délky $S=\vert \sigma \vert$.
196
197 Pøedtím, ne¾ se pustíme do~vlastního vyhledávacího algoritmu, mo¾ná bychom si mìli ujasnit, co vlastnì bude jeho výstupem. U problému hledání jedné jehly to bylo jasné -- byla to nìjaká mno¾ina pozic v~senì, na~kterých zaèínaly výskyty jehly. Jak tomu ale bude zde? Sice bychom také mohli vrátit pouze mno¾inu pozic, ale my budeme chtít malièko víc. Budeme toti¾ chtít vìdìt i~to, která jehla se na~které pozici vyskytuje. Výstup tedy bude vypadat následovnì: $V = \{(i,j)~\vert~\sigma[i:i+J_j]= \iota_j \}$.
198
199 Zde se v¹ak skrývá jedna drobná zrada. Budeme se asi muset vzdát nadìje, ¾e najdeme algoritmus, jeho¾ slo¾itost je lineární v~celkové délce v¹ech jehel a~sena. Výstup toti¾ mù¾e být del¹í ne¾ lineární. Mù¾e se nám klidnì stát, ¾e na~jedné pozici v~senì se bude vyskytovat více rùzných jehel -- pokud bude jedna jehla prefixem jiné (co¾ jsme nikde nezakázali), tak máme povinnost ohlásit oba výskyty. Vzhledem k~tomu budeme hledat takový algoritmus, který bude lineární v~délce vstupu plus délce výstupu, co¾ je evidentnì to nejlep¹í, èeho mù¾eme dosáhnout.
200
201 Algoritmus, který si nyní uká¾eme, vymysleli nìkdy v~roce 1975 pan Aho a~paní Corasicková. Bude to takové zobecnìní Knuthova-Morrisova-Prattova algoritmu.
202
203 \h{Algoritmus Aho-Corasicková}
204
205 Opìt se budeme sna¾it sestrojit nìjaký vyhledávací automat a~nìjakým zpùsobem tento automat pou¾ít k~procházení sena. Podívejme se nejprve na~pøíklad. Budeme chtít vyhledávat tato slova: |ara|, |bar|, |arab|, |baraba|, |barbara|. Mìjme tedy tìchto pìt jehel a~rozmysleme si, jak by vypadal nìjaký automat, který by tato slova umìl zatím jenom rozpoznávat. Pro jedno slovo automat vypadal jako cesta, zde u¾ to bude strom. (viz obrázek).
206
207 \figure{ara_strom_blank.eps}{Vyhledávací automat -- strom.}{1in}
208
209 Navíc budeme muset do~automatu zanést, kde nìjaké slovo konèí. V~pùvodním automatu pro jedno slovo to bylo jednoduché -- ono jedno jediné slovo odpovídalo poslednímu vrcholu cesty. Tady se v¹ak slova mohou vyskytovat vícekrát a~konèit nejenom v~listech ale i~v~nìjakém vnitøním vrcholu (co¾ se stane tehdy, pokud je jedno hledané slovo prefixem jiného hledaného slova). Formálnì to nebudeme dokazovat, ale snadno nahlédneme, ¾e listy stromu odpovídají hledaným slovùm, ale opaènì to neplatí.
210
211 \figure{ara_strom_end.eps}{Vyhledávací automat s~konci slov.}{1in}
212
213 Dále bychom mìli do~automatu pøidat zpìtné hrany. Jejich definice bude úplnì stejná jako u automatu pro hledání jednoho slova. Jinými slovy z~ka¾dého stavu pùjde zpìtná hrana do~nejdel¹ího vlastního suffixu, který je stavem. Èili kdy¾ budeme mít nìjaké jméno stavu, budeme se ho sna¾it co nejménì (ale alespoò o~znak) zkrátit zleva, abychom zase dostali jméno stavu. Z~koøene -- prázdného stavu -- pak evidentnì ¾ádná zpìtná hrana nepovede.
214
215 \figure{ara_strom_final.eps}{Vyhledávací automat se zpìtnými hranami.}{1,25in}
216
217 Zbývá nám je¹tì si rozmyslet, jakým zpùsobem bude ná¹ automat hlásit výstup. Opìt smìøujeme k~tomu, aby se automat po~pøeètení nìjakého kusu textu nacházel ve~stavu odpovídajícímu nejdel¹ímu mo¾nému suffixu toho textu. Zatímco u hledání jediné jehly bylo hlá¹ení výskytù jednoduché -- kdykoliv jsme se dostali na~konec \uv{automatové cestièky} tady to bude opìt slo¾itìj¹í.
218
219 První, co se nabízí, je vyu¾ít toho, ¾e jsme si oznaèili nìjaké vrcholy, kde hledaná slova konèí. Co tedy zkusit hlásit výskyt tohoto slova v¾dy, kdy¾ pøijdeme do~nìjakého oznaèeného vrcholu? Tento zpùsob v¹ak nefunguje, pokud se uvnitø nìkteré jehly skrývá jehla vnoøená. Napøíklad po~pøeètení slova |bara|, nám ná¹ souèasný automat neøíká, ¾e bychom mìli nìjaké slovo ohlásit, a~pøitom tam evidentì konèí podøetìzec |ara|. Stejnì tak pokud pøeèteme |barbara|, u¾ si nev¹imneme toho, ¾e tam konèí zároveò i~|ara|. Pouhé \uv{hlá¹ení teèek} tedy nefunguje.
220
221 Dále si mù¾eme v¹imnout toho, ¾e v¹echna slova, která by se mìla v~daném stavu hlásit, jsou suffixy jména tohoto stavu. Pøitom víme, ¾e zpìtná hrana jméno stavu zkracuje zleva. Tak¾e speciálnì v¹echny suffixy daného stavu, které jsou také stavy, se dají najít tak, ¾e se vydáme po~zpìtných hranách do~koøene. Nabízí se tedy v¾dy projít cestu po~zpìtných hranách a¾ do~koøene a~hlásit v¹echny \uv{teèky}. Tento zpùsob by nám v¹ak celý algoritmus znaènì zpomalil, proto¾e cesta do~koøene mù¾e být relativnì dlouhá, ale teèek na~ní obvykle bude málo.
222
223 Mohli bychom také zkusit si pro ka¾dý stav $\beta$ pøedpoèítat mno¾inu $cache(\beta)$, která by obsahovala v¹echna slova, která máme hlásit, kdy¾ se ve~stavu $\beta$ nacházíme. Pokud pak do~tohoto stavu vstoupíme, podíváme se na~tuto mno¾inu a~vypí¹eme v¹e, co v~ní je. Výpis nám bude evidentnì trvat lineárnì k~velikosti mno¾iny, celkovì tedy lineárnì k~velikosti výstupu. Problém je ale ten, ¾e jednotlivé cache mohou být hodnì velké, tak¾e je nestihneme sestrojit v lineárním èase. (Rozmyslete si pøíklad slovníku, kdy se to stane.)
224
225 To, co nám ale ji¾ opravdu pomù¾e, bude zavedení zkratek. V¹imli jsme si, ¾e po~zpìtných hranách mù¾eme projít do~koøene a~hlásit v¹echny nalezené teèky. Vadilo nám ale, ¾e se mù¾e stát, ¾e budeme dlouho po~cestì chodit a~pøi tom ¾ádné teèky nenalézat. Zavedeme si proto zkratky k~nejbli¾¹í teèce. 
226
227 \s{Definice} (zkratková hrana):
228 Budeme mít tedy nìjakou funkci $slovo(\beta) :=$ slovo, které konèí ve~stavu $\beta$ (nebo $\emptyset$, pokud ¾ádné takové slovo není). Dále pak funkci $out(\beta) :=$ nejbli¾¹í vrchol dosa¾itelný po~zpìtných hranách, èili nejdel¹í vlastní suffix stavu $\beta$, v~nìm¾ je definovaná funkce $slovo$. Trochu lid¹tìji øeèeno, ten nejbli¾¹í dosa¾itelný vrchol, ve~kterém je teèka.
229
230 Po pøidání tìchto zkratkových hran ji¾ máme reprezentaci, ve~které opravdu umíme v~daném stavu vyjmenovat v¹echna slova, která máme vypsat, a~to v~èase lineárním s~tím, kolik tìch slov je.
231
232 \s{Definice:}
233 Vyhledávací automat sestává ze stromu dopøedných hran (vrcholy jsou prefixy jehel, hrany odpovídají roz¹íøení o~písmenko), zpìtných hran ($z(\beta) :=$ nejdel¹í vlastní suffix slova $\beta$, který je stavem) a~zkratkových hran.
234
235 Automat pak bude na~na¹em pøíkladu vypadat takto (zkratkové hrany jsou znázornìny zelenì):
236
237 \figure{ara_strom_zkr.eps}{Vyhledávací automat se zkratkovými hranami.}{1,25in}
238
239 Nyní u¾ nám zbývá jenom vlastní algoritmus -- nejdøív popí¹eme algoritmus, který bude hledat pomocí takového automatu, a~potom se pustíme do~toho, jak se takový automat staví.
240
241 Nejprve si nadefinujeme, jak vypadá jeden krok automatu. Bude to vlastnì nìjaká funkce, která dostane stav a~písmenko. Ona nás pak pomocí tohoto písmenka posune po~automatu. ($f(\alpha, x)$ bude dopøedná hrana ze stavu $\alpha$ oznaèená písmenem~$x$)
242
243 \s{Krok ($\alpha$, $x$):}
244 \algo
245 \:Dokud $f(\alpha, x) = \emptyset~\&~\alpha \neq \<koøen:>~~\alpha \leftarrow z(\alpha)$.
246 \:Pokud $f(\alpha, x) \neq \emptyset:~~\alpha \leftarrow f(\alpha, x)$.
247 \:Vrátíme výsledek.
248 \endalgo
249
250 \s{Hledání:}
251 \algo
252 \:$\alpha \leftarrow \<koøen>$.
253 \:Pro znaky $x$ ze slova $\sigma$:
254 \::$\alpha \leftarrow \<Krok>(\alpha, x)$.
255 \::$\beta \leftarrow \alpha$
256 \::Dokud $\beta \neq \emptyset$:
257 \:::Je-li $\<slovo>(\beta) \neq \emptyset$:
258 \::::Ohlásíme $\<slovo>(\beta)$.
259 \:::$\beta \leftarrow \<out>(\beta)$.
260 \endalgo
261
262 Algoritmus hledání vlastnì není nic jiného, ne¾ prosté projití po~zelených zkratkových hranách ze stavu $\alpha$, ve~kterém právì jsme, a~ohlá¹ení v¹eho, co po~cestì najdeme.
263
264 V ka¾dém okam¾iku se automat nachází ve~stavu, který odpovídá nejdel¹ímu mo¾nému suffixu toho, co jsme u¾ pøeèetli. Dùkaz tohoto invariantu je stejný jako u verze automatu pro hledání pouze jedné jehly, nebo» vychází pouze z~definice zpìtných hran. Podobnì nahlédneme, ¾e èasová slo¾itost vyhledávací procedury je lineární v~délce sena plus to, co spotøebujeme na~hlá¹ení výskytù. Nejprve na~chvíli zapomeneme, ¾e nìjaké výskyty hlásíme a~spoèítáme jenom kroky. Ty mohou vést dopøedu a~zpátky. Krok dopøedu prodlu¾uje jméno stavu o~jedna, krok dozadu zkracuje aspoò o~jedna. Tudí¾ krokù dozadu je maximálnì tolik, co krokù dopøedu a~krokù dopøedu je maximálnì tolik, kolik je délka sena. V¹echny kroky dohromady tedy trvají $\O(S)$. Hlá¹ení výskytù pak trvá $\O(S~+ \vert V \vert)$. Celé hledání tedy trvá lineárnì v~délce vstupu a~výstupu.
265
266 Zbývá nám u¾ jen konstrukce automatu. Opìt vyu¾ijeme faktu, ¾e zpìtná hrana ze stavu $\beta$ vede tam, kam by se dostal automat pøi hledání $\beta$ bez prvního písmenka. Tak¾e zase chceme nìco, jako simulovat výpoèet toho automatu na~slovech bez prvního písmenka a~doufat v~to, ¾e si vystaèíme s~tou èástí automatu, kterou jsme u¾ postavili. Tentokrát to v¹ak nemù¾eme dìlat jedno slovo po~druhém, proto¾e zpìtné hrany mohou vést køí¾em mezi jednotlivými vìtvemi automatu. Mohlo by se nám tedy stát, ¾e pøi hledání nìjakého slova potøebujeme zpìtnou hranu, která vede do~jiného slova, které jsme je¹tì nezkonstruovali. Tak¾e tento postup sel¾e. Mù¾eme v¹ak vyu¾ít toho, ¾e ka¾dá zpìtná hrana vede ve~stromu alespoò o~jednu hladinu vý¹. Mù¾eme tak strom konstruovat po~hladinách. Lze si to tedy pøedstavit tak, ¾e paralelnì spustíme vyhledávání v¹ech slov bez prvních písmenek a~v¾dycky udìláme jeden podkrok ka¾dého z~tìch hledání, co¾ nám dá zpìtné hrany z~dal¹ího patra stromu.
267
268 \s{Konstrukce automatu:}
269 \algo
270 \:Zalo¾íme prázdný strom, $r \leftarrow$ jeho koøen.
271 \:Vlo¾íme do~stromu slova $\iota_1 \dots \iota_n$, nastavíme $slovo(*)$.
272 \:$z(r) \leftarrow \emptyset$, $out(r) \leftarrow \emptyset$.
273 \:Zalo¾íme frontu $F$ a~vlo¾íme do~ní syny koøene.
274 \:$\forall v~\in F:~~z(v) \leftarrow r, \<out>(v) \leftarrow \emptyset$.
275 \:Dokud $F \neq \emptyset$:
276 \::Vybereme $u$ z~fronty $F$.
277 \::Pro v¹echny syny $v$ vrcholu $u$:
278 \:::$q \leftarrow \<Krok>(z(u), \<písmeno na~hranì uv>)$.
279 \:::$z(v) \leftarrow q$.
280 \:::Pokud $slovo(q) \neq \emptyset$, pak $out(v) \leftarrow q$.
281 \::::Jinak $out(v) \leftarrow out(q)$.
282 \:::Vlo¾íme $v$ do~fronty $F$.
283 \endalgo
284
285 To, ¾e tento algoritmus zkonstruuje zpìtné hrany jak má, vyplývá z~toho, ¾e nedìláme nic jiného, ne¾ ¾e spou¹tíme výpoèty po~hladinách na~v¹echna hledaná slova bez prvního písmenka. Stejnì tak to, ¾e dobìhne v~lineárním èase, je takté¾ dùsledkem toho, ¾e efektivnì spou¹tíme v¹echny tyto výpoèty. Jen nìkdy udìláme najednou krok dvou èi více výpoètù (napøíklad |araba| a~|arbara| se poèítají na~zaèátku, dokud jsou stejné, jen jednou). Èasová slo¾itost této konstrukce je tedy men¹í nebo rovna souètu èasových slo¾itostí výpoètù nad v¹emi tìmi slovy. To u¾ ale víme, ¾e je lineární v~celkové délce tìchto slov. Konstrukce automatu tedy trvá nejvý¹e tolik, co hledání v¹ech $\iota_i$, co¾ je $\O(\sum_{i} \iota_i)$.
286
287 \s{Vìta:} Algoritmus Aho-Corasicková najde v¹echny výskyty v~èase 
288 $$\O\left(\sum_i~\iota_i~+~S~+~\sharp\<výskytù>\right).$$
289
290 Je¹tì se na~závìr zamysleme, jak bychom si takový automat ukládali do~pamìti. Urèitì se nám bude hodit si stavy nìjak oèíslovat (tøeba v~poøadí, v~jakém budou vznikat). Potom funkce pro zpìtné a~zkratkové hrany mohou být reprezentované polem indexovaným èíslem stavu. Funkce {\I Slovo}, která øíká, jaké slovo ve~stavu konèí, zase mù¾e být pole indexované stavem, které nám øekne poøadové èíslo slova ve~slovníku. Pro dopøedné hrany v~ka¾dém vrcholu pak mù¾eme mít pole indexované písmenky abecedy, které nám pro ka¾dé písmenko øekne, buï ¾e taková hrana není, nebo nám øekne, kam tato hrana vede. Je vidìt, ¾e takovéto pole se hodí pro pomìrnì malé abecedy. U¾ pro abecedu A-Z~bude velikosti 26 a~z~vìt¹iny bude prázdné, tak¾e bychom plýtvali pamìtí. V praxi se proto èasto pou¾ívá hashovací tabulka. Pøípadnì bychom mohli mít i~jen jednu velkou spoleènou hashovací tabulku, která bude reprezentovat funkci celou, ve~které budou zahashované dvojice (stav, písmenko). Tìchto dvojic je evidentnì tolik, kolik hran stromu, èili lineárnì s~velikostí slovníku, a~je to asi nejkompaktnìj¹í reprezentace.
291
292 %% Cvièení: velké abecedy
293
294 \bye